首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
The effects of FK506, a Ca2+/calmodulin-dependent phosphatase 2B (calcineurin) inhibitor, on the NMDA receptor-mediated potentials and synaptic plasticity were investigated in the CA1 region of the rat hippocampus. Bath application of FK506 (50 μM) produced a 45% inhibition on the NMDA receptor-mediated potentials. FK506 also inhibited the induction of long-term potentiation (LTP), but had no effect on the depotentiation in the CA1 hippocampus. Cyclosporin A (100 μM), another calcineurin inhibitor, mimicked the effects of FK506 on the NMDA responses and synaptic plasticity. These results suggest that FK506 inhibits the activity of NMDA receptors via the involvement of calcineurin. The differential effects of FK506 on LTP and depotentiation may attribute to the partial inhibition on the activity of NMDA receptors and the subsequent attenuation of intracellular Ca2+ increase.  相似文献   

2.
The potential toxic effects of the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and its interactions with the N-methyl- -aspartate (NMDA) receptor were studied in hippocampal brain slice cultures, using densitometric measurements of the cellular uptake of propidium iodide (PI) to quantify neuronal degeneration. Cultures exposed to ACPD, showed a concentration (2–5 mM) and time (1–4 days) dependent increase in PI uptake in CA1, CA3 and dentate subfields after 24 h and 48 h of exposure, with CA1 pyramidal cells being most sensitive. The neurodegeneration induced by 2 mM ACPD was completely abolished by addition of 10 μM of the NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), while 20 μM of the 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainic acid receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) had no effect. Co-exposing cultures to a subtoxic dose of 300 μM ACPD together with 10 μM NMDA, which at this dose is known to induce a fairly selective degeneration of CA1 pyramidal cells, significantly increased the PI uptake in both CA1 and CA3, compared to cultures exposed to 10 μM NMDA only. Adding the 300 μM ACPD as pretreatment for 30 min followed by a 30 min wash in normal medium before the ACPD/NMDA co-exposure, eliminated the potentiation of NMDA toxicity. The potentiation was also blocked by addition of 10 or 100 μM 2-methyl-6-(phenylethynyl)pyridine (MPEP) (mGluR5 antagonist) during the co-exposure, while a corresponding addition of 10 or 100 μM 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) (mGluR1 antagonist) had no effect. We conclude that, stimulation of metabotropic glutamate receptors with ACPD at concentrations of 2 mM or higher induces a distinct subfield-related and time and concentration dependent pattern of hippocampal degeneration, and that ACPD at subtoxic concentrations modulates NMDA-induced excitotoxicity through the mGluR5 receptor in a time dependent way.  相似文献   

3.
Intracerebral microdialysis technique was utilized to study the effect ofNG-nitro-l-arginine, a nitric oxide (NO) synthase inhibitor, onN-methyl-d-aspartate (NMDA)-induced dopamine overflow in the nucleus accumbens of unanesthetized, freely moving rats. Perfusion of 1 and 3 mM NMDA through the microdialysis probe dose-dependently increased the extracellular dopamine level in the nucleus accumbens. Coapplication of 0.5 mMd-(−)-2-amino-5-phosphonovaleric acid (D-AP5), a selective and competitive NMDA receptor antagonist, significantly reduced the dopamine overflow induced by 3 mM NMDA. Perfusion of 0.5 mMNG-nitro-l-arginine alone did not affect the basal dopamine level, whereas it suppressed the NMDA-evoked dopamine overflow in the nucleus accumbens when concurrently applied with 3 mM NMDA. These results suggest that NO mediates, at least in part, dopamine release resulting from NMDA receptor activation in the nucleus accumbens of rats.  相似文献   

4.
Nitric oxide (NO) has been proposed to trigger long-term potentiation (LTP) at CA3 to CA1 synapses. We previously reported that NO synthesis inhibitors and blockers reduce an electrophysiological index of NMDA receptor activation in acute hippocampal slices. We now show that the NOS inhibitor, NG-methyl-

-arginine (MLA), also reversibly prevents LTP induction in organotypic hippocampal slices and significantly reduces a biochemical index of NMDA receptor function. These results further indicate that MLA inhibits LTP induction by interfering with NMDA receptor functions.  相似文献   

5.
We have shown previously that plasmin facilitated the generation of long-term potentiation (LTP) in CA1 and dentate region of rat hippocampus. In the present study, we investigated the effects of plasmin on postsynaptic currents in CA1 pyramidal neurons of rat hippocampal slices. Plasmin (100 nM) had no effect on NMDA nor on non-NMDA receptor-mediated excitatory postsynaptic currents. However, plasmin significantly decreased GABAA receptor-mediated inhibitory postsynaptic currents. This effect of plasmin disappeared when intracellular Ca2+ was strongly chelated with BAPTA. Furthermore, plasmin attenuated the GABA-induced currents in CA1 pyramidal cells. These results suggest that the STP-enhancing effect of plasmin is due to a blockade of postsynaptic GABAA responses and that an increase in intracellular Ca2+ by plasmin may be involved in its mechanism.  相似文献   

6.
Intracerebral microdialysis technique was utilized to study the effect ofNG-nitro-l-arginine, a nitric oxide (NO) synthase inhibitor, onN-methyl-d-aspartate (NMDA)-induced dopamine overflow in the nucleus accumbens of unanesthetized, freely moving rats. Perfusion of 1 and 3 mM NMDA through the microdialysis probe dose-dependently increased the extracellular dopamine level in the nucleus accumbens. Coapplication of 0.5 mMd-(−)-2-amino-5-phosphonovaleric acid (D-AP5), a selective and competitive NMDA receptor antagonist, significantly reduced the dopamine overflow induced by 3 mM NMDA. Perfusion of 0.5 mMNG-nitro-l-arginine alone did not affect the basal dopamine level, whereas it suppressed the NMDA-evoked dopamine overflow in the nucleus accumbens when concurrently applied with 3 mM NMDA. These results suggest that NO mediates, at least in part, dopamine release resulting from NMDA receptor activation in the nucleus accumbens of rats.  相似文献   

7.
We examined the effect of elevating intracellular calcium ([Ca2+]i) on responses to iontophoretically applied N-methyl-d-aspartate (NMDA), and quisqualate in CA1 neurons of the hippocampal slice. Topical application of calcimycin (A23187), a calcium ionophore, potentiated responses to NMDA but not to quisqualate. This potentiation was prevented by loading cells with the calcium chelator, BAPTA, suggesting that the action of calcimycin on NMDA receptors was mediated by an elevation of [Ca2+]i in the recorded cell. The potentiation was also recorded in voltage-clamped and in cesium-loaded cells, suggesting that it was not mediated by non-specific changes in voltage or input resistance of the cell that may have resulted from the rise in [Ca2+]i. We propose that intracellular calcium plays a crucial role in regulating the activity of the NMDA subtype of l-glutamate receptor.  相似文献   

8.
The effects of phospholipase blockers on tetanus-induced long-term potentiation (LTP) and of diacylglycerol (DG) and arachidonic acid (AA) on synaptic transmission were studied in CA1 neurons of guinea pig hippocampal slices to evaluate the role of protein kinase C (PKC) and AA on the maintenance of LTP. Tetanus-induced LTP was suppressed by perfusion with neomycin (1 mM) or 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate (NCDC, 0.1 mM), blockers of phospholipase. 1-Oleoyl-2-acetyl-glycerol (OAG, 100 μg/ml) and AA (100 μM) produced a temporal increase in both the amplitude of the population spike (PS) and the slope of the field excitatory postsynaptic potentials (EPSPs) but failed to produce LTP. Application of OAG or AA in low-Mg2+ (0.1 mM) solution induced LTP. OAG- and AA-induced LTP was blocked by -2-amino-phosphopentanoic acid (AP5; 50 μM). The administration of a potent activator of PKC, phorbol-12,13-dibutyrate (PDBu), in low-Mg2+ (0.1 mM) solution enhanced the PS and EPSPs for 2 or 3 h but this enhancement did not persist. These results suggest that PKC activation is not as important as AA for the maintenance of LTP and that OAG and AA play important roles in the maintenance of LTP in synergy with the influx of Ca2+ through NMDA receptor-coupled channels.  相似文献   

9.
In hippocampal CA1 area, there are at least two forms of long-term potentiation (LTP): one is N-methyl-D-aspartate (NMDA) receptor-dependent LTP (NMDA LTP), which is induced with a 25 Hz tetanus and blocked by 50 μM 2-amino-5-phosphonovaleric acid (APV); the other is NMDA receptor-independent LTP (VDCC LTP), which is induced by 200 Hz tetanus stimulation in the presence of APV and blocked by nifedipine, a voltage-dependent Ca++ channel (VDCC) blocker, or by the intracellular injection of 1,2-bis(2-Aminophenoxoy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). The effects of anticonvulsant drugs phenobarbital, phenytoin, and valproic acid on both NMDA LTP and VDCC LTP were investigated in rat hippocampal slices. The results showed that 0.1 mg/ml valproic acid significantly altered baseline population spike amplitude by 34.6%, but the other drugs had no significant effect on the baseline population spike amplitude. Phenobarbital (0.025 mg/ml) potently blocked NMDA LTP and inhibited VDCC LTP. Phenytoin (0.02 mg/ml) had no effect on NMDA LTP but reduced VDCC LTP. Valproic acid did not inhibit VDCC LTP, but it abolished the expression of NMDA LTP in a similar manner as H-7, a nonspecific protein kinase C inhibitor. These data suggest that the anticonvulsant effects of these three drugs may be via different cellular mechanisms.  相似文献   

10.
The actions of dextromethorphan (DXM) on the 50 pS conductance state of theN-methyl-d-aspartate (NMDA) receptor-operated channel were studied using outside-out patches obtained from cultured rat hippocampal pyramidal neurons. DXM (5–50 μM) had no effect on the amplitudes of unitary currents but caused concentration-dependent reductions in channel mean open times and the frequency of channel openings. Channel open probability was reduced in a concentration-dependent manner by DXM and was one-half of the control value at a DXM concentration of 6 μM, with the patch potential held at −60 mV. An IC50 value of 4 μM was obtained for the reduction by DXM of NMDA-evoked rises in [Ca2+]i in cultured rat hippocampal pyramidal neurons loaded with Fura-2. The results were consistent with drug block of the open NMDA channel with an onward (blocking) rate constant of 7.7 × 106 M−1 · s−1 (at −60 mV). The estimated unblocking rate constant was about 10 s−1, a value considerably higher compared to the off-rate constant found for dizocilpine block of the NMDA channel.  相似文献   

11.
The involvement of NMDA receptors and voltage-dependent calcium channels on augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral–CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-bursts tetanic stimulation. The amplitude of population spike was measured as an index of increase in postsynaptic excitability. d,l-AP5 and nifedipine were used as NMDA receptor antagonist and voltage-dependent calcium channel blocker, respectively. The amount of LTP of orthodromic population spike amplitude was higher in slices from dependent rats. Perfusion of slices from control or dependent rats with ACSF containing either d,l-AP5 (25 μM) or nifedipine (10 μM) and delivering tetanic stimulation, showed that d,l-AP5 completely blocked LTP of OPS in slices from both control and dependent rats, while nifedipine attenuated the amount of LTP of OPS in dependent slices and had no effect on control ones. The results suggest that the enhanced LTP of OPS in the CA1 area of hippocampal slices from morphine dependent rats is primarily induced by the NMDA receptors activity and the voltage-dependent calcium channels may also be partially involved in the phenomenon.  相似文献   

12.
Tetanic stimuli of peripheral C fibers produces long-term potentiation (LTP) in the spinal cord, which may contribute to sensitization of spinal pain-sensitive neurons. Zn2+ is widely distributed in the central nervous system and has blocked (LTP) in the hippocampus. The present study examined the effects of Zn2+ on the induction and maintenance of C fiber-evoked LTP in the deep dorsal horn of spinalized rats in vivo. The sciatic nerve was stimulated by tetanic stimuli for inducing LTP. (1) Topical administration of Zinc chloride (15 μM) to the spinal cord 15 min before tetanic stimulation completely blocked the induction of LTP, but not the baseline C responses. When Zn2+ was given 2 h after induction of LTP, no significant effect occurred. (2) Chelation of Zn2+ by disodium calcium ethylene diaminetelraacetate (CaEDTA) (500 μM) resulted in no effect on LTP. (3) Coadministration of Zn2+ (15 μM) and N-methyl-D-aspartic acid (NMDA) (5 μM) significantly attenuated C fiber-evoked potentials, which was prevented by the NMDA receptor antagonist AP-5 (100 μM). The present results showed that Zn2+ may contribute to the modulation of the formation, but not the maintenance, of spinal LTP. NMDA receptors may be involved in Zn2+-induced modulation.  相似文献   

13.
Studies on rat cortical cultures show that glutamate (10 μM) or hypoxia followed by reoxygenation causes damage to the cells as indexed by a release of lactate dehydrogenase (LDH). These effects could be counteracted by the N-methyl-

-aspartate (NMDA) antagonist MK-801 (2 μM) but not by the kainate/AMPA antagonist CNQX (100 μM). These data favour the view that the damage caused to the cells by glutamate and hypoxia/reperfusion is mediated via NMDA receptors. The damage to the cells could also be prevented by melatonin (100 μM). The melatonin effect is not mediated by specific receptors because it was not blunted by the melatonin antagonist, luzindole. Moreover, NMDA stimulated an accumulation of

by cortical neurones, but although this effect was counteracted by MK-801, melatonin was ineffective, which showed that the neuroprotective effect of melatonin is not elicited by direct action with NMDA receptors. Ascorbate and iron stimulated the production of free radicals in a retinal cell preparation. Chelation of the iron with deferoxamine prevented this process as did melatonin while MK-801 had no effect. The combined findings suggest that melatonin counteracts the in vitro destructive effects of NMDA or hypoxia/reperfusion by preventing accumulation of excessive free radicals.  相似文献   

14.
We have investigated the role ofN-methyl-d-asparte (NMDA) receptors in the excitatory synaptic transmission to central vestibular neurons in the isolated superfused brainstem of the frog. In superfusate containing 1 mM Mg2+ field potentials in the vestibular nuclei evoked by electrical stimulation of either the ipsi- or the contralateral VIIIth nerve were not affected by bath-appliedd-2-amino-5-phosphonovaleric acid (D-APV, 25–50 μM), a selective NMDA antagonist. In a low Mg2+ solution postsynaptic field potential components were larger than control but still unaffected by D-APV. Ipsi- and contralaterally evoked excitatory postsynaptic potentials (EPSPs) differed in their shape parameters as well as their pharmacological sensitivity. Ipsilaterally evoked EPSPs were not affected by D-APV and had a rise time that was faster than that of contralaterally evoked EPSPs. The peak amplitude of the latter was reduced by D-APV (25–50 μM) to about 65% of the control value in the presence of 1 mM Mg2+. During bath application of NMDA (100 μM) an increased input resistance and repetitive de- and hyperpolarizing membrane potential shifts were observed. Similar events were observed during a reduction of the Mg2+ concentration. Bath application of NMDA (0.1–1 μM) resulted in an enhanced size of the recorded EPSPs. Dendritic and somatic EPSPs were stimulated on a computer with the assumption of a constant NMDA receptor activation and a pulse-like non-NMDA receptor activation. The results of these stimulations are consistent with the hypothesis that the efficacy of non-NMDA-mediated vestibular commissural synaptic transmission is modulated through tonically activated NMDA receptors.  相似文献   

15.
This study investigated the role of the N -methyl- d -aspartate (NMDA) subtype of glutamate receptor in the induction of long-term potentiation (LTP) in the hippocampal-prefrontal cortex pathway in vivo. Field potentials evoked by electrical stimulation of the CA1/subicular region were recorded in the prelimbic area of the prefrontal cortex under continuous perfusion of artificial cerebrospinal fluid in anaesthetized rats. High-frequency stimulation of the CA1/subicular region induced LTP of the evoked response in the prelimbic area of the prefrontal cortex. LTP was completely blocked when the selective NMDA receptor antagonist d -(-)2-amino-5- phosphonopentanoic acid ( d -AP5; 200 μM), was perfused during the tetanus. Perfusion of D-AP5 did not affect normal transmission or pre-established LTP. These results demonstrate that induction of LTP in the hippocampal-prefrontal cortex pathway is an NMDA receptor-dependent process.  相似文献   

16.
The role of metabotropic glutamate receptors (mGluRs) in long-term potentiation (LTP) has remained controversial. However, it has recently been shown that group I mGluR activation, prior to high frequency stimulation (HFS), can facilitate or ‘prime' LTP in the area CA1 of the hippocampus. Here we report that, in the dentate gyrus in vitro, activation of both group I and group II mGluRs primes LTP. Control LTP, 60 min after HFS was 145.4±3.6% of control. The group I mGluR agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, 100 μM), resulted in LTP of 180.1±12.1% of control, which was significantly greater than control LTP (n=4; P<0.05). The group I/II mGluR agonist 1S,3R-1-aminocyclopentate-1,3-dicarboxylic acid (1S,3R-ACPD, 10 μM), and the group II mGluR agonist (2S,3S,4S)-α-(carboxy-cyclopropyl)-glycine (L-CCG-1, 20 μM) also produced LTP that was significantly greater than control LTP (177.7±11.5% and 183.2±9.1% of control respectively; n=5; P<0.05). The group III mGluR agonist -2-amino-4-phosphonobutyric acid (L-AP4, 20 μM), failed to significantly prime LTP (153.8±5.9% of control; n=5). It also proved difficult to depotentiate the primed LTP. Following low frequency stimulation (LFS), control LTP was reduced to 101.1±3.6% of control, and to 145.0±2.1%, 141.2±14.7% and 134.0±8.7% of control for CHPG, ACPD and L-CCG-1 primed LTP respectively. We conclude that LTP may be primed by mGluR activation in the dentate gyrus and that this priming is mediated through group I and II mGluRs.  相似文献   

17.
Respiring neonatal rat cerebrocortical slices were exposed for 30 min to toxic concentrations of N-methyl-d-aspartate (NMDA; 100 μM, 500 μM and 1000 μM). In situ hybridization was used to study c-fos and hsp70 mRNA before, during, and for 8 h after NMDA exposure. Cell swelling and nuclear morphology were assessed using Cresyl violet (Nissl) staining. Possible evidence for apoptosis was examined using in situ terminal transferase d-UTP nick-end labeling (TUNEL) staining and agarose–gel electrophoresis of extracted slice DNA. After NMDA administration c-fos and hsp70 mRNA expression increased, with maxima occurring, respectively, at 1 h and 4 h after NMDA exposure. When treatment with dizocilpine (MK-801; 10 μM), a non-competitive NMDA antagonist, was started before NMDA exposures, expression of both c-fos and hsp70 mRNA was decreased to values near control, indicating that activation of NMDA receptors induces both genes. Only a minority of induced cells expressed FOS protein and no HSP70 protein expression was seen. These apparent failures of translation might be related to the stress response. Histologically, 1000 μM NMDA produced substantial necrosis, with no evidence of apoptosis. Evidence for apoptosis was found at the two lower NMDA concentrations, which produced TUNEL-positive fragmented nuclei and faint ladder patterns in DNA electrophoresis. Dizocilpine pre-treatment blocked NMDA-induced necrosis and attenuated TUNEL-positive staining in slice parenchyma. TUNEL-positive staining with a different morphology was found in the injury layer, a region 50-μm thick where mechanical trauma was inflicted when slices were cut from brain. When slices received dizocilpine immediately after decapitation, TUNEL-positive staining no longer occurred in the injury layer, in agreement with previous cell culture studies that implicated NMDA receptor activation after mechanical trauma to neurons. We conclude that at the toxic doses studied, NMDA receptor activation results primarily in necrosis. However, data at low NMDA concentrations are consistent with a small amount of apoptosis.  相似文献   

18.
Lappaconitine, a C19 diterpenoid alkaloid from Aconitum sinomontanum has been reported to possess analgesic and antiinflammatory properties in vivo and to inhibit neuronal activity in brain slices. In the present study the effect of lappaconitine has been compared with the effects of its main metabolite N-desacetyllappaconitine and the structurally related alkaloid lappaconidine. For comparison of drug effects population spikes and field excitatory postsynaptic potentials (EPSPs) evoked by stimulation of stratum radiatum or the alveus were studied in normal rat hippocampal slices and in slices treated with low Mg2+-medium. At concentrations of 3–100 μM, both lappaconitine and N-desacetyllappaconitine inhibited population spikes elicited by stratum radiatum and alvear stimulation as well as the field EPSP recorded in CA1 stratum radiatum. The drug-induced depression of field potential responses was increased with rising stimulus frequency, indicating an activity-dependent mode of action. The effect of N-desacetyllappaconitine on each parameter investigated was significantly stronger than the effect of lappaconitine. Despite the structural relationship, lappaconidine failed to affect neuronal excitability in concentration below 100 μM, and an increase in stimulus frequency did not potentiate its effect. Moreover, lappaconitine and N-desacetyllappaconitine suppressed epileptiform activity induced by bicuculline or by omission of Mg2+ from the bathing medium.  相似文献   

19.
N-Methyl-

Optic nerve (ON) stimulation caused a postsynaptic field potential in the suprachiasmatic nucleus (SCN) of rat hypothalamic slices. The postsynaptic field potential was suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, in a concentration-dependent manner, but not affected by

-amino-5-phosphonovaleric acid (APV), a competitive NMDA receptor antagonist. Tetanic stimulation to the ON induced long-term potentiation (LTP) in the SCN. Application of APV at 50 μM inhibited the induction of LTP by tetanic stimulation but CNQX at lower dose (5 μM) didn't inhibit it. These results suggest that NMDA receptors are indispensable for the induction of LTP after tetanic stimulation.  相似文献   

20.
The effects of l-deprenyl (selegiline), a highly selective monoamine oxidase type B (MAO-B) inhibitor, on cell excitability of rat hippocampal CA1 neurons were examined in slice preparations using intracellular recording techniques. Superfusion of l-deprenyl (10 and 20 μM) reversibly limited the repetitive firing (RF) of action potentials elicited by injection of depolarizing current pulses (100 ms) into the pyramidal cells. At a concentration of 1–50 μM, l-deprenyl did not alter resting membrane potential or input resistance of the hippocampal CA1 neurons. The limitation of RF by l-deprenyl (20 μM) was accompanied by the reduction of the maximal rate of rise (V?max) of the action potentials in a non-voltage-dependent manner. In 80% of recorded cells, application of l-deprenyl (20 μM) produced an increase in the amplitude and duration of afterhyperpolarization (AHP). The limitation of l-deprenyl on RF was mimicked by other MAO-B inhibitors, pargyline and 4-phenylpyridine. In addition, the ability of l-deprenyl to limit RF was not observed in the hippocampal CA1 neurons taken from dopamine (DA)-depleted rats. Moreover, we also observed that the l-deprenyl-induced limitation of RF was specifically antagonized by (±)-7-bromo-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF-83566, 5 μM), a selective D1 dopaminergic receptor antagonist. However, the D2 dopaminergic receptor antagonist, sulpiride (5 μM), had no effect on l-deprenyl's action. These results indicate that the MAO-B inhibitory ability leading to an increase of the dopaminergic tone in the hippocampus is involved, at least in part, in the l-deprenyl-induced reduction of neuronal excitability in the CA1 region of rat hippocampus and that the D1 dopaminergic receptor is involved in l-deprenyl's action. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号