首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Clinical neurophysiology》2021,132(8):1770-1776
ObjectivesMajor Depressive Disorder (MDD) is associated with glutamatergic alterations, including the N-methyl-D-aspartate receptor (NMDA-R). The NMDA-R plays an important role in synaptic plasticity, and individuals with MDD have been shown to have impairments in repetitive Transcranial Magnetic Stimulation (rTMS) motor plasticity. Here, we test whether D-cycloserine, a NMDA-R partial agonist, can rescue TMS motor plasticity in MDD.MethodsWe conducted randomized double-blind placebo-controlled crossover studies in healthy (n = 12) and MDD (n = 12) participants. We stimulated motor cortex using TMS intermittent theta burst stimulation (iTBS) with placebo or D-cycloserine (100 mg). Motor evoked potentials (MEPs) were sampled before and after iTBS. Stimulus response curves (SRC) were characterized at baseline, +90 minutes, and the following day.ResultsAcute iTBS MEP facilitation is reduced in MDD and is not rescued by D-cycloserine. After iTBS, SRCs shift to indicate sustained decrease in excitability in healthy participants, yet increased in excitability in MDD participants. D-cycloserine normalized SRC changes from baseline to the following day in MDD participants. In both healthy and MDD participants, D-cycloserine stabilized changes in SRC.ConclusionMDD is associated with alterations in motor plasticity that are rescued and stabilized by NMDA-R agonism.SignificanceAgonism of NMDA receptors rescues iTBS motor plasticity in MDD.  相似文献   

2.
《Clinical neurophysiology》2021,132(1):191-199
ObjectivesReduced corticospinal excitability at rest is associated with post-stroke fatigue (PSF). However, it is not known if corticospinal excitability prior to a movement is also altered in fatigue which may then influence subsequent behaviour. We hypothesized that the levels of PSF can be explained by differences in modulation of corticospinal excitability during movement preparation.Methods73 stroke survivors performed an auditory reaction time task. Corticospinal excitability was measured using transcranial magnetic stimulation. Fatigue was quantified using the fatigue severity scale. The effect of time and fatigue on corticospinal excitability and reaction time was analysed using a mixed effects model.ResultsThose with greater levels of PSF showed reduced suppression of corticospinal excitability during movement preparation and increased facilitation immediately prior to movement onset (β = −0.0066, t = −2.22, p = 0.0263). Greater the fatigue, slower the reaction times the closer the stimulation time to movement onset (β = 0.0024, t = 2.47, p = 0.0159).ConclusionsLack of pre-movement modulation of corticospinal excitability in high fatigue may indicate poor sensory processing supporting the sensory attenuation model of fatigue.SignificanceWe take a systems-based approach and investigate the motor system and its role in pathological fatigue allowing us to move towards gaining a mechanistic understanding of chronic pathological fatigue.  相似文献   

3.
《Brain stimulation》2022,15(1):78-86
BackgroundBrain stimulation is known to affect canonical pathways and proteins involved in memory. However, there are conflicting results on the ability of brain stimulation to improve to memory, which may be due to variations in timing of stimulation.HypothesisWe hypothesized that repetitive transcranial magnetic stimulation (rTMS) given following a learning task and within the time period before retrieval could help improve memory.MethodsWe implanted male B6129SF2/J mice (n = 32) with a cranial attachment to secure the rTMS coil so that the mice could be given consistent stimulation to the frontal area whilst freely moving. Mice then underwent the object recognition test sampling phase and given treatment +3, +24, +48 h following the test. Treatment consisted of 10 min 10 Hz rTMS stimulation (TMS, n = 10), sham treatment (SHAM, n = 11) or a control group which did not do the behavior test or receive rTMS (CONTROL n = 11). At +72 h mice were tested for their exploration of the novel vs familiar object.ResultsAt 72-h's, only the mice which received rTMS had greater exploration of the novel object than the familiar object. We further show that promoting synaptic GluR2 and maintaining synaptic connections in the perirhinal cortex and hippocampal CA1 are important for this effect. In addition, we found evidence that these changes were linked to CAMKII and CREB pathways in hippocampal neurons.ConclusionBy linking the known biological effects of rTMS to memory pathways we provide evidence that rTMS is effective in improving memory when given during the consolidation and maintenance phases.  相似文献   

4.
《Brain stimulation》2021,14(2):423-434
BackgroundThe dorsal premotor cortex (PMd) is a key region in bimanual coordination. However, causal evidence linking PMd functionality during motor planning and execution to movement quality is lacking.ObjectiveWe investigated how left (PMdL) and right PMd (PMdR) are causally involved in planning and executing bimanual movements, using short-train repetitive transcranial magnetic stimulation (rTMS). Additionally, we explored to what extent the observed rTMS-induced modulation of performance could be explained by rTMS-induced modulation of PMd-M1 interhemispheric interactions (IHI).MethodsTwenty healthy adults (mean age ± SD = 22.85 ± 3.73 years) participated in two sessions, in which either PMdL or PMdR was targeted with rTMS (10 Hz) in a pseudo-randomized design. PMd functionality was transiently modulated during the planning or execution of a complex bimanual task, whereby the participant was asked to track a moving dot by controlling two dials. The effect of rTMS on several performance measures was investigated. Concurrently, rTMS-induced modulation of PMd-M1 IHI was measured using a dual-coil paradigm, and associated with the rTMS-induced performance modulation.ResultsrTMS over PMdL during planning increased bilateral hand movement speed (p = 0.03), thereby improving movement accuracy (p = 0.02). In contrast, rTMS over PMdR during both planning and execution induced deterioration of movement stability (p = 0.04). rTMS-induced modulation of PMd-M1 IHI during planning did not predict rTMS-induced performance modulation.ConclusionThe current findings support the growing evidence on PMdL dominance during motor planning, as PMdL was crucially involved in planning the speed of each hand, subserving bimanual coordination accuracy. Moreover, the current results suggest that PMdR fulfills a role in continuous adjustment processes of movement.  相似文献   

5.
《Clinical neurophysiology》2021,132(8):1850-1858
ObjectiveWe measured the neurophysiological responses of both active and sham transcranial magnetic stimulation (TMS) for both single pulse (SP) and paired pulse (PP; long interval cortical inhibition (LICI)) paradigms using TMS-EEG (electroencephalography).MethodsNineteen healthy subjects received active and sham (coil 90° tilted and touching the scalp) SP and PP TMS over the left dorsolateral prefrontal cortex (DLPFC). We measured excitability through SP TMS and inhibition (i.e., cortical inhibition (CI)) through PP TMS.ResultsCortical excitability indexed by area under the curve (AUC(25-275ms)) was significantly higher in the active compared to sham stimulation (F(1,18) = 43.737, p < 0.001, η2 = 0.708). Moreover, the amplitude of N100-P200 complex was significantly larger (F(1,18) = 9.118, p < 0.01, η2 = 0.336) with active stimulation (10.38 ± 9.576 µV) compared to sham (4.295 ± 2.323 µV). Significant interaction effects were also observed between active and sham stimulation for both the SP and PP (i.e., LICI) cortical responses. Finally, only active stimulation (CI = 0.64 ± 0.23, p < 0.001) resulted in significant cortical inhibition.ConclusionThe significant differences between active and sham stimulation in both excitatory and inhibitory neurophysiological responses showed that active stimulation elicits responses from the cortex that are different from the non-specific effects of sham stimulation.SignificanceOur study reaffirms that TMS-EEG represents an effective tool to evaluate cortical neurophysiology with high fidelity.  相似文献   

6.
《Clinical neurophysiology》2021,132(7):1444-1451
ObjectiveTo evaluate the safety and temporal dynamic of the antiepileptic effect of spaced transcranial direct current stimulation (tDCS) in different focal epilepsies.MethodsCathodal tDCS with individual electrode placement was performed in 15 adults with drug resistant focal epilepsy. An amplitude of 2 mA was applied twice for 9 minutes, with an interstimulation interval of 20 minutes. Tolerability was assessed via the Comfort Rating Questionnaire and the frequency of interictal epileptiform discharges (IEDs) was sequentially compared between the 24 hours before and after tDCS.ResultsTDCS led to a significant reduction in the total number of IEDs/24 h by up to 68% (mean ± SD: −30.4 ± 21.1%, p = 0.001) as well as in seizure frequency (p = 0.041). The maximum IED reduction was observed between the 3rd and 21st hour after stimulation. Favorable clinical response was associated with structural etiology and clearly circumscribed epileptogenic foci but did not differ between frontal and temporal epilepsies. Overall, the tDCS treatment was well tolerated and did not lead to severe adverse events.ConclusionsThe spaced stimulation approach proved to be safe and well-tolerated in patients with drug-resistant unifocal epilepsies, leading to sustained IED and seizure frequency reduction.SignificanceSpaced tDCS induces mediate antiepileptic effects with promising therapeutic potential.  相似文献   

7.
《Clinical neurophysiology》2021,132(1):126-136
ObjectivesLittle evidence is available on the role of transcranial direct current stimulation (tDCS) in patients affected by chronic migraine (CM) and medication overuse headache (MOH). We aim to investigate the effects of tDCS in patients with CM and MOH as well as its role on brain activity.MethodsTwenty patients with CM and MOH were hospitalized for a 7-day detoxification treatment. Upon admission, patients were randomly assigned to anodal tDCS or sham stimulation delivered over the primary motor cortex contralateral to the prevalent migraine pain side every day for 5 days. Clinical data were recorded at baseline (T0), after 1 month (T2) and 6 months (T3). EEG recording was performed at T0, at the end of the tDCS/Sham treatment, and at T2.ResultsAt T2 and T3, we found a significant reduction in monthly migraine days (p = 0.001), which were more pronounced in the tDCS group when compared to the sham group (p = 0.016).At T2, we found a significant increase of alpha rhythm in occipital leads, which was significantly higher in tDCS group when compared to sham group.ConclusionstDCS showed adjuvant effects to detoxification in the management of patients with CM and MOH. The EEG recording showed a significant potentiation of alpha rhythm, which may represent a correlate of the underlying changes in cortico-thalamic connections.SignificanceThis study suggests a possible role for tDCS in the treatment of CM and MOH. The observed clinical improvement is coupled with a potentiation of EEG alpha rhythm.  相似文献   

8.
AimTo investigate, among children and adolescents with cerebral palsy (CP), the relationship between impairment of the gross motor function and: (i) child sleep disorders; (ii) the need for nocturnal support; and (iii) the quality of sleep of their caregivers.MethodsFor children, we considered their scores on the gross motor function measure (GMFM-88) and on the sleep disturbance scale for children (SDSC), besides analyzing qualitative features about their sleep. For caregivers, we considered their scores in the Pittsburgh sleep quality index (PSQI).ResultsOur sample was comprised of 87 participants with mean age of 11.4 years old (±3.4). We observed correlations between GMFM-88 and disorders of initiating and maintaining sleep (DIMS) (r = −0.22; p = 0.039), sleep–wake transition disorders (SWTD) (r = 0.26; p = 0.017) and disorders of arousal (DA) (r = 0.23; p = 0.033). Children receiving nocturnal support presented lower scores in the GMFM-88 (p = 0.001) and higher scores in the SDSC (p = 0.029). For the caregivers, we found no correlation between GMFM-88 and PSQI. Nonetheless, their PSQI scores correlated with the SDSC scores (r = 0.24; p = 0.027).ConclusionImpairment of the gross motor function correlated with DIMS and the need for nocturnal support but might not have an impact on the caregivers’ sleep, which in turn correlated with child sleep disorders.  相似文献   

9.
《Clinical neurophysiology》2021,132(10):2519-2531
ObjectiveTo test the hypothesis that intermittent theta burst stimulation (iTBS) variability depends on the ability to engage specific neurons in the primary motor cortex (M1).MethodsIn a sham-controlled interventional study on 31 healthy volunteers, we used concomitant transcranial magnetic stimulation (TMS) and electroencephalography (EEG). We compared baseline motor evoked potentials (MEPs), M1 iTBS-evoked EEG oscillations, and resting-state EEG (rsEEG) between subjects who did and did not show MEP facilitation following iTBS. We also investigated whether baseline MEP and iTBS-evoked EEG oscillations could explain inter and intraindividual variability in iTBS aftereffects.ResultsThe facilitation group had smaller baseline MEPs than the no-facilitation group and showed more iTBS-evoked EEG oscillation synchronization in the alpha and beta frequency bands. Resting-state EEG power was similar between groups and iTBS had a similar non-significant effect on rsEEG in both groups. Baseline MEP amplitude and beta iTBS-evoked EEG oscillation power explained both inter and intraindividual variability in MEP modulation following iTBS.ConclusionsThe results show that variability in iTBS-associated plasticity depends on baseline corticospinal excitability and on the ability of iTBS to engage M1 beta oscillations.SignificanceThese observations can be used to optimize iTBS investigational and therapeutic applications.  相似文献   

10.
《Brain stimulation》2021,14(4):906-912
BackgroundTranscranial direct current stimulation (tDCS) presents small antidepressant efficacy at group level and considerable inter-individual variability of response. Its heterogeneous effects bring the need to investigate whether specific groups of patients submitted to tDCS could present comparable or larger improvement compared to pharmacotherapy. Aggregate measurements might be insufficient to address its effects.Objective/Hypothesis: To determine the efficacy of tDCS, compared to pharmacotherapy and placebo, in depressive symptom clusters.MethodsData from ELECT-TDCS (Escitalopram versus Electrical Direct-Current Therapy for Treating Depression Clinical Study, ClinicalTrials.gov, NCT01894815), in which antidepressant-free, depressed patients were randomized to receive 22 bifrontal tDCS (2 mA, 30 min) sessions (n = 94), escitalopram 20 mg/day (n = 91), or placebo (n = 60) over 10 weeks. Agglomerative hierarchical clustering identified “sleep/insomnia”, “core depressive”, “guilt/anxiety”, and “atypical” clusters that were the dependent measure. Trajectories were estimated using linear mixed regression models. Effect sizes are expressed in raw HAM-D units. P-values were adjusted for multiple comparisons.ResultsFor core depressive symptoms, escitalopram was superior to tDCS (ES = −0.56; CI95% = -0.94 to −0.17, p = .009), which was superior to placebo (ES = 0.49; CI95% = 0.06 to 0.92, p = .042). TDCS but not escitalopram was superior to placebo in sleep/insomnia symptoms (ES = 0.87; CI95% = 0.22 to 1.52, p = .015). Escitalopram but not tDCS was superior to placebo in guilt/anxiety symptoms (ES = 1.66; CI95% = 0.58 to 2.75, p = .006). No active intervention was superior to placebo for atypical symptoms.ConclusionsPharmacotherapy and non-invasive brain stimulation produce distinct effects in depressive symptoms. TDCS or escitalopram could be chosen according to specific clusters of symptoms for a bigger response.Trial registrationClinicalTrials.gov, NCT01894815  相似文献   

11.
ObjectivesTo assess sleep positions in children with both Down syndrome (DS) and obstructive sleep apnea (OSA) and determine if there is a preferred sleep position by severity of apnea.MethodsA single-center retrospective review of patients with both DS and OSA was performed. Caregivers reported sleep position utilized greater than 50% of observed sleep time. Accuracy of this report was confirmed through review of hypnograms from polysomnography studies.ResultsEighty-two patients met inclusion criteria. Median body mass index (BMI) was 26.6 and 56% of patients had a prior tonsillectomy and/or adenoidectomy. The mean obstructive AHI (OAHI) was 25.33 with 90.4% having severe OSA, 9.6% having moderate OSA, and no patients having mild OSA. Reported sleep positions were skewed towards lateral/decubitus (82.9%) compared to prone (11.0%) and supine (6.1%). This was consistent with hypnogram data where 71% of total sleep time in lateral/decubitus positions compared to prone (13%) and supine (6%). The median changes in sleep position per patient was 5 (IQR: 3–6). Lower BMI (p < 0.001, 95% CI: 0.32–1.13) and tonsillectomy (p < 0.001, 95% CI: 7.7–18.19) were associated with lower OAHI. Sleep position was not associated with age (p = 0.19), sex (p = 0.66), race (p = 0.10), ethnicity (p = 0.68) nor history of tonsillectomy (p = 0.34). Preferred sleep position was not correlated with OAHI (p = 0.78, r = 0.03) or OSA severity (p = 0.72, r = 0.03).ConclusionsThis study highlights the possibility that children with DS may have preferential sleep positions that cater to optimized airflow in the context of OSA although further prospective study is needed.  相似文献   

12.
ObjectiveThe objective of this study is to emphasize the importance of the clinical suspicion of Restless Legs Syndrome (RLS) among patients with chronic insomnia.MethodsWe conducted a retrospective study referring to the period 2009–2018. All patients presenting with the complaint of insomnia and fulfilling the criteria of Chronic Insomnia (C.I.) were enrolled. In this group we estimated how many patients finally had the diagnosis of RLS. Demographic and clinical characteristics (sleep related problems, fatigue, daytime sleepiness and psychological profile) were recorded and analyzed between C.I. and RLS patients using logistic regression models.ResultsA total of 532 patients presented with C.I. Among them 83 proved to have RLS. No differences in frequencies or odds were observed concerning the type of insomnia, daily fatigue, daytime sleepiness and depression. RLS is more frequent in women (p = 0.01) and in older patients (p = 0.05) who present with the picture of C.I. Anxiety levels are higher in the RLS group (p = 0.004).ConclusionRLS and C.I. patients demonstrate a very similar profile which complicates the differential diagnosis. Physicians and especially psychiatrists who deal with insomnia must have increased clinical suspicion for RLS as RLS and insomnia have a totally different therapeutic approach.  相似文献   

13.
ObjectivesWe contrasted the relative risks (RR) of short [<7 h] and long [>8 h] sleep experienced by middle-aged (45–64 years) and older (≥65 years) adults, compared with young adults (20–44 years).MethodsWe utilized NHANES data (2005–2016), capturing sociodemographic, socioeconomic, and health-related data among US adults.ResultsThe Relative Risk (RR) of short sleep between young and middle-aged adults did not differ [RR = 1.02, NS]. However, the RR of short sleep was significantly reduced among older participants [RR = 0.81, p < 0.01]. Middle-aged adults had significantly lower RR of long sleep [RR = 0.80, p < 0.01], whereas older adults had significantly greater RR of long sleep [RR = 1.41, p < 0.01]. Compared with young adults, older adults with or without increased disease burden had significantly lower RR of short sleep [RR = 0.81, p < 0.01 and RR = 0.80, p < 0.01], respectively. However, for middle-aged adults, the RR of short sleep did not differ whether they reported a greater disease burden. Relative to young adults, older adults with or without disease burden had higher RRs of long sleep [RR = 1.39, p < 0.01] and [RR = 1.45, p < 0.01], respectively. For middle-aged adults without disease burden, the RR of long sleep was lower than among young adults [RR = 0.72, p < 0.01].ConclusionsCompared with young adults, older adults were not at increased risk for short sleep. Rather, they reported longer sleep time regardless of the presence of disease burden. Future studies should investigate longitudinal effects of aging on objective sleep time, with or without common diseases.  相似文献   

14.
《Brain stimulation》2020,13(2):499-506
BackgroundCurrent implementations of direct brain stimulation for epilepsy in patients involve high-frequency (HFS) electrical current and targeting of grey matter. Studies have shown that low-frequency (LFS) fiber-tract stimulation may also prove effective. To compare the efficacy of high-frequency grey matter stimulation to the low-frequency fiber tract stimulation technique a well-controlled set of experiments using a single animal model of epilepsy is needed.ObjectiveThe goal of this study was to determine the relative efficacy of different direct brain stimulation techniques for suppressing seizures using an acute rat model of focal cortical seizures.Methods4-AP was injected into the S1 region of cortex in rodents over 3 h. LFPs were recorded from the seizure focus and mirror focus to monitor seizure frequency during the experiments. CC-LFS, HFS-ANT, Focal-HFS, or a transection of the CC was applied.ResultsStimulation of the CC yielded a 65% ±14% (p = 0.0014) reduction of seizures in the focus and a 97% ±15% (p = 0.0026) reduction in the mirror focus (n = 7). By comparison transection of the CC produced a 65% ±18% reduction in the focus and a non-statistically significant reduction of 57% ±18% (p = 0.1381) in the mirror focus (n = 5). All other methods of stimulation failed to have a statistically significant effect on seizure suppression.ConclusionsLFS of the CC is the only method of stimulation to significantly reduce seizure frequency in this model of focal cortical seizures. These results support the hypothesis that LFSof fiber tracts has significant potential for seizure control.  相似文献   

15.
《Brain stimulation》2022,15(2):441-453
ObjectiveTo assess the prophylactic effect of anodal tDCS of the left motor cortex in patients with resistant chronic migraine (CM) and its long-term maintenance.MethodsIn a patient-assessor blinded, sham-controlled trial, 36 patients were randomized to receive anodal tDCS (active group, n = 18) or sham tDCS (sham group, n = 18). The studied population was characterized by a previous failure of at least 3 classes of preventive drugs and a mean duration of migraine history of 26 years. The tDCS procedure consisted of an induction phase of 5 consecutive daily sessions (week 1) followed by a maintenance phase of 1 weekly session during the next 4 weeks and two bimonthly sessions in the next month, for a total of 11 sessions during 2 months. Anodal tDCS was delivered at 2 mA intensity for 20 min over the left motor cortex. The primary endpoint was the reduction in the monthly number of migraine attacks from baseline to each period of follow-up (months 1, 2, 3, 5) between the active and sham groups.ResultsThe monthly number of migraine attacks expressed as the percentage of reduction from baseline was significantly reduced in the active versus the sham group, from the end of first month (?21% ± 22 vs. ?2% ±25, p = 0.019) to the end of follow-up (3-month post-treatment) (?32% ± 33 vs. ?6% ±39, p = 0.011). At this time, the rate of responders, defined as a reduction of the monthly number of migraine attacks ≥30% from baseline, was significantly higher in the active group than in the sham group (50% vs. 14%, p = 0.043).ConclusionOur results show a marked prophylactic effect of anodal tDCS of the left motor cortex in resistant CM extending several months after the stimulation period, and suggest that this neuromodulatory approach may be part of the prophylactic alternatives available for CM.  相似文献   

16.
《Clinical neurophysiology》2020,131(5):1134-1141
ObjectiveTo investigate how high frequency oscillations (HFOs; ripples 80–250 Hz, fast ripples (FRs) 250–500 Hz) and spikes in intra-operative electrocorticography (ioECoG) relate to cognitive outcome after epilepsy surgery in children.MethodsWe retrospectively included 20 children who were seizure free after epilepsy surgery using ioECoG and determined their intelligence quotients (IQ) pre- and two years postoperatively. We analyzed whether the number of HFOs and spikes in pre- and postresection ioECoGs, and their change in the non-resected areas relate to cognitive improvement (with ≥ 5 IQ points increase considered to be clinically relevant (=IQ+ group) and < 5 IQ points as irrelevant (=IQ− group)).ResultsThe IQ+ group showed significantly more FRs in the resected tissue (p = 0.01) and less FRs in the postresection ioECoG (p = 0.045) compared to the IQ− group. Postresection decrease of ripples on spikes was correlated with postoperative cognitive improvement (correlation coefficient = −0.62 with p = 0.01).ConclusionsPostoperative cognitive improvement was related to reduction of pathological HFOs signified by removing FR generating areas with subsequently less residual FRs, and decrease of ripples on spikes in the resection edge of the non-resected area.SignificanceHFOs recorded in ioECoG could play a role as biomarkers in the prediction and understanding of cognitive outcome after epilepsy surgery.  相似文献   

17.
《Brain stimulation》2021,14(3):477-487
BackgroundAlthough evidence has indicated a positive effect of transcranial direct current stimulation (tDCS) on reducing pain, few studies have focused on the elderly population with knee osteoarthritis (KOA).ObjectiveTo evaluate whether tDCS reduces KOA pain in elderly individuals with a dysfunctional descending pain inhibitory system (DPIS).MethodsIn a double-blind trial, individuals ≥ 60 years with KOA pain and a dysfunctional DPIS, we randomly assigned patients to receive 15 daily sessions of 2 mA tDCS over the primary motor cortex (anode) and contralateral supraorbital area (cathode) (M1-SO) for 20 min or sham tDCS. Change in pain perception indexed by the Brief Pain Inventory (BPI) at the end of intervention was the primary outcome. Secondary outcomes included: disability, quantitative sensory testing, pain pressure threshold and conditioned pain modulation (CPM). Subjects were followed-up for 2 months.ResultsOf the 104 enrolled subjects, with mean (SD) age of 73.9 (8.01) years and 88 (84.6%) female, 102 finished the trial. In the intention-to-treat analysis, the active tDCS group had a significantly greater reduction in BPI compared to the sham group (difference, 1.59; 95% CI, 0.95 to 2.23; P < 0.001; Cohen’s d, 0.58); and, also a significantly greater improvement in CPM-pressure in the knee (P = 0.01) and CPM-pain in the hand (P = 0.01). These effects were not sustained at follow-up. The intervention was well tolerated, with no severe adverse effects.ConclusionM1-SO tDCS is associated with a moderate effect size in reducing pain in elderly patients with KOA after 15 daily sessions of stimulation. This intervention has also shown to modulate the DPIS.  相似文献   

18.
IntroductionSocial jetlag has been reported to predict obesity-related indices, independent of sleep duration, with associations in female adolescents but not males. However, such sex-specific relationships have not been investigated in pre-adolescents.ObjectivesTo examine: (i) the relationships between sleep characteristics, including social jetlag, and obesity-related outcomes during childhood, and (ii) whether these relationships are moderated by sex.MethodsThis cross-sectional study included 381 children aged 9–11 years (49.6% female). Average sleep duration, social jetlag, and physical activity were assessed via wrist-worn accelerometry. Sleep disturbances were quantified from the Children's Sleep Habits Questionnaire. Obesity-related outcomes included age-specific body mass index Z-scores (zBMI) and waist-to-height ratio. Additionally % fat, total fat mass, and fat mass index were assessed via bioelectrical impedance analysis. Linear mixed models that nested children within schools were used to identify relationships among sleep characteristics and obesity-related outcomes.ResultsPositive associations between social jetlag with zBMI, % fat, and fat mass index were seen in univariable and unadjusted multivariable analyses. Following adjustments for known confounders, social jetlag remained significantly associated with zBMI (β = 0.12, p = 0.013). Simple slopes suggested a positive association in girls (β = 0.19, p = 0.006) but not in boys (β = 0.03, p = 0.703).ConclusionsObesity prevention efforts, particularly in girls, may benefit from targeted approaches to improving the consistency of sleep timing in youth.  相似文献   

19.
IntroductionAlterations in large scale neural networks leading to neurophysiological changes have been described in Parkinson's disease (PD). The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been suggested as a promising tool to identify and quantify neurophysiological mechanisms. The aim of this study was to investigate specific changes in electrical brain activity in response to stimulation of four brain areas in patients with PD.Methods21 healthy controls and 32 patients with PD underwent a combined TMS-EEG assessment that included stimulation of four brain areas: left M1, right M1, left dorso-lateral prefrontal cortex (DLPFC), and right DLPFC. Six measures were calculated to characterize the TMS evoked potentials (TEP) using EEG: (1) wave form adherence (WFA), (2) late phase deflection (LPD), (3) early phase deflection (EPD), (4) short-term plasticity (STP), (5) inter-trial adherence, and (6) connectivity between right and left M1 and DLPFC. A Linear mixed-model was used to compare these measures between groups and areas stimulated.ResultsPatients with PD showed lower WFA (p = 0.052), lower EPD (p = 0.009), lower inter-trial adherence (p < 0.001), and lower connectivity between homologs areas (p = 0.050), compared to healthy controls. LPD and STP measures were not different between the groups. In addition, lower inter-trial adherence correlated with longer disease duration (r = −0.355, p = 0.050).ConclusionsOur findings provide evidence to various alterations in neurophysiological measures in patients with PD. The higher cortical excitability along with increased variability and lower widespread of the evoked potentials in PD can elucidate different aspects related to the pathophysiology of the disease.  相似文献   

20.
《Clinical neurophysiology》2020,131(12):2887-2898
ObjectiveSingle-pulse navigated transcranial magnetic stimulation (sp-nTMS) is used for presurgical motor mapping in patients with motor-eloquent lesions. However, recently introduced paired-pulse nTMS (pp-nTMS) with biphasic pulses could improve motor mapping.MethodsThirty-four patients (mean age: 56.0 ± 12.7 years, 53.0% high-grade glioma) with motor-eloquent lesions underwent motor mapping of upper extremity representations and nTMS-based tractography of the corticospinal tract (CST) by both sp-nTMS and pp-nTMS with biphasic pulses for the tumor-affected hemisphere before resection.ResultsIn three patients (8.8%), conventional sp-nTMS did not provide motor-positive points, in contrast to pp-nTMS that was capable of generating motor maps in all patients. Good concordance between pp-nTMS and sp-nTMS in the spatial location of motor hotspots and center of gravity (CoG) as well as for CST tracking was observed, with pp-nTMS leading to similar motor map volumes (585.0 ± 667.8 vs. 586.8 ± 204.2 mm3, p = 0.9889) with considerably lower resting motor thresholds (35.0 ± 8.8 vs. 32.8 ± 7.6% of stimulator output, p = 0.0004).ConclusionsPp-nTMS with biphasic pulses may provide motor maps even in highly demanding cases with tumor-affected motor structures or edema, using lower stimulation intensity compared to sp-nTMS.SignificancePp-nTMS with biphasic pulses could replace standardly used sp-nTMS for motor mapping and may be safer due to lower stimulation intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号