首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Drosophila, olfactory sensory neurons (OSNs) rely primarily on two types of chemoreceptors, odorant receptors (Ors) and ionotropic receptors (Irs), to convert odor stimuli into neural activity. The cellular signaling of these receptors in their native OSNs remains unclear because of the difficulty of obtaining intracellular recordings from Drosophila OSNs. Here, we developed an antennal preparation that enabled the first recordings (to our knowledge) from targeted Drosophila OSNs through a patch-clamp technique. We found that brief odor pulses triggered graded inward receptor currents with distinct response kinetics and current–voltage relationships between Or- and Ir-driven responses. When stimulated with long-step odors, the receptor current of Ir-expressing OSNs did not adapt. In contrast, Or-expressing OSNs showed a strong Ca2+-dependent adaptation. The adaptation-induced changes in odor sensitivity obeyed the Weber–Fechner relation; however, surprisingly, the incremental sensitivity was reduced at low odor backgrounds but increased at high odor backgrounds. Our model for odor adaptation revealed two opposing effects of adaptation, desensitization and prevention of saturation, in dynamically adjusting odor sensitivity and extending the sensory operating range.From insects to mammals, the sense of smell begins with odor detection by olfactory sensory neurons (OSNs) (16). Recently, rapid advances have been made in understanding chemoreceptors in Drosophila OSNs (79). To date, Drosophila is the only model organism for which odor selectivity is known for most of its odorant receptors (Ors) (10, 11), and an Or expression pattern has been mapped to OSNs (12, 13). In addition, another family of chemoreceptors called ionotropic receptors (Irs) has been identified and characterized (1416). These two types of chemoreceptors respond to different odors, thus endowing Drosophila OSNs with unique and complementary properties for odor detection (17). In contrast to the advanced molecular understanding of these two types of chemoreceptors, the mechanisms of their cellular signaling in native OSNs remain unclear, particularly hampered by the technical difficulty of carrying out patch-clamp recordings of Drosophila OSNs.Drosophila OSNs are encased in hair-like sensilla in the antennae and maxillary palps, with each sensillum containing the dendrites of one to four OSNs that are wrapped by sheath cells (18). The responses of native Drosophila OSNs to odors have traditionally been measured by electroantennogram (EAG) (19), which extracellularly measures the potentials across the entire antenna. In addition, single-sensillum recording (SSR) was developed to provide a higher spatial resolution by measuring the local field potentials (LFPs) from a single sensillum (2024). These methods, especially SSR, have greatly advanced understanding of the odor selectivity of both Ors and Irs (10, 11, 14). However, because sheath cells and other OSNs also contribute to EAG and SSR signals (25), the response characteristics obtained by such measurements are often contaminated. Patch-clamp recordings of single OSNs could ideally overcome this issue while facilitating the experimental manipulations of a cell’s membrane potential; however, this standard method has unfortunately not yet been routinely applied to Drosophila OSNs.Here, we developed a Drosophila antennal preparation and succeeded in performing patch-clamp recordings of single identified OSNs. By using a fast solution change system to deliver liquid-phase odor stimuli, we investigated the response properties of odor-induced receptor currents of Drosophila OSNs. We found that OSNs expressing Ors exhibited slow response kinetics, outward receptor current rectification, and strong adaptation to odors. We further demonstrated that this adaptation was produced by a Ca2+ influx into OSNs because it could be eliminated by voltage clamping at positive holding potentials, by removing extracellular Ca2+, or by removing internal free Ca2+ with a Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Importantly, in contrast to the long-held view that adaptation simply increases sensitivity, we found that Or-mediated adaptation selectively reduced odor-signaling gain at low odor backgrounds but increased the gain at high odor backgrounds, thereby extending the dynamic odor-operating range. In contrast, odor-induced receptor currents in Ir-expressing OSNs showed fast response kinetics and, surprisingly, did not adapt.  相似文献   

2.
Animals exhibit a spectacular array of traits to attract mates. Understanding the evolutionary origins of sexual features and preferences is a fundamental problem in evolutionary biology, and the mechanisms remain highly controversial. In some species, females choose mates based on direct benefits conferred by the male to the female and her offspring. Thus, female preferences are thought to originate and coevolve with male traits. In contrast, sensory exploitation occurs when expression of a male trait takes advantage of preexisting sensory biases in females. Here, we document in Drosophila a previously unidentified example of sensory exploitation of males by other males through the use of the sex pheromone CH503. We use mass spectrometry, high-performance liquid chromatography, and behavioral analysis to demonstrate that an antiaphrodisiac produced by males of the melanogaster subgroup also is effective in distant Drosophila relatives that do not express the pheromone. We further show that species that produce the pheromone have become less sensitive to the compound, illustrating that sensory adaptation occurs after sensory exploitation. Our findings provide a mechanism for the origin of a sex pheromone and show that sensory exploitation changes male sexual behavior over evolutionary time.Sexual selection is widely regarded as an important mechanism for the origin of new traits and species. Darwin first proposed that the elaboration of male secondary sexual traits is driven by female preferences (1, 2). This concept has been refined by models suggesting that females select male traits that indicate genetic quality or confer direct reproductive benefits (37). In contrast, sensory exploitation occurs when expression of a male trait takes advantage of preexisting sensory biases in females (8). In this case, female preference does not coevolve with the male trait but rather precedes it. In one of the first examples documenting sensory exploitation, female Physalaemus coloradorum frogs were shown to prefer male calls that contain a low-frequency “chuck” component despite the absence of this feature in calls from conspecifics. The sensory bias for chucks was shown to have its mechanistic basis in the tuning properties of the inner ear, a physiological feature that predated the appearance of chucks (9). Similarly, female platyfish exhibit a preference for males with swordtails despite the absence of swordtails in male platyfish. Females consistently chose to spend more time with conspecific males exhibiting an artificially attached plastic sword (10). In both these examples, female preference predates expression of the trait. Sensory exploitation has since been documented for numerous other visual cues, across a diversity of taxa (1114). In each case, females prefer traits that are not found naturally in their own species but appear in males of other species. Moreover, both the sensory bias and behavioral response to the trait already were present before expression of the trait.Pheromones are taste and olfactory cues that, in many species, play an important role in mate selection (15). As with courtship cues detected by other sensory modalities, pheromones are shaped by sexual selection and, thus, may exhibit enormous structural diversity and exquisite stereochemical specificity. In insects, exogenously secreted lipids advertise mating status, availability, and reproductive fitness (16). In some cases, male pheromones serve as a nuptial gift, thus providing direct reproductive benefits to females and offspring in the form of either nutritive or defensive compounds (17). Little is known, however, about the mechanisms underlying the diversification and the origin of chemical specificity. Here, we provide an example of a pheromone that has evolved from sensory exploitation. In Drosophila melanogaster, CH503 [formally, (3R,11Z,19Z)-3-acetoxy-11,19-octacosadien-1-ol; Fig. 1A] functions as an antiaphrodisiac (18). The pheromone is secreted in the anogenital region, is transferred to females during mating, and suppresses courtship from males. Our findings indicate CH503 evolved from males exploiting the preexisting sensory biases of other males to gain mating advantage by limiting access to females. Moreover, the use of CH503 has altered male sexual behavior over evolutionary time such that males have adapted by becoming less sensitive to the pheromone.Open in a separate windowFig. 1.Characterization of CH503 expression in Drosophila. (A) Chemical structure of CH503 and representative UV-LDI mass spectra measured from the male anogenital region of different Drosophila species. Each spectrum is recorded from a single fly. Signals corresponding to the mass-to-charge ratio (m/z) for cVA (m/z 349.24) and CH503 (m/z 503.38) were detected in D. melanogaster, D. simulans, D. yakuba, D. sechellia, and D. ananassae. No signal for CH503 was detected from D. willistoni, D. mojavensis, or D. virilis. Potassium-bearing molecular compounds [M+K]+ constitute the major ion species in all cases. (B) The HPLC chromatogram shows distinct retention times (RT) for each of the eight synthetic CH503 stereoisomers following derivatization. HPLC analysis of derivatized CH503 isolated from D. simulans, D. yakuba, and D. sechellia reveals that (3R,11Z,11Z)-CH503 is the only expressed stereoisomer. The retention times for the major peaks are noted in each chromatogram. The compound isolated from D. ananassae has the same m/z and elemental composition as CH503 but a different structure.  相似文献   

3.
How the brain translates changes in internal metabolic state or perceived food quality into alterations in feeding behavior remains poorly understood. Studies in Drosophila larvae have yielded information about neuropeptides and circuits that promote feeding, but a peptidergic neuron subset whose activation inhibits feeding in adult flies, without promoting metabolic changes that mimic the state of satiety, has not been identified. Using genetically based manipulations of neuronal activity, we show that activation of neurons (or neuroendocrine cells) expressing the neuropeptide allatostatin A (AstA) inhibits or limits several starvation-induced changes in feeding behavior in adult Drosophila, including increased food intake and enhanced behavioral responsiveness to sugar. Importantly, these effects on feeding behavior are observed in the absence of any measurable effects on metabolism or energy reserves, suggesting that AstA neuron activation is likely a consequence, not a cause, of metabolic changes that induce the state of satiety. These data suggest that activation of AstA-expressing neurons promotes food aversion and/or exerts an inhibitory influence on the motivation to feed and implicate these neurons and their associated circuitry in the mechanisms that translate the state of satiety into alterations in feeding behavior.  相似文献   

4.
The Caenorhabditis elegans defecation motor program (DMP) is a highly coordinated rhythmic behavior that requires two GABAergic neurons that synapse onto the enteric muscles. One class of DMP mutants, called anterior body wall muscle contraction and expulsion defective (aex) mutants, exhibits similar defects to those caused by the loss of these two neurons. Here, we demonstrate that aex-2 encodes a G-protein-coupled receptor (GPCR) and aex-4 encodes an exocytic SNAP25 homologue. We found that aex-2 functions in the nervous system and activates a G(s)alpha signaling pathway to regulate defecation. aex-4, on the other hand, functions in the intestinal epithelial cells. Furthermore, we show that aex-5, which encodes a pro-protein convertase, functions in the intestine to regulate the DMP and that its secretion from the intestine is impaired in aex-4 mutants. Activation of the G(s)alpha GPCR pathway in GABAergic neurons can suppress the defecation defect of the intestinal mutants aex-4 and aex-5. Lastly, we demonstrate that activation of GABAergic neurons using the light-gated cation channel channelrhodopsin-2 is sufficient to suppress the behavioral defects of aex-2, aex-4, and aex-5. These results genetically place intestinal genes aex-4 and aex-5 upstream of GABAergic GPCR signaling. We propose a model whereby the intestinal genes aex-4 and aex-5 control the DMP by regulating the secretion of a signal, which activates the neuronal receptor aex-2.  相似文献   

5.
Understanding how the genome empowers the nervous system to express behaviors remains a critical challenge in behavioral genetics. The startle response is an attractive behavioral model for studies on the relationship between genes, brain, and behavior, as the ability to respond rapidly to harmful changes in the environment is a universal survival trait. Drosophila melanogaster provides a powerful system in which genetic studies on individuals with controlled genetic backgrounds and reared under controlled environmental conditions can be combined with neuroanatomical studies to analyze behaviors. In a screen of 720 lines of D. melanogaster, carrying single P[GT1] transposon insertions, we found 267 lines that showed significant changes in startle-induced locomotor behavior. Excision of the transposon reversed this effect in five lines out of six tested. We infer that most of the 267 lines show mutant effects on startle-induced locomotion that are caused by the transposon insertions. We selected a subset of 15 insertions in the same genetic background in autosomal genes with strong mutant effects and crossed them to generate all 105 possible nonreciprocal double heterozygotes. These hybrids revealed an extensive network of epistatic interactions on the behavioral trait. In addition, we observed changes in neuroanatomy that were caused by these 15 mutations, individually and in their double heterozygotes. We find that behavioral and neuroanatomical phenotypes are determined by a common set of genes that are organized as partially overlapping genetic networks.  相似文献   

6.
The molecular mechanisms underlying the formation of neurons with defined neurotransmitters are not well understood. In this study, we demonstrate that the PcG-like genes in Caenorhabditis elegans, sop-2 and sor-3, regulate the formation of dopaminergic and serotonergic neurons and several other neuronal properties. sor-3 encodes a novel protein containing an MBT repeat, a domain that contains histone-binding activity and is present in PcG proteins SCM and Sfmbt in other organisms. We further show that mutations in sor-3 lead to ectopic expression of Hox genes and cause homeotic transformations. Specification of certain neuronal identities by these PcG-like genes appears to involve regulation of non-Hox gene targets. Our studies revealed that the PcG-like genes are crucial for coordinately regulating the expression of discrete aspects of neuronal identities in C. elegans.  相似文献   

7.
8.
Biogenic amines, such as serotonin and dopamine, can be important in reinforcing associative learning. This function is evident as changes in memory performance with manipulation of either of these signals. In the insects, evidence begins to argue for a common role of dopamine in negatively reinforced memory. In contrast, the role of the serotonergic system in reinforcing insect associative learning is either unclear or controversial. We investigated the role of both of these signals in operant place learning in Drosophila. By genetically altering serotonin and dopamine levels, manipulating the neurons that make serotonin and dopamine, and pharmacological treatments we provide clear evidence that serotonin, but not dopamine, is necessary for place memory. Thus, serotonin can be critical for memory formation in an insect, and dopamine is not a universal negatively reinforcing signal.  相似文献   

9.
Sex steroids affect the motivation to court mates, but less is known about how they influence motor movements associated with courtship behavior. Steroidal control of motor function may be especially important for species in which courtship requires superior strength, stamina, and neuromuscular coordination. Here we use the golden-collared manakin (Manacus vitellinus) to examine whether the neuromuscular circuitry that controls motoric aspects of courtship activity is sensitive to androgens. Males of this tropical species attract mates by rapidly jumping among branches in a courtship arena and using their wings to produce loud wing snaps. Testosterone activates this display via the androgen receptor (AR), and past work reveals that manakins injected with radio-labeled T ((3)H-T) accumulate radioactivity in the spinal cord. Thus, we used quantitative PCR to measure AR, estrogen receptor-α (ER-α) subtype, and aromatase (AROM) mRNA in spinal cords of male and female manakins and zebra finches. Expression of AR, but not ER-α or aromatase, was higher throughout the manakin spinal cord compared with the zebra finch. Next, we tested whether AR-expressing skeletal muscles are innervated by motor and sensory neurons that also express AR. To do this, we backfilled spinal neurons by injecting fluorescent tracers into select AR-sensitive wing and leg muscles of wild caught male and female manakins. We then removed these spinal cords and measured AR expression with in situ hybridization. Both sexes showed abundant AR mRNA in the cervical and lumbosacral spinal enlargements as well as in dorsal root ganglia attached to these enlargements. Together our findings suggest that androgens act widely on peripheral motor and sensory circuits in golden-collared manakins to influence wing snapping displays.  相似文献   

10.
The ability to compute the difference between two frequencies depends on a nonlinear operation that mixes two periodic signals. Behavioral and psychophysical evidence suggest that such mixing is likely to occur in the mammalian nervous system as a means to compare two rhythmic sensory signals, such as occurs in human audition, and as a means to lock an intrinsic rhythm to a sensory input. However, a neurological substrate for mixing has not been identified. Here we address the issue of nonlinear mixing of neuronal activity in the vibrissa primary sensory cortex of rat, a region that receives intrinsic as well as sensory-driven rhythmic input during natural whisking. In our preparation, the intrinsic signal originates from cortical oscillations that were induced by anesthetics, and the extrinsic input is introduced by periodic stimulation of vibrissae. We observed that the local extracellular current in vibrissa primary sensory cortex contained oscillatory components at the sum and difference of the intrinsic and extrinsic frequencies. In complementary experiments, we observed that the simultaneous stimulation of contralateral and ipsilateral vibrissae at different frequencies also led to current flow at the sum and difference frequencies. We show theoretically that the relative amplitudes of the observed mixture terms can be accounted for by a threshold nonlinearity in the input-output relation of the underlying neurons. In general, our results provide a neurological substrate for the modulation and demodulation of rhythmic neuronal signals for sensory coding and feedback stabilization of motor output.  相似文献   

11.
Animals across various phyla exhibit odor-evoked innate attraction behavior that is developmentally programmed. The mechanism underlying such behavior remains unclear because the odorants that elicit robust attraction responses and the neuronal circuits that mediate this behavior have not been identified. Here, we describe a functionally segregated population of olfactory sensory neurons (OSNs) and projection neurons (PNs) in Drosophila melanogaster that are highly specific to ammonia and amines, which act as potent attractants. The OSNs express IR92a, a member of the chemosensory ionotropic receptor (IR) family and project to a pair of glomeruli in the antennal lobe, termed VM1. In vivo calcium-imaging experiments showed that the OSNs and PNs innervating VM1 were activated by ammonia and amines but not by nonamine odorants. Flies in which the IR92a+ neurons or IR92a gene was inactivated had impaired amine-evoked physiological and behavioral responses. Tracing neuronal pathways to higher brain centers showed that VM1-PN axonal projections within the lateral horn are topographically segregated from those of V-PN and DC4-PN, which mediate innate avoidance behavior to carbon dioxide and acidity, respectively, suggesting that these sensory stimuli of opposing valence are represented in spatially distinct neuroanatomic loci within the lateral horn. These experiments identified the neurons and their cognate receptor for amine detection, and mapped amine attractive olfactory inputs to higher brain centers. This labeled-line mode of amine coding appears to be hardwired to attraction behavior.  相似文献   

12.
Substance P (SP) is a prominent neuromodulator, which is produced and released by peripheral damage-sensing (nociceptive) neurons; these neurons also express SP receptors. However, the mechanisms of peripheral SP signaling are poorly understood. We report a signaling pathway of SP in nociceptive neurons: Acting predominantly through NK1 receptors and G(i/o) proteins, SP stimulates increased release of reactive oxygen species from the mitochondrial electron transport chain. Reactive oxygen species, functioning as second messengers, induce oxidative modification and augment M-type potassium channels, thereby suppressing excitability. This signaling cascade requires activation of phospholipase C but is largely uncoupled from the inositol 1,4,5-trisphosphate sensitive Ca(2+) stores. In rats SP causes sensitization of TRPV1 and produces thermal hyperalgesia. However, the lack of coupling between SP signaling and inositol 1,4,5-trisphosphate sensitive Ca(2+) stores, together with the augmenting effect on M channels, renders the SP pathway ineffective to excite nociceptors acutely and produce spontaneous pain. Our study describes a mechanism for neurokinin signaling in sensory neurons and provides evidence that spontaneous pain and hyperalgesia can have distinct underlying mechanisms within a single nociceptive neuron.  相似文献   

13.
14.
15.
During neuronal maturation, dendrites develop from immature neurites into mature arbors. In response to changes in the environment, dendrites from certain mature neurons can undergo large-scale morphologic remodeling. Here, we show a group of Drosophila peripheral sensory neurons, the class IV dendritic arborization (C4da) neurons, that completely degrade and regrow their elaborate dendrites. Larval dendrites of C4da neurons are first severed from the soma and subsequently degraded during metamorphosis. This process is controlled by both intracellular and extracellular mechanisms: The ecdysone pathway and ubiquitin-proteasome system (UPS) are cell-intrinsic signals that initiate dendrite breakage, and extracellular matrix metalloproteases are required to degrade the severed dendrites. Surprisingly, C4da neurons retain their axonal projections during concurrent dendrite degradation, despite activated ecdysone and UPS pathways. These results demonstrate that, in response to environmental changes, certain neurons have cell-intrinsic abilities to completely lose their dendrites but keep their axons and subsequently regrow their dendritic arbors.  相似文献   

16.
Basic cellular and network mechanisms underlying gamma frequency oscillations (30-80 Hz) have been well characterized in the hippocampus and associated structures. In these regions, gamma rhythms are seen as an emergent property of networks of principal cells and fast-spiking interneurons. In contrast, in the neocortex a number of elegant studies have shown that specific types of principal neuron exist that are capable of generating powerful gamma frequency outputs on the basis of their intrinsic conductances alone. These fast rhythmic bursting (FRB) neurons (sometimes referred to as "chattering" cells) are activated by sensory stimuli and generate multiple action potentials per gamma period. Here, we demonstrate that FRB neurons may function by providing a large-scale input to an axon plexus consisting of gap-junctionally connected axons from both FRB neurons and their anatomically similar counterparts regular spiking neurons. The resulting network gamma oscillation shares all of the properties of gamma oscillations generated in the hippocampus but with the additional critical dependence on multiple spiking in FRB cells.  相似文献   

17.
The slowpoke gene is necessary for rapid ethanol tolerance in Drosophila   总被引:3,自引:0,他引:3  
BACKGROUND: Ethanol is one of the most commonly used drugs in the world. We are interested in the compensatory mechanisms used by the nervous system to counter the effects of ethanol intoxication. Recently, the slowpoke BK-type calcium-activated potassium channel gene has been shown to be involved in ethanol sensitivity in Caenorhabditis elegans and in rapid tolerance to the anesthetic benzyl alcohol in Drosophila. METHODS: We used Drosophila mutants to investigate the role of slowpoke in rapid tolerance to sedation with ethanol vapor. Rapid tolerance was defined as a reduction in the sedative phase caused by a single previous sedation. The ethanol and water contents of flies were measured to determine if pharmacodynamic changes could account for tolerance. RESULTS: A saturated ethanol air stream caused sedation in <20 min and resulted in rapid tolerance that was apparent 4 hr after sedation. Two independently isolated null mutations in the slowpoke gene eliminated the capacity for tolerance. In addition, a third mutation that blocked expression specifically in the nervous system also blocked rapid tolerance. Water measurements showed that both ethanol and mock sedation caused equivalent dehydration. Furthermore, a single prior exposure to ethanol did not cause a change in the ethanol clearance rate. CONCLUSIONS: Rapid tolerance, measured as a reduction in the duration of sedation, is a pharmacokinetic response to ethanol that does not occur without slowpoke expression in the nervous system in Drosophila. The slowpoke channel must be involved in triggering or producing a homeostatic mechanism that opposes the sedative effects of ethanol.  相似文献   

18.
We have analyzed the Drosophila immune response in domino mutant larvae, which are devoid of blood cells. The domino mutants have a good larval viability, but they die as prepupae. We show that, on immune challenge, induction of the genes encoding antimicrobial peptides in the fat body is not affected significantly in the mutant larvae, indicating that hemocytes are not essential in this process. The hemocoele of domino larvae contains numerous live microorganisms, the presence of which induces a weak antimicrobial response in the fat body. A full response is observed only after septic injury. We propose that the fat body cells are activated both by the presence of microorganisms and by injury and that injury potentiates the effect of microorganisms. Survival experiments after an immune challenge showed that domino mutants devoid of blood cells maintain a wild-type resistance to septic injury. This resistance was also observed in mutant larvae in which the synthesis of antibacterial peptides is impaired (immune deficiency larvae) and in mutants that are deficient for humoral melanization (Black cells larvae). However, if domino was combined with either the immune deficiency or the Black cell mutation, the resistance to septic injury was reduced severely. These results establish the relevance of the three immune reactions: phagocytosis, synthesis of antibacterial peptides, and melanization. By working in synergy, they provide Drosophila a highly effective defense against injury and/or infection.  相似文献   

19.
Rhythmic movements, such as peristaltic contraction, are initiated by output from central pattern generator (CPG) networks in the CNS. These oscillatory networks elicit locomotion in the absence of external sensory or descending inputs, but CPG circuits produce more directed and behaviorally relevant movement via peripheral nervous system (PNS) input. Drosophila melanogaster larval locomotion results from patterned muscle contractions moving stereotypically along the body segments, but without PNS feedback, contraction of body segments is uncoordinated. We have dissected the role of a subset of mechanosensory neurons in the larval PNS, the chordotonal organs (chos), in providing sensory feedback to the locomotor CPG circuit with dias (Dynamic Image Analysis System) software. We analyzed mutants carrying cho mutations including atonal, a cho proneural gene, beethoven, a cho cilia class mutant, smetana and touch-insensitive larva B, two axonemal mutants, and 5D10, a weak cho mutant. All cho mutants have defects in gross path morphology compared to controls. These mutants exhibit increased frequency and duration of turning (decision-making) and reduced duration of linear locomotion. Furthermore, cho mutants affect locomotor parameters, including reduced average speed, direction change, and persistence. Dias analysis of peristaltic waves indicates that mutants exhibit reduced average speed, positive flow and negative flow, and increased stride period. Thus, cho sensilla are major proprioceptive components that underlie touch sensitivity, locomotion, and peristaltic contraction by providing sensory feedback to the locomotor CPG circuit in larvae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号