首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Brain stimulation》2022,15(1):167-178
BackgroundBrain responses to external stimuli vary with fluctuating states of neuronal activity. Previous work has demonstrated effects of phase and power of the ongoing local sensorimotor μ-alpha-oscillation on responses to transcranial magnetic stimulation (TMS) of motor cortex (M1). However, M1 is part of a distributed network, and the effects of oscillatory activity in this network on TMS-evoked EEG responses (TEPs) have not been explored.ObjectivesTo determine the effects of oscillatory activity in the bihemispheric sensorimotor network on TEPs.Methods31 healthy subjects received single-pulse TMS of the left M1 hand area during EEG recording. Ongoing bihemispheric sensorimotor cortex oscillatory states were reconstructed from the EEG directly preceding TMS, and inferred by a data-driven method combining a multivariate autoregressive model and a Hidden Markov model. TEP amplitudes (P25, N45, P70, N100 and P180) were then compared between different bihemispheric sensorimotor cortex oscillatory states.ResultsFour bihemispheric sensorimotor cortex oscillatory states were identified, with different interhemispheric expressions of theta and alpha oscillations. High alpha-power states in the stimulated sensorimotor cortex increased P25 amplitude. Alpha power in the alpha-alpha state (stimulated - non-stimulated hemisphere) correlated in both hemispheres with N45 amplitude. Theta power in the alpha-theta state correlated in the non-stimulated hemisphere with P70 amplitude.ConclusionsBihemispheric sensorimotor cortex oscillatory states contribute to TEPs, with a relevance shift from stimulated to non-stimulated M1 from P25 over N45 to P70. This significantly extends previous findings: not only ongoing local oscillations but distributed network oscillatory states determine cortical responsiveness to external stimuli.  相似文献   

2.
《Brain stimulation》2021,14(2):304-315
BackgroundSingle-pulse transcranial magnetic stimulation (TMS) elicits an evoked electroencephalography (EEG) potential (TMS-evoked potential, TEP), which is interpreted as direct evidence of cortical reactivity to TMS. Thus, combining TMS with EEG can be used to investigate the mechanism underlying brain network engagement in TMS treatment paradigms. However, controversy remains regarding whether TEP is a genuine marker of TMS-induced cortical reactivity or if it is confounded by responses to peripheral somatosensory and auditory inputs. Resolving this controversy is of great significance for the field and will validate TMS as a tool to probe networks of interest in cognitive and clinical neuroscience.ObjectiveHere, we delineated the cortical origin of TEP by spatially and temporally localizing successive TEP components, and modulating them with transcranial direct current stimulation (tDCS) to investigate cortical reactivity elicited by single-pulse TMS and its causal relationship with cortical excitability.MethodsWe recruited 18 healthy participants in a double-blind, cross-over, sham-controlled design. We collected motor-evoked potentials (MEPs) and TEPs elicited by suprathreshold single-pulse TMS targeting the left primary motor cortex (M1). To causally test cortical and corticospinal excitability, we applied tDCS to the left M1.ResultsWe found that the earliest TEP component (P25) was localized to the left M1. The following TEP components (N45 and P60) were largely localized to the primary somatosensory cortex, which may reflect afferent input by hand-muscle twitches. The later TEP components (N100, P180, and N280) were largely localized to the auditory cortex. As hypothesized, tDCS selectively modulated cortical and corticospinal excitability by modulating the pre-stimulus mu-rhythm oscillatory power.ConclusionTogether, our findings provide causal evidence that the early TEP components reflect cortical reactivity to TMS.  相似文献   

3.
BackgroundMotor evoked potentials obtained with transcranial magnetic stimulation (TMS) can provide valuable information to inform stroke neurophysiology and recovery but are difficult to obtain in all stroke survivors due to high stimulation thresholds.ObjectiveTo determine whether transcranial magnetic stimulation evoked potentials (TEPs) evoked using a lower stimulus intensity, below that necessary for recording motor evoked potentials, could serve as a marker of poststroke upper-limb motor function and were different compared to healthy adults.MethodsEight chronic stroke survivors (66 ± 21 years) and 15 healthy adults (53 ± 10 years) performed a motor function task using a customized grip-lift manipulandum. TMS was applied to the lesioned motor cortex, with TEPs recorded using simultaneous high-definition electroencephalography (EEG).ResultsStroke participants demonstrated greater hold ratio with the manipulandum. Cluster-based statistics revealed larger P30 amplitude in stroke participants, with significant clusters over frontal (P = .016) and parietal-occipital electrodes (P = .023). There was a negative correlation between the N45 peak amplitude and hold ratio in stroke participants (r = ?.83, P = .02), but not controls.ConclusionsTEPs can be recorded using lower stimulus intensities in chronic stroke. The global P30 TEP response differed between stroke participants and healthy controls, with results suggesting that the TEP can be used as a biomarker of upper-limb behavior.  相似文献   

4.
《Brain stimulation》2019,12(6):1537-1552
BackgroundTranscranial magnetic stimulation (TMS) evokes voltage deflections in electroencephalographic (EEG) recordings, known as TMS-evoked potentials (TEPs), which are increasingly used to study brain dynamics. However, the extent to which TEPs reflect activity directly evoked by magnetic rather than sensory stimulation is unclear.ObjectiveTo characterize and minimize the contribution of sensory inputs to TEPs.MethodsTwenty-four healthy participants received TMS over the motor cortex using two different intensities (below and above cortical motor threshold) and waveforms (monophasic, biphasic). TMS was also applied over the shoulder as a multisensory control condition. Common sensory attenuation measures, including coil padding and noise masking, were adopted. We examined spatiotemporal relationships between the EEG responses to the scalp and shoulder stimulations at sensor and source levels. Furthermore, we compared three different filters (independent component analysis, signal-space projection with source informed reconstruction (SSP-SIR) and linear regression) designed to attenuate the impact of sensory inputs on TEPs.ResultsThe responses to the scalp and shoulder stimulations were correlated in both temporal and spatial domains, especially after ∼60 ms, regardless of the intensity and stimuli waveform. Among the three filters, SSP-SIR showed the best trade-off between removing sensoryrelated signals while preserving data not related to the control condition.ConclusionsThe findings demonstrate that TEPs elicited by motor cortex TMS reflect a combination of transcranially and peripherally evoked brain responses despite adopting sensory attenuation methods during experiments, thereby highlighting the importance of adopting sensory control conditions in TMS-EEG studies. Offline filters may help to isolate the transcranial component of the TEP from its peripheral component, but only if these components express different spatiotemporal patterns. More realistic control conditions may help to improve the characterization and attenuation of sensory inputs to TEPs, especially in early responses.  相似文献   

5.
Brain responses to transcranial magnetic stimulation (TMS) recorded by electroencephalography (EEG) are emergent noninvasive markers of neuronal excitability and effective connectivity in humans. However, the underlying physiology of these TMS‐evoked EEG potentials (TEPs) is still heavily underexplored, impeding a broad application of TEPs to study pathology in neuropsychiatric disorders. Here we tested the effects of a single oral dose of three antiepileptic drugs with specific modes of action (carbamazepine, a voltage‐gated sodium channel (VGSC) blocker; brivaracetam, a ligand to the presynaptic vesicle protein VSA2; tiagabine, a gamma‐aminobutyric acid (GABA) reuptake inhibitor) on TEP amplitudes in 15 healthy adults in a double‐blinded randomized placebo‐controlled crossover design. We found that carbamazepine decreased the P25 and P180 TEP components, and brivaracetam the N100 amplitude in the nonstimulated hemisphere, while tiagabine had no effect. Findings corroborate the view that the P25 represents axonal excitability of the corticospinal system, the N100 in the nonstimulated hemisphere propagated activity suppressed by inhibition of presynaptic neurotransmitter release, and the P180 late activity particularly sensitive to VGSC blockade. Pharmaco‐physiological characterization of TEPs will facilitate utilization of TMS‐EEG in neuropsychiatric disorders with altered excitability and/or network connectivity.  相似文献   

6.

Objective

We studied the correlation between motor evoked potentials (MEPs) and early TMS-evoked EEG potentials (TEPs) from single-pulse TMS before and after intermittent Theta Burst Stimulation (iTBS) to the left primary motor cortex (M1) in 17 healthy older participants.

Methods

TMS was targeted to the hand region of M1 using a MRI-guided navigated brain stimulation system and a figure-of-eight biphasic coil. MEPs were recorded from the right first dorsal interosseous muscle using surface EMG. TEPs were extracted from a 61-channel EEG recording. Participants received 90 single TMS pulses at 120% of resting motor threshold before and after iTBS.

Results

Across all participants, the change in N15-P30 TEP and MEP amplitudes were significantly correlated (r = 0.69; p < 0.01). Average TEP responses did not change significantly after iTBS, whereas MEP amplitudes showed a significant increase.

Conclusions

Changes in corticospinal reactivity and cortical reactivity induced by iTBS are related. However, the effect of iTBS on TEPs, unlike MEPs, is not straightforward.

Significance

Our findings help elucidate the relationship between changes in cortical and corticospinal excitability in healthy older individuals. Going forward, TEPs may be used to evaluate the effects of theta-burst stimulation in non-motor brain regions.  相似文献   

7.
The modular organization of the cortex refers to subsets of highly interconnected nodes, sharing specific cytoarchitectural and dynamical properties. These properties condition the level of excitability of local pools of neurons. In this study, we described TMS evoked potentials (TEP) input–output properties to provide new insights into regional cortical excitability. We combined robotized TMS with EEG to disentangle region‐specific TEP from threshold to saturation and describe their oscillatory contents. Twenty‐two young healthy participants received robotized TMS pulses over the right primary motor cortex (M1), the right dorsolateral prefrontal cortex (DLPFC) and the right superior occipital lobe (SOL) at five stimulation intensities (40, 60, 80, 100, and 120% resting motor threshold) and one short‐interval intracortical inhibition condition during EEG recordings. Ten additional subjects underwent the same experiment with a realistic sham TMS procedure. The results revealed interregional differences in the TEPs input–output functions as well as in the responses to paired‐pulse conditioning protocols, when considering early local components (<80 ms). Each intensity in the three regions was associated with complex patterns of oscillatory activities. The quality of the regression of TEPs over stimulation intensity was used to derive a new readout for cortical excitability and dynamical properties, revealing lower excitability in the DLPFC, followed by SOL and M1. The realistic sham experiment confirmed that these early local components were not contaminated by multisensory stimulations. This study provides an entirely new analytic framework to characterize input–output relations throughout the cortex, paving the way to a more accurate definition of local cortical excitability.  相似文献   

8.
《Clinical neurophysiology》2020,131(9):2181-2191
ObjectiveAdvanced age is accompanied by a deterioration in memory performance that can profoundly influence activities of daily living. However, the neural processes responsible for age-related memory decline are not fully understood. Here, we used transcranial magnetic stimulation (TMS) in combination with electroencephalography (EEG) to assess age-related changes in neuroplasticity in the human prefrontal cortex.MethodsTMS-evoked cortical potentials (TEPs) were recorded before and following the neuroplasticity-inducing intermittent theta burst stimulation (iTBS), applied to the left lateral prefrontal cortex in healthy young (n = 33, mean age 22 ± 3 years) and older adults (n = 33, mean age 68 ± 7 years).ResultsiTBS increased the amplitude of the positive TEP component at 60 ms after the TMS pulse (P60) in young, but not older adults. This age-related decline in P60 plasticity response was associated with poorer visuospatial associative (but not working) memory performance in older adults.ConclusionsThese findings suggest that neuroplasticity in the human lateral prefrontal cortex is reduced in older relative to young adults, and this may be an important factor in age-related memory decline.SignificanceThis may have important implications for the early detection of cognitive decline and dementia.  相似文献   

9.
《Brain stimulation》2021,14(1):4-18
Backgroundthe use of combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) for the functional evaluation of the cerebral cortex in health and disease is becoming increasingly common. However, there is still some ambiguity regarding the extent to which brain responses to auditory and somatosensory stimulation contribute to the TMS-evoked potential (TEP).Objective/Hypothesisto measure separately the contribution of auditory and somatosensory stimulation caused by TMS, and to assess their contribution to the TEP waveform, when stimulating the motor cortex (M1).Methods19 healthy volunteers underwent 7 blocks of EEG recording. To assess the impact of auditory stimulation on the TEP waveform, we used a standard figure of eight coil, with or without masking with a continuous noise reproducing the specific time-varying frequencies of the TMS click, stimulating at 90% of resting motor threshold. To further characterise auditory responses due to the TMS click, we used either a standard or a sham figure of eight coil placed on a pasteboard cylinder that rested on the scalp, with or without masking. Lastly, we used electrical stimulation of the scalp to investigate the possible contribution of somatosensory activation.Resultsauditory stimulation induced a known pattern of responses in electrodes located around the vertex, which could be suppressed by appropriate noise masking. Electrical stimulation of the scalp alone only induced similar, non-specific scalp responses in the in the central electrodes. TMS, coupled with appropriate masking of sensory input, resulted in specific, lateralized responses at the stimulation site, lasting around 300 ms.Conclusionsif careful control of confounding sources is applied, TMS over M1 can generate genuine, lateralized EEG activity. By contrast, sensory evoked responses, if present, are represented by non-specific, late (100–200 ms) components, located at the vertex, possibly due to saliency of the stimuli. Notably, the latter can confound the TEP if masking procedures are not properly used.  相似文献   

10.
《Brain stimulation》2023,16(2):515-539
Neurophysiological effects of transcranial direct current stimulation (tDCS) have been extensively studied over the primary motor cortex (M1). Much less is however known about its effects over non-motor areas, such as the prefrontal cortex (PFC), which is the neuronal foundation for many high-level cognitive functions and involved in neuropsychiatric disorders. In this study, we, therefore, explored the transferability of cathodal tDCS effects over M1 to the PFC. Eighteen healthy human participants (11 males and 8 females) were involved in eight randomized sessions per participant, in which four cathodal tDCS dosages, low, medium, and high, as well as sham stimulation, were applied over the left M1 and left PFC. After-effects of tDCS were evaluated via transcranial magnetic stimulation (TMS)-electroencephalography (EEG), and TMS-elicited motor evoked potentials (MEP), for the outcome parameters TMS-evoked potentials (TEP), TMS-evoked oscillations, and MEP amplitude alterations. TEPs were studied both at the regional and global scalp levels. The results indicate a regional dosage-dependent nonlinear neurophysiological effect of M1 tDCS, which is not one-to-one transferable to PFC tDCS. Low and high dosages of M1 tDCS reduced early positive TEP peaks (P30, P60), and MEP amplitudes, while an enhancement was observed for medium dosage M1 tDCS (P30). In contrast, prefrontal low, medium and high dosage tDCS uniformly reduced the early positive TEP peak amplitudes. Furthermore, for both cortical areas, regional tDCS-induced modulatory effects were not observed for late TEP peaks, nor TMS-evoked oscillations. However, at the global scalp level, widespread effects of tDCS were observed for both, TMS-evoked potentials and oscillations. This study provides the first direct physiological comparison of tDCS effects applied over different brain areas and therefore delivers crucial information for future tDCS applications.  相似文献   

11.
BackgroundConcurrent transcranial magnetic stimulation and electroencephalography (TMS–EEG) is an emerging method for studying cortical network properties. However, various artifacts affect measurement of TMS-evoked cortical potentials (TEPs), especially within 30 ms of stimulation.Objective/hypothesisThe aim of this study was to assess the origin and recovery of short-latency TMS–EEG artifacts (<30 ms) using different stimulators and under different experimental conditions.MethodsEEG was recorded during TMS delivered to a phantom head (melon) and 12 healthy volunteers with different TMS machines, at different scalp positions, at different TMS intensities, and following paired-pulse TMS. Recovery from the TMS artifact and other short-latency artifacts were compared between conditions.ResultsFollowing phantom stimulation, the artifact resulting from different TMS machines (Magstim 200, Magventure MagPro R30 and X100) and pulse shapes (monophasic and biphasic) resulted in different artifact profiles. After accounting for differences between machines, TMS artifacts recovered within ~12 ms. This was replicated in human participants, however a large secondary artifact (peaks at 5 and 10 ms) became prominent following stimulation over lateral scalp positions, which only recovered after ~25–40 ms. Increasing TMS intensity increased secondary artifact amplitude over both motor and prefrontal cortex. There was no consistent modulation of the secondary artifact following inhibitory paired-pulse TMS (interstimulus interval = 100 ms) over motor cortex.ConclusionsThe secondary artifact observed in humans is consistent with activation of scalp muscles following TMS. TEPs can be recorded within a short period of time (10–12 ms) following TMS, however measures must be taken to avoid muscle stimulation.  相似文献   

12.

Background

Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs), recorded using electroencephalography (TMS-EEG), offer a powerful tool for measuring causal interactions in the human brain. However, the test-retest reliability of TEPs, critical to their use in clinical biomarker and interventional studies, remains poorly understood.

Objective/Hypothesis

We quantified TEP reliability to: (i) determine the minimal TEP amplitude change which significantly exceeds that associated with simply re-testing, (ii) locate the most reliable scalp regions of interest (ROIs) and TEP peaks, and (iii) determine the minimal number of TEP pulses for achieving reliability.

Methods

TEPs resulting from stimulation of the left dorsolateral prefrontal cortex were collected on two separate days in sixteen healthy participants. TEP peak amplitudes were compared between alternating trials, split-halves of the same run, two runs five minutes apart and two runs on separate days. Reliability was quantified using concordance correlation coefficient (CCC) and smallest detectable change (SDC).

Results

Substantial concordance was achieved in prefrontal electrodes at 40 and 60?ms, centroparietal and left parietal ROIs at 100?ms, and central electrodes at 200?ms. Minimum SDC was found in the same regions and peaks, particularly for the peaks at 100 and 200?ms. CCC, but not SDC, reached optimal values by 60–100 pulses per run with saturation beyond this number, while SDC continued to improve with increased pulse numbers.

Conclusion

TEPs were robust and reliable, requiring a relatively small number of trials to achieve stability, and are thus well suited as outcomes in clinical biomarker or interventional studies.  相似文献   

13.
IntroductionAlterations in large scale neural networks leading to neurophysiological changes have been described in Parkinson's disease (PD). The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been suggested as a promising tool to identify and quantify neurophysiological mechanisms. The aim of this study was to investigate specific changes in electrical brain activity in response to stimulation of four brain areas in patients with PD.Methods21 healthy controls and 32 patients with PD underwent a combined TMS-EEG assessment that included stimulation of four brain areas: left M1, right M1, left dorso-lateral prefrontal cortex (DLPFC), and right DLPFC. Six measures were calculated to characterize the TMS evoked potentials (TEP) using EEG: (1) wave form adherence (WFA), (2) late phase deflection (LPD), (3) early phase deflection (EPD), (4) short-term plasticity (STP), (5) inter-trial adherence, and (6) connectivity between right and left M1 and DLPFC. A Linear mixed-model was used to compare these measures between groups and areas stimulated.ResultsPatients with PD showed lower WFA (p = 0.052), lower EPD (p = 0.009), lower inter-trial adherence (p < 0.001), and lower connectivity between homologs areas (p = 0.050), compared to healthy controls. LPD and STP measures were not different between the groups. In addition, lower inter-trial adherence correlated with longer disease duration (r = −0.355, p = 0.050).ConclusionsOur findings provide evidence to various alterations in neurophysiological measures in patients with PD. The higher cortical excitability along with increased variability and lower widespread of the evoked potentials in PD can elucidate different aspects related to the pathophysiology of the disease.  相似文献   

14.
《Neuromodulation》2023,26(4):755-766
ObjectivesRepetitive paired-pulse transcranial magnetic stimulation (iTMS) at indirect (I) wave intervals increases motor-evoked potentials (MEPs) produced by transcranial magnetic stimulation (TMS) to primary motor cortex (M1). However, the effects of iTMS at early and late intervals on the plasticity of specific I-wave circuits remain unclear. This study therefore aimed to assess how the timing of iTMS influences intracortical excitability within early and late I-wave circuits. To investigate the cortical effects of iTMS more directly, changes due to the intervention were also assessed using combined TMS-electroencephalography (EEG).Material and MethodsEighteen young adults (aged 24.6 ± 4.2 years) participated in four sessions in which iTMS targeting early (1.5-millisecond interval; iTMS1.5) or late (4.0-millisecond interval; iTMS4.0) I-waves was applied over M1. Neuroplasticity was assessed using both posterior-to-anterior (PA) and anterior-to-posterior (AP) stimulus directions to record MEPs and TMS-evoked EEG potentials (TEPs) before and after iTMS. Short-interval intracortical facilitation (SICF) at interstimulus intervals of 1.5 and 4.0 milliseconds was also used to index I-wave activity.ResultsMEP amplitude was increased after iTMS (p < 0.01), and this was greater for PA responses (p < 0.01) but not different between iTMS intervals (p = 0.9). Irrespective of iTMS interval and coil current, SICF was facilitated after the intervention (p < 0.01). Although the N45 produced by AP stimulation was decreased by iTMS1.5 (p = 0.04), no other changes in TEP amplitude were observed.ConclusionsThe timing of iTMS failed to influence which I-wave circuits were potentiated by the intervention. In contrast, decreases in the N45 suggest that the neuroplastic effects of iTMS may include disinhibition of intracortical inhibitory processes.  相似文献   

15.
《Brain stimulation》2021,14(2):379-388
It has been theorized that hemispheric dominance and more segregated information processing have evolved to overcome long conduction delays through the corpus callosum (transcallosal conduction delay - TCD) but that this may still impact behavioral performance, mostly in tasks requiring high timing accuracy. Nevertheless, a thorough understanding of the temporal features of interhemispheric communication is lacking.Here, we aimed to assess the relationship between TCD and behavioral performance with a noninvasive directional cortical measure of TCD obtained from transcranial magnetic stimulation (TMS)-evoked potentials (TEPs) in the motor system.Twenty-one healthy right-handed subjects were tested. TEPs were recorded during an ipsilateral silent period (iSP) paradigm and integrated with diffusion tensor imaging (DTI) and an in-phase bimanual thumb-opposition task. Linear mixed models were applied to test relationships between measures.We found TEP indexes of transcallosal communication at ∼15 ms both after primary motor cortex stimulation (M1-P15) and after dorsal premotor cortex stimulation (dPMC-P15). Both M1-and dPMC-P15 were predicted by mean diffusivity in the callosal body. Moreover, M1-P15 was positively related to iSP. Importantly, M1-P15 latency was linked to bimanual coordination with direction-dependent effects, so that asymmetric TCD was the best predictor of bimanual coordination.Our findings support the idea that transcallosal timing in signal transmission is essential for interhemispheric communication and can impact the final behavioral outcome. However, they challenge the view that a short conduction delay is always beneficial. Rather, they suggest that the effect of the conduction delay may depend on the direction of information flow.  相似文献   

16.

Objective

During EEG the discharge of TMS generates a long-lasting decay artefact (DA) that makes the analysis of TMS-evoked potentials (TEPs) difficult. Our aim was twofold: (1) to describe how the DA affects the recorded EEG and (2) to develop a new adaptive detrend algorithm (ADA) able to correct the DA.

Methods

We performed two experiments testing 50 healthy volunteers. In experiment 1, we tested the efficacy of ADA by comparing it with two commonly-used independent component analysis (ICA) algorithms. In experiment 2, we further investigated the efficiency of ADA and the impact of the DA evoked from TMS over frontal, motor and parietal areas.

Results

Our results demonstrated that (1) the DA affected the EEG signal in the spatiotemporal domain; (2) ADA was able to completely remove the DA without affecting the TEP waveforms; (3). ICA corrections produced significant changes in peak-to-peak TEP amplitude.

Conclusions

ADA is a reliable solution for the DA correction, especially considering that (1) it does not affect physiological responses; (2) it is completely data-driven and (3) its effectiveness does not depend on the characteristics of the artefact and on the number of recording electrodes.

Significance

We proposed a new reliable algorithm of correction for long-lasting TMS-EEG artifacts.  相似文献   

17.
ObjectivesAs a potential treatment for epilepsy, transcutaneous auricular vagus nerve stimulation (taVNS) has yielded inconsistent results. Combining transcranial magnetic stimulation with electromyography (TMS-EMG) and electroencephalography (TMS-EEG) can be used to investigate the effect of interventions on cortical excitability by evaluating changes in motor evoked potentials (MEPs) and TMS-evoked potentials (TEPs). The goal of this study is to objectively evaluate the effect of taVNS on cortical excitability with TMS-EMG and TMS-EEG. These findings are expected to provide insight in the mechanism of action and help identify more optimal stimulation paradigms.Materials and MethodsIn this prospective single-blind cross-over study, 15 healthy male subjects underwent active and sham taVNS for 60 min, using a maximum tolerated stimulation current. Single and paired pulse TMS was delivered over the right-sided motor hotspot to evaluate MEPs and TEPs before and after the intervention. MEP statistical analysis was conducted with a two-way repeated measures ANOVA. TEPs were analyzed with a cluster-based permutation analysis. Linear regression analysis was implemented to investigate an association with stimulation current.ResultsMEP and TEP measurements were not affected by taVNS in this study. An association was found between taVNS stimulation current and MEP outcome measures indicating a decrease in cortical excitability in participants who tolerated higher taVNS currents. A subanalysis of participants (n = 8) who tolerated a taVNS current ≥2.5 mA showed a significant increase in the resting motor threshold, decrease in MEP amplitude and modulation of the P60 and P180 TEP components.ConclusionstaVNS did not affect cortical excitability measurements in the overall population in this study. However, taVNS has the potential to modulate specific markers of cortical excitability in participants who tolerate higher stimulation levels. These findings indicate the need for adequate stimulation protocols based on the recording of objective outcome parameters.  相似文献   

18.
ObjectiveIn macaques, intracortical electrical stimulation of ventral premotor cortex (PMv) can modulate ipsilateral primary motor cortex (M1) excitability at short interstimulus intervals (ISIs).MethodsAdopting the same conditioning-test approach, we used bifocal transcranial magnetic stimulation (TMS) to examine intrahemispheric connectivity between left PMv and M1 in humans. A conditioning stimulus (CS) was applied to PMv at intensities of 80% and 90% of active motor threshold (AMT) and 90% and 110% of resting motor threshold (RMT). A supra-threshold test stimulus (TS) was given 2, 4, 6, 8 and 10 ms after the CS and the amplitude of the motor evoked potential (MEP) was measured to probe corticospinal excitability.ResultsThe CS facilitated corticospinal excitability in ipsilateral M1 when PMv was stimulated with 80% AMT 4 or 6 ms before the TS. At the same ISIs, the CS suppressed corticospinal excitability when the stimulus intensity was increased to 90% RMT. Conditioning effects were site-specific because conditioning the dorsal premotor cortex (PMd) at three different sites produced different effects. Using neuronavigated TMS the PMv site where applied CS produced changes in ipsilateral M1 excitability was located at the border between ventral Brodmann area (BA) 6 and BA 44, the human homologue of monkey’s PMv (area F5).ConclusionWe infer that the corticospinal motor output from M1 to contralateral hand muscles can be facilitated or inhibited by a CS over ipsilateral PMv.SignificanceThe fact that conditioning effects following PMd stimulation differ from those after PMv stimulation supports the concept that inputs from premotor cortices to M1 are functionally segregated.  相似文献   

19.
The midpontine decerebrate dog, immobilized with gallamine, was used to determine the changes in the transcallosally evoked potential (TEP) produced by intravenous infusions of various drugs. A total of 50 TEPs, recorded from the g. ectolateralis, was computer analyzed before, during and after administration of the drugs. Changes in the TEP were also correlated with changes in the EEG recorded from the g. ectolateralis. The EEG was analyzed by inspection and amplitude integration (electrogenesis). LSD (30 microng/kg) significantly depressed the TEP, and the effect persisted for at least 80 min. DMT (1 mg/kg) caused a significant and reversible increase in the amplitude of the TEP. LSD and DMT reduced the alpha activity of the EEG and enhanced the amplitude of the low-frequency waves. DMT produced a significant and LSD a marginal increase in electrogenesis. Tryptamine (10 and 20 mg/kg), mescaline (6 mg/kg), methoxamine (0.88 mg/kg) and apomorphine (5 mg/kg) had no significant effect on the TEP or EEG. These results suggest that depression of the TEP is not related to spinal reflex facilitation in the dog or hallucinogenic activity in man.  相似文献   

20.
ObjectiveUnilateral asterixis has been reported in patients with thalamic lesion. This study aims at elucidating the pathophysiology of the thalamic asterixis.MethodsTwo cases with unilateral asterixis caused by an infarction in the lateral thalamus were studied by analysing the asterixis-related cortical activities, transcranial magnetic stimulation (TMS) for motor cortex excitability and probabilistic diffusion tractography for the thalamo-cortical connectivity.ResultsAveraging of electroencephalogram (EEG) time-locked to the asterixis revealed rhythmic oscillations of a beta band at the central area contralateral to the affected hand. TMS revealed a decrease in the motor evoked potential (MEP) amplitude and a prolongation of the silent period (SP). The anatomical mapping of connections between the thalamus and cortical areas using a diffusion-weighted image (DWI) showed that the lateral thalamus involved by the infarction was connected to the premotor cortex, the primary motor cortex (M1) and the primary somatosensory cortex (S1) of the corresponding hemisphere.ConclusionsThe thalamic asterixis is mediated by the sensorimotor cortex, which is subjected to excessive inhibition as a result of the thalamic lesion involving the ventral lateral nucleus.SignificanceThis is the first demonstration of participation of the sensorimotor cortex in the generation of asterixis due to the lateral thalamic lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号