首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: The authors investigated volumetric alterations of the anterior hippocampal formation in patients experiencing a first episode of schizophrenia relative to healthy comparison subjects. METHOD: From contiguous 1.5-mm coronal magnetic resonance images, the hippocampal formation was divided into posterior and anterior segments, and the anterior hippocampal formation was separated from the amygdala. Volumes of the posterior and anterior hippocampal formation and amygdala were computed in 46 (31 male and 15 female) patients experiencing a first episode of schizophrenia and in 34 (21 male and 13 female) healthy comparison subjects. Twenty-four patients were antipsychotic naive at the time of the scan. RESULTS: Patients had significantly reduced total (right plus left) anterior hippocampal formation volume relative to healthy comparison subjects but did not differ in volumes of either the posterior hippocampal formation or amygdala. Similar findings were obtained when analyses were restricted to the antipsychotic-naive subgroup of patients. CONCLUSIONS: These findings suggest that volumetric abnormalities of the hippocampus-amygdala complex may be specific to the anterior hippocampal formation in patients experiencing a first episode of schizophrenia and are consistent with hypotheses regarding abnormal frontolimbic connectivity playing a role in the pathophysiology of the disorder.  相似文献   

2.
CONTEXT: Magnetic resonance imaging studies have identified hippocampal volume reductions in schizophrenia and amygdala volume enlargements in bipolar disorder, suggesting different medial temporal lobe abnormalities in these conditions. These studies have been limited by small samples and the absence of patients early in the course of illness. OBJECTIVE: To investigate hippocampal and amygdala volumes in a large sample of patients with chronic schizophrenia, patients with first-episode psychosis, and patients at ultra-high risk for psychosis compared with control subjects. DESIGN: Cross-sectional comparison between patient groups and controls. SETTING: Individuals with chronic schizophrenia were recruited from a mental health rehabilitation service, and individuals with first-episode psychosis and ultra-high risk were recruited from the ORYGEN Youth Health Service. Control subjects were recruited from the community. PARTICIPANTS: The study population of 473 individuals included 89 with chronic schizophrenia, 162 with first-episode psychosis, 135 at ultra-high risk for psychosis (of whom 39 subsequently developed a psychotic illness), and 87 controls. MAIN OUTCOME MEASURES: Hippocampal, amygdala, whole-brain, and intracranial volumes were estimated on high-resolution magnetic resonance images and compared across groups, including first-episode subgroups. We used 1- and 2-way analysis of variance designs to compare hippocampal and amygdala volumes across groups, correcting for intracranial volume and covarying for age and sex. We investigated the effects of medication and illness duration on structural volumes. RESULTS: Patients with chronic schizophrenia displayed bilateral hippocampal volume reduction. Patients with first-episode schizophrenia but not schizophreniform psychosis displayed left hippocampal volume reduction. The remaining first-episode subgroups had normal hippocampal volumes compared with controls. Amygdala volume enlargement was identified only in first-episode patients with nonschizophrenic psychoses. Patients at ultra-high risk for psychosis had normal baseline hippocampal and amygdala volumes whether or not they subsequently developed a psychotic illness. Structural volumes did not differ between patients taking atypical vs typical antipsychotic medications, and they remained unchanged when patients treated with lithium were excluded from the analysis. CONCLUSIONS: Medial temporal structural changes are not seen until after the onset of a psychotic illness, and the pattern of structural change differs according to the type of psychosis. These findings have important implications for future neurobiological studies of psychotic disorders and emphasize the importance of longitudinal studies examining patients before and after the onset of a psychotic illness.  相似文献   

3.
BACKGROUND: Magnetic resonance imaging studies in schizophrenia have revealed abnormalities in temporal lobe structures, including the superior temporal gyrus. More specifically, abnormalities have been reported in the posterior superior temporal gyrus, which includes the Heschl gyrus and planum temporale, the latter being an important substrate for language. However, the specificity of the Heschl gyrus and planum temporale structural abnormalities to schizophrenia vs affective psychosis, and the possible confounding roles of chronic morbidity and neuroleptic treatment, remain unclear. METHODS: Magnetic resonance images were acquired using a 1.5-T magnet from 20 first-episode (at first hospitalization) patients with schizophrenia (mean age, 27.3 years), 24 first-episode patients with manic psychosis (mean age, 23.6 years), and 22 controls (mean age, 24.5 years). There was no significant difference in age for the 3 groups. All brain images were uniformly aligned and then reformatted and resampled to yield isotropic voxels. RESULTS: Gray matter volume of the left planum temporale differed among the 3 groups. The patients with schizophrenia had significantly smaller left planum temporale volume than controls (20.0%) and patients with mania (20.0%). Heschl gyrus gray matter volume (left and right) was also reduced in patients with schizophrenia compared with controls (13.1%) and patients with bipolar mania (16.8%). CONCLUSIONS: Compared with controls and patients with bipolar manic psychosis, patients with first-episode schizophrenia showed left planum temporale gray matter volume reduction and bilateral Heschl gyrus gray matter volume reduction. These findings are similar to those reported in patients with chronic schizophrenia and suggest that such abnormalities are present at first episode and are specific to schizophrenia.  相似文献   

4.
OBJECTIVE: Individuals with schizophrenia spectrum disorders evince similar genetic, neurotransmitter, neuropsychological, electrophysiological, and structural abnormalities. Magnetic resonance imaging (MRI) studies have shown smaller gray matter volume in patients with schizotypal personality disorder than in matched comparison subjects in the left superior temporal gyrus, an area important for language processing. In a further exploration, the authors studied two components of the superior temporal gyrus: Heschl's gyrus and the planum temporale. METHOD: MRI scans were acquired from 21 male, neuroleptic-naive subjects recruited from the community who met DSM-IV criteria for schizotypal personality disorder and 22 male comparison subjects similar in age. Eighteen of the 21 subjects with schizotypal personality disorder had additional comorbid, nonpsychotic diagnoses. The superior temporal gyrus was manually delineated on coronal images with subsequent identification of Heschl's gyrus and the planum temporale. Exploratory correlations between region of interest volumes and neuropsychological measures were also performed. RESULTS: Left Heschl's gyrus gray matter volume was 21% smaller in the schizotypal personality disorder subjects than in the comparison subjects, a difference that was not associated with the presence of comorbid axis I disorders. There were no between-group volume differences in right Heschl's gyrus or in the right or left planum temporale. Exploratory analyses also showed a correlation between poor logical memory and smaller left Heschl's gyrus volume. CONCLUSIONS: Smaller left Heschl's gyrus gray matter volume in subjects with schizotypal personality disorder may help to explain the previously reported abnormality in the left superior temporal gyrus and may be a vulnerability marker for schizophrenia spectrum disorders.  相似文献   

5.
Hippocampal changes in patients with a first episode of major depression   总被引:21,自引:0,他引:21  
OBJECTIVE: Previous work suggests that patients with unipolar depression may have structural as well as functional abnormalities in limbic-thalamic-cortical networks, which are hypothesized to modulate human mood states. A core area in these networks is the hippocampus. In the present study, differences in volumes of hippocampal gray and white matter between patients with a first episode of major depression and healthy comparison subjects were examined. METHOD: Thirty patients with a first episode of major depression and 30 healthy comparison subjects who were matched for age, gender, handedness, and education were examined with high-resolution magnetic resonance imaging. RESULTS: Male patients with a first episode of major depression had significantly smaller hippocampal total and gray matter volumes than healthy male comparison subjects. Both male and female patients showed significant alterations of left-right asymmetry and significant reductions of left and right hippocampal white matter fibers in relation to healthy comparison subjects. Hippocampal measurements were not significantly correlated with clinical variables, such as age at onset of illness, illness duration, or severity of depression. CONCLUSIONS: These results are consistent with findings of structural abnormalities of the hippocampal formation in patients with major depression that were more pronounced in male patients. The authors' findings support the hypothesis that the hippocampus and its connections within limbic-cortical networks may play a crucial role in the pathogenesis of major depression.  相似文献   

6.
OBJECTIVE: The planum temporale, a highly asymmetric neocortical area of the temporal lobe, has a possible role in schizophrenia. The authors used three different anatomical definitions of the planum temporale to examine the anterior, posterior, and total planum temporale gray matter volumes simultaneously. METHOD: Magnetic resonance imaging was used to examine 30 male schizophrenic patients and 30 healthy male comparison subjects. The total planum temporale was identical in all three anatomical definitions applied to determine the border between the anterior and posterior planum temporale regions. RESULTS: No significant differences between men with and without schizophrenia were detected with regard to planum temporale volumes and asymmetry coefficients for any of the three definitions. CONCLUSIONS: The authors could not prove the hypothesis that the definition of planum temporale borders influences the results concerning possible disturbances of planum temporale asymmetry in patients with schizophrenia.  相似文献   

7.
A longer duration of untreated psychosis (DUP) in schizophrenia is reported to lead to a poorer clinical outcome, possibly reflecting a neurodegenerative process after the onset of overt psychosis. However, the effect of DUP on brain morphology in schizophrenia is still poorly understood. In this study, we used magnetic resonance imaging to investigate the relation between DUP and volumetric measurements for the superior temporal sub-regions (Heschl's gyrus, planum temporale, and caudal superior temporal gyrus), the medial temporal lobe structures (hippocampus and amygdala), and the frontal lobe regions (prefrontal area and anterior cingulate gyrus) in a sample of 38 schizophrenia patients (20 males and 18 females) whose illness duration was less than five years. We found a significant negative correlation between DUP and the volume of gray matter in the left planum temporale even after controlling for age, age at illness onset, and duration and dosage of neuroleptic medication. There was no such correlation for the other brain regions including each sub-region of the prefrontal cortex (the superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, ventral medial prefrontal cortex, orbitofrontal cortex, and straight gyrus). When subjects were divided into two groups around the median DUP, the long-DUP group had a significantly smaller planum temporale gray matter than the short-DUP group. These findings may reflect a progressive pathological process in the gray matter of the left planum temporale during the initial untreated phase of schizophrenia, whereas abnormalities in the medial temporal regions might be, as has been suggested from previous longitudinal findings, relatively static at least during the early course of the illness.  相似文献   

8.
BACKGROUND: The Heschl gyrus and planum temporale have crucial roles in auditory perception and language processing. Our previous investigation using magnetic resonance imaging (MRI) indicated smaller gray matter volumes bilaterally in the Heschl gyrus and in left planum temporale in patients with first-episode schizophrenia but not in patients with first-episode affective psychosis. We sought to determine whether there are progressive decreases in anatomically defined MRI gray matter volumes of the Heschl gyrus and planum temporale in patients with first-episode schizophrenia and also in patients with first-episode affective psychosis. METHODS: At a private psychiatric hospital, we conducted a prospective high spatial resolution MRI study that included initial scans of 28 patients at their first hospitalization (13 with schizophrenia and 15 with affective psychosis, 13 of whom had a manic psychosis) and 22 healthy control subjects. Follow-up scans occurred, on average, 1.5 years after the initial scan. RESULTS: Patients with first-episode schizophrenia showed significant decreases in gray matter volume over time in the left Heschl gyrus (6.9%) and left planum temporale (7.2%) compared with patients with first-episode affective psychosis or control subjects. CONCLUSIONS: These findings demonstrate a left-biased progressive volume reduction in the Heschl gyrus and planum temporale gray matter in patients with first-episode schizophrenia in contrast to patients with first-episode affective psychosis and control subjects. Schizophrenia but not affective psychosis seems to be characterized by a postonset progression of neocortical gray matter volume loss in the left superior temporal gyrus and thus may not be developmentally fixed.  相似文献   

9.
OBJECTIVE: Gray matter volume and glucose utilization have been reported to be reduced in the left subgenual cingulate of subjects with familial bipolar or unipolar depression. It is unclear whether these findings are secondary to recurrent illness or are part of a familial/genetic syndrome. The authors' goal was to clarify these findings. METHOD: Volumetric analyses were performed by using magnetic resonance imaging in 41 patients experiencing their first episode of affective disorder or schizophrenia and in 20 normal comparison subjects. RESULTS: The left subgenual cingulate volume of the patients with affective disorder who had a family history of affective disorder was smaller than that of patients with affective disorder with no family history of the illness and the normal comparison subjects. Patients with schizophrenia did not differ from comparison subjects in left subgenual cingulate volume. CONCLUSIONS: Left subgenual cingulate abnormalities are present at first hospitalization for psychotic affective disorder in patients who have a family history of affective disorder.  相似文献   

10.
BACKGROUND: In chronic schizophrenia, the P300 is broadly reduced and shows a localized left temporal deficit specifically associated with reduced gray matter volume of the left posterior superior temporal gyrus (STG). In first-episode patients, a similar left temporal P300 deficit is present in schizophrenia, but not in affective psychosis. The present study investigated whether the left temporal P300-left posterior STG volume association is selectively present in first-episode schizophrenia. METHOD: P300 was recorded as first-episode subjects with schizophrenia (n = 15) or affective psychosis (n = 18) or control subjects (n = 18) silently counted infrequent target tones amid standard tones. High-resolution spoiled gradient-recalled acquisition magnetic resonance images provided quantitative measures of temporal lobe gray matter regions of interest. RESULTS: Patients with first-episode schizophrenia displayed a reversed P300 temporal area asymmetry (smaller on the left), while magnetic resonance imaging showed smaller gray matter volumes of left posterior STG relative to control subjects and patients with affective psychosis (15.4% and 11.0%, respectively), smaller gray matter volumes of left planum temporale (21.0% relative to both), and a smaller total Heschl's gyrus volume (14.6% and 21.1%, respectively). Left posterior STG and the left planum temporale, but not other regions of interest, were specifically and positively correlated (r>0.5) with left temporal P300 voltage in patients with schizophrenia but not in patients with affective psychosis or in control subjects. CONCLUSION: These results suggest that the left temporal P300 abnormality specifically associated with left posterior STG gray matter volume reduction is present at the first hospitalization for schizophrenia but is not present at the first hospitalization for affective psychosis.  相似文献   

11.
BACKGROUND: The planum temporale, located on the posterior and superior surface of the temporal lobe, is a brain region thought to be a biological substrate of language and possibly implicated in the pathophysiology of schizophrenia. To investigate further the role of planum temporale abnormalities in schizophrenia, we measured gray matter volume underlying the planum temporale from high spatial resolution magnetic resonance imaging techniques. METHODS: Sixteen male patients with chronic schizophrenia and 16 control subjects were matched for age, sex, handedness, and parental socioeconomic status. Magnetic resonance imaging images were obtained from a 1.5-T magnet. RESULTS: Gray matter volume was significantly reduced in the left planum temporale (28.2%) in schizophrenic patients compared with normal controls. Schizophrenic patients showed a reversal of the left greater than right planum temporale asymmetry found in normal controls. Heschl's gyrus (primary auditory cortex) showed no differences between the left and right sides in either group. Of note, the Suspiciousness/Persecution subscale score of the Positive and Negative Syndrome Scale was associated with reduced left planum temporale volume in schizophrenic patients. CONCLUSIONS: Patients with schizophrenia have reduced left planum temporale gray matter and a reversal of planum temporale asymmetry, which may underlie an impairment in language processing and symptoms of suspiciousness or persecution characteristic of schizophrenia.  相似文献   

12.
Morphologic abnormalities of the superior temporal gyrus (STG) as well as its sub-regions such as Heschl's gyrus (HG) or planum temporale (PT) have been reported in schizophrenia patients, but have not been extensively studied in schizotypal subjects. In the present study, magnetic resonance images were acquired from 65 schizophrenia patients, 39 schizotypal disorder patients, and 72 healthy controls. Volumetric analyses were performed using consecutive 1-mm coronal slices on the temporal pole (TP) and superior temporal sub-regions [planum polare (PP), HG, PT, rostral STG, and caudal STG]. The HG was significantly smaller in schizophrenia patients compared with controls but not in schizotypal patients, while volume reductions of the left PT and bilateral caudal STG were common to both disorders. The TP gray matter was larger in female schizotypal patients compared with female schizophrenia patients. There were no significant group differences in the PP and rostral STG volume. In the subgroup of early phase schizophrenia patients (illness duration <1.0 year), smaller volumes for the left PP and rostral STG were correlated with hallucinations and delusions. Our findings suggest that morphologic changes in the posterior regions of the STG are common to the schizophrenia spectrum, whereas less involvement of the HG, and possibly the PP and rostral STG might be related to the sparing of schizotypal patients from developing overt psychosis.  相似文献   

13.
Previous research using MRI scans has shown reduced hippocampal volumes in chronic schizophrenia and first-episode psychosis compared to well subjects. There are few MRI volumetric studies of high-risk cohorts and no studies that have compared structural measures between high-risk subjects who later developed a psychotic illness and those who did not. Therefore, the question of whether structural changes to the hippocampi precede the onset of an acute psychotic episode has not been answered.Hippocampal and whole brain volumes of 60 people at ultra high-risk (UHR) of developing a psychotic episode (identified through state and trait criteria) were obtained through MRI scan and compared with subjects with first episode psychosis (FEP: n=32), and no mental illness (n=139). Thirty-three percent (n=20) of the UHR cohort developed a psychotic disorder during the 12-month period following the MRI scan.The UHR group as a whole, like the FEP group, had significantly smaller left and right hippocampal volumes than the normal comparison group. Contrary to our initial hypothesis, the left hippocampal volume of the UHR subjects who developed a psychotic disorder was larger than the UHR-non-psychotic subgroup and the FEP group, but no differences were found between the UHR-psychotic and normal groups. The right hippocampus of the UHR-non-psychotic group was significantly smaller than the Normal group but not different to the FEP group. Furthermore, a larger left hippocampal volume of the UHR cohort at intake was associated with the subsequent development of acute psychosis rather than smaller volumes.These results contradicted the expected outcomes, which had been influenced by the neurodevelopmental model of the development of psychosis and an earlier study comparing hippocampal volumes of first episode, chronic schizophrenia and normal populations. One implication of these results is that a process of dynamic central nervous system change may occur during the onset phase of schizophrenia and related disorders, rather than earlier in life as suggested by the neurodevelopmental model. Alternatively, selection factors associated with the UHR cohort may have created a bias in the results. Replication of these results is required in other high-risk cohorts.  相似文献   

14.
BACKGROUND: The purported functions of medial temporal lobe structures suggest their involvement in the pathophysiology of bipolar disorder (BD). Previous reports of abnormalities in the volume of the amygdala and hippocampus in patients with BD have been inconsistent in their findings and limited to adult samples. Appreciation of whether volumetric abnormalities are early features of BD or whether the abnormalities represent neurodegenerative changes associated with illness duration is limited by the paucity of data in juvenile samples. OBJECTIVE: To investigate amygdala and hippocampal volume in adults and adolescents with BD.Setting and PARTICIPANTS: Subjects included 36 individuals (14 adolescents and 22 adults) in outpatient treatment for BD type I at a university hospital or Veterans Affairs medical center or in the surrounding community, and 56 healthy comparison subjects (23 adolescents and 33 adults).Design and MAIN OUTCOME MEASURES: Amygdala and hippocampal volumes were defined and measured on high-resolution anatomic magnetic resonance imaging scans. We used a mixed-model, repeated-measures statistical analysis to compare amygdala and hippocampal volumes across groups while covarying for total brain volume, age, and sex. Potential effects of illness features were explored, including rapid cycling, medication, alcohol or other substance dependence, duration, and mood state. RESULTS: For both the amygdala and hippocampal regions, we found an overall significant volume reduction in the BD compared with the control group (P<.0001). Amygdala volume reductions (15.6%) were highly significant (P<.0001). We observed a nonsignificant trend (P =.054) toward reductions in hippocampal volumes of lesser magnitude (5.3%). Effects of illness features were not detected. CONCLUSIONS: These results suggest that BD is associated with decreased volumes of medial temporal lobe structures, with greater effect sizes in the amygdala than in the hippocampus. These abnormalities are likely manifested early in the course of illness, as they affected adolescent and adult subjects similarly in this sample.  相似文献   

15.
Brain abnormalities have been identified in patients with schizophrenia, but what is unclear is whether these changes are progressive over the course of the disorder. In this longitudinal study, hippocampal and temporal lobe volumes were measured at two time points in 30 patients with first episode psychosis (mean follow-up interval=1.9 years, range 0.54-4.18 years) and 12 with chronic schizophrenia (mean follow-up interval=2.3 years, range 1.03-4.12 years) and compared to 26 comparison subjects (mean follow-up interval 2.2 years, range 0.86-4.18 years). Hippocampal, temporal lobe, whole-brain and intracranial volumes (ICV) were estimated from high-resolution magnetic resonance images. Only whole-brain volume showed significant loss over the follow-up interval in both patient groups. The rate of this volume loss was not different in the first episode group compared to the chronic group. There were no changes in either hippocampal or temporal lobe volumes. The negative findings for the hippocampus and temporal lobes may mean that the abnormalities in these regions are stable features of schizophrenia. Alternatively, the period before the onset of frank psychotic symptoms may be the point of greatest risk for progressive change.  相似文献   

16.
OBJECTIVE: The temporal lobe and associated structures have been previously implicated in the neuroanatomy of schizophrenia. This study was designed to assess the potential influence of gender on the morphology of temporal lobe structures, including the superior temporal gyrus and the amygdala/hippocampal complex, in patients with schizophrenia and to examine whether schizophrenic patients differ morphologically in these structures from comparison subjects. METHOD: Magnetic resonance imaging was used to measure the volume of temporal lobe structures, including the superior temporal gyrus, the amygdala/hippocampal complex, and the temporal lobe (excluding the volumes of the superior temporal gyrus and amygdala/hippocampal complex), and two comparison areas--the prefrontal cortex and caudate--in 36 male and 23 female patients with schizophrenia and 19 male and 18 female comparison subjects. RESULTS: There was a significant main effect of diagnosis in the superior temporal gyrus and the amygdala/hippocampal complex, with smaller volumes in patients than in comparison subjects. There was a significant gender-by-diagnosis-by-hemisphere interaction for temporal lobe volume. Temporal lobe volume on the left was significantly smaller in male patients than in male comparison subjects. Female patients and female comparison subjects demonstrated no significant difference in temporal lobe volume. There were no statistically significant gender interactions for the superior temporal gyrus, the amygdala/hippocampal complex, or the comparison regions. CONCLUSIONS: These findings suggest that there may be a unique interaction between gender and the pathophysiologic processes that lead to altered temporal lobe volume in patients with schizophrenia.  相似文献   

17.
A magnetic-resonance-imaging-based method of cortical parcellation was used to evaluate the morphology of the superior temporal plane and its subregions (Heschl's gyrus [HG], planum temporale [PT], and planum polare [PP]) in a group of 30 patients with schizophrenia versus a matched group of healthy subjects. Right HG volume was significantly reduced in patients compared with control subjects. Each subregion showed a unique set of structure/function relationships: reduced volumes of the HG were associated with greater duration of illness; reduced volumes of the PT were associated with positive symptoms; and in most contrast, elevated volumes of the PP were associated with cumulative neuroleptic exposure.  相似文献   

18.
OBJECTIVE: Neuropathological findings regarding the entorhinal cortex in schizophrenia are conflicting. The authors used structural magnetic resonance imaging to examine the entorhinal cortex volumes of healthy subjects and medication-naive patients experiencing their first episode of psychotic illness. METHOD: The study included 33 patients with schizophrenia and related disorders, 11 patients with nonschizophrenic disorders, and 43 matched healthy subjects. All subjects were rated on the Scale for the Assessment of Positive Symptoms and the Scale for the Assessment of Negative Symptoms, and volumetric measurements of the entorhinal cortex were obtained for all subjects. The authors examined differences across the groups as well as clinical correlations of entorhinal cortex volumes adjusted for intracranial volume. RESULTS: A significant diagnosis effect was seen in the left entorhinal cortex: patients with schizophrenia and related disorders and patients with nonschizophrenic psychotic disorders had smaller left entorhinal cortex volumes than healthy subjects. The mean entorhinal cortex volume of patients with schizophrenic disorders did not differ from that of patients with nonschizophrenic psychotic disorders. In patients with schizophrenic disorders, the entorhinal cortex volume positively correlated with severity of delusions. The mean entorhinal cortex volume of patients with nondelusional psychotic disorders was significantly smaller than that of patients with delusional psychotic disorders and healthy subjects. CONCLUSIONS: Smaller entorhinal cortex volume in first-episode, neuroleptic-naive psychotic disorders may not be a confound of the effects of illness chronicity or antipsychotic treatment. Entorhinal cortex pathology appears to have a significant association with positive symptoms, specifically delusions. The impairment of functions in which the entorhinal cortex participates-such as novelty detection, associative learning, and processing episodic, recognition, and autobiographical memory-could be responsible for its association with psychotic disorders and delusions.  相似文献   

19.
OBJECTIVE: There is some evidence of thalamic abnormalities in schizophrenia. This study investigated thalamic volumes in patients experiencing their first episode of psychosis and nonpsychotic comparison subjects. METHOD: Magnetic resonance imaging scans were obtained for 38 patients and 29 comparison subjects. Patients' symptoms were rated by research psychiatrists using the Positive and Negative Syndrome Scale. RESULTS: Thalamic volumes were smaller in patients than in comparison subjects. There were no significant correlations between thalamic volumes and symptom scores. CONCLUSIONS: Thalamic abnormalities are present close to the onset of psychosis.  相似文献   

20.
BACKGROUND: Neurobiologic abnormalities in the temporal lobe, particularly medial temporolimbic circuits, have been implicated in the pathogenesis of major depressive disorder (MDD). Although MDD commonly emerges during childhood and adolescence, to our knowledge, no prior study has examined temporal lobe anatomy in pediatric patients with MDD near the onset of illness before treatment. METHODS: Volumetric magnetic resonance imaging scans were conducted in 23 psychotropic drug-na?ve pediatric patients with MDD, aged 8-17 years, and 23 case-matched healthy comparison subjects. RESULTS: Pediatric patients with MDD had significantly larger left (14%) and right (11%) amygdala:hippocampal volume ratios than controls. Increased left and right amygdala:hippocampal volume ratios were associated with increased severity of anxiety but not increased severity of depression or duration of illness. CONCLUSION: These results suggest that alterations in amygdala:hippocampal volume ratios in pediatric MDD may more reflect severity of associated anxiety than depression. These results underscore the importance of assessment for comorbidity in the study of MDD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号