首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the vertebrate retina the presence of synaptic ribbons (SRs) is well documented in two sites only, viz., in photoreceptor axon terminals in the outer plexiform layer and in bipolar cell axons in the inner plexiform layer. The present paper reports the presence of non-photoreceptor SRs in the outer plexiform layer of cattle and mouse, where they were seen in small numbers in thin cell processes near cone pedicles of light-adapted animals. They were never seen near rod spherules. Quantitative data obtained in mice killed at different time-points revealed that the SRs under consideration increased in number during day time and were absent during the dark phase. Moreover, under high light intensity of 10000 lux they were more frequent in number compared to 100-lux-exposed animals. It is concluded that the cell processes revealing the temporary presence of SRs are processes of flat bipolar cells which may provide a feedback to cones during the light phase.  相似文献   

2.
3.
P2X3 purinoceptors are involved in fast, excitatory neurotransmission in the nervous system, and are expressed predominantly within sensory neurons. In this study, we examined the cellular and synaptic localization of the P2X3 receptor subunit in the retina of the rat using immunofluorescence immunohistochemistry and pre-embedding immunoelectron microscopy. In addition, we investigated the activity of ecto-ATPases in the inner retina using an enzyme cytochemical method. The P2X3 receptor subunit was expressed in the soma of a subset of GABA immunoreactive amacrine cells, some of which also expressed protein kinase C-alpha. In addition, punctate immunoreactivity was observed within both the inner and outer plexiform layers of the retina. Double labeling studies showed that P2X3 receptor puncta were associated with both rod and cone bipolar cell axon terminals in the inner plexiform layer. Ultrastructural studies indicated that P2X3 receptor subunits were expressed on putative A17 amacrine cells at sites of reciprocal synaptic input to the rod bipolar cell axon terminal. Moreover, we observed P2X3 immunolabeling on amacrine cell processes that were associated with cone bipolar cell axon terminals and other conventional synapses. In the outer retina, P2X3 immunoreactivity was observed on specialized junctions made by putative interplexiform cells. Ecto-ATPase activity was localized to the inner plexiform layer on the extracellular side of all plasma membranes, but was not apparent in the ganglion cell layer or the inner nuclear layer, suggesting that ATP dephosphorylation occurs exclusively in synaptic regions of the inner retina. These data provide further evidence that purines participate in retinal transmission, particularly within the rod pathway.  相似文献   

4.
Horizontal cells form gap junctions with each other in mammalian retina, and lacZ reporter analyses have recently indicated that these cells express the Cx57 gene, which codes for the corresponding gap junctional protein. Using anti-connexin57 antibodies, we detected connexin57 protein in immunoblots of mouse retina, and found punctate immunolabeling of this connexin co-distributed with calbindin-positive horizontal cells in the retinal outer plexiform layer. Double immunofluorescence labeling was conducted to determine the spatial relationships of connexin36, connexin57, the gap junction-associated protein zonula occludens-1 and the photoreceptor ribbon synapse-associated protein bassoon in the outer plexiform layer. Connexin36 was substantially co-localized with zonula occludens-1 in the outer plexiform layer, and both of these proteins were frequently located in close spatial proximity to bassoon-positive ribbon synapses. Connexin57 was often found adjacent to, but not overlapping with, connexin36-positive and zonula occludens-1-positive puncta, and was also located adjacent to bassoon-positive ribbon synapses at rod spherules, and intermingled with such synapses at cone pedicles. These results suggest zonula occludens-1 interaction with connexin36 but not with Cx57 in the outer plexiform layer, and an absence of connexin57/connexin36 heterotypic gap junctional coupling in mouse retina. Further, an arrangement of synaptic contacts within rod spherules is suggested whereby gap junctions between horizontal cell terminals containing connexin57 occur in very close proximity to ribbon synapses formed by rod photoreceptors, as well as in close proximity to Cx36-containing gap junctions between rods and cones.  相似文献   

5.
Summary The outer plexiform layer of the cat retina has been examined by electron microscopy of random and serial ultrathin sections in order that neural profiles might be positively identified and their synaptic relationships studied. Photoreceptors are interconnected by means of gap junctions as are the A horizontal cells. B horizontal cells and axon terminals do not appear to be engaged in any synapses apart from those with photoreceptors, while A horizontal cells make rare junctions with cone bipolars only. Interplexiform cell processes probably account for all the conventional chemical synapses in the outer plexiform layer of cat retina.  相似文献   

6.
Study of the developing chick retina with the electron microscope revealed that dyad ribbon synapses begin to form in the inner plexiform layer before synaptic ribbons begin to appear in photoreceptor terminals of the outer plexiform layer. This centrifugal (inner to outer) sequence of synaptogenesis in the predominantly cone retina of the chick differs from the centripetal sequence that has been reported for the predominantly rod retinas of the mouse and rat. This difference does not favor the hypothesis, suggested by others, that the photo-receptor may influence the maturation of inner retinal elements. The different patterns of synaptogenesis are discussed briefly with reference to anatomical differences between the retinas of different species.  相似文献   

7.
Summary With indirect immunofluorescence, glutamate decarboxylase (GAD), the GABA synthesizing enzyme, was localized to cell bodies in the inner half of the inner nuclear layer and a few in the outer tier of the ganglion cell layer in the rhesus monkey retina. In the inner plexiform layer there were three strongly GAD-immunoreactive laminae separated by two less immunoreactive laminae. Electron microscopy demonstrated that the GAD was contained in amacrine cells and these GAD-immunoreactive amacrines were primarily pre- and postsynaptic to biopolar cell axon terminals. The GAD-containing processes possessed small synaptic vesicles and formed synapses that could be characterized as symmetrical. Large, dense-cored vesicles were often found in the cell bodies and synaptic processes of the GAD-immunoreactive amacrine cells. As the vast majority of the synaptic input and output of the GAD-containing amacrine cells was to and from bipolar cells and the strongest GAD-immunoreactivity correlated with the endings of bipolar cells that connect with a single cone, the functional effects of GABA in the primate retina are likely to be found in the responses of single cone pathways in the inner plexiform layer.  相似文献   

8.
Summary Gap junctions are found in the pigment epithelium, between retina and pigment epithelium and in the retina of 5–14 day chick embryos, they are identified using block staining and extracellular tracer techniques. In the pigment epithelium gap junctions are found between cell bodies and interdigitating processes and many change their position during development. Gap junctions between retina and pigment epithelium are only made by undiferentiated retinal ventricular cells and may provide intercytoplasmic pathways important for photoreceptor differentiation. Retinal gap junctions are found in an outer zone next to the pigment epithelium and inner zone near the vitreous, they are only seen between ventricular cells but may provide pathways for ganglion cell specification. The role of gap junctions in the generation of retinal neurons is discussed.  相似文献   

9.
Summary An electron microscopic analysis was made of the small-celled part of the mediodorsal cortex of the lizard Agama agama. This cortex consists of four layers: Superficial plexiform layer, cellular layer, deep plexiform layer and fiber layer. In the superficial plexiform layer one type of solitary neuron with smooth dendrites is present.Three types of axon terminals can be observed: terminals with a moderately electron dense matrix packed with spherical vesicles (S1 type), axon terminals with an electron lucent matrix containing fewer spherical synaptic vesicles than the S1 type (S2 type) and axon terminals with an electron lucent matrix and scattered pleomorphic synaptic vesicles (F type). F type axon terminals are larger than S terminals. At the pial surface endfeet of tanycytic processes form a limiting glial layer, contacting one another by means of gap junctions. In the cellular layer perikarya of pyramidal neurons are densely packed. The karyoplasm of these neurons shows either evenly dispersed or discretely clumped chromatin. Spiny dendrites arise from the perikarya and extend into both the superficial and deep plexiform layers. The structure of the deep plexiform layer is roughly similar to that of the superficial plexiform layer. The fiber layer contains the majority of the afferent and efferent axons of the mediodorsal cortex. The axons are myelinated and unmyelinated. Between the fibers, scattered solitary neurons are present, often accompanied by glial cells.The lateral ventricle beneath the fiber layer is lined by a single row of ependymal tanycytes. Tanycytic processes traverse the cortical layers and may form endfeet at the pial surface. Protoplasmic excresenses from some ependymal cells protrude into the ventricle.  相似文献   

10.
Summary Neural connections in the outer plexiform layer of thePseudemys turtle retina have been studied by electron microscopy of serial ultrathin sections. While the distinguishing features of the photoreceptors have been described elsewhere, in this paper we describe the patterns of connectivity between identified second order neurons and identified photoreceptors or amongst second order neurons themselves. Basal telodendria emitted from double cone pedicles interconnect the two members of the double cone. Three morphologically different types of junction are made between bipolar cells and cone pedicles. H1 horizontal cells can be distinguished from H2 horizontal cells and synapses occur between them. Axon terminals of H1 cells are presynaptic to H1 cell bodies. Photoreceptors, H1 cell bodies and H1 axon terminals engage in electrical junctions while chemical synapses occur from both types of horizontal cell to bipolar cells. On rare occasions, bipolar cell dendrites were seen to be presynaptic to other bipolar cell dendrites. The significance of some of these contacts for the electrophysiological findings on the OPL of the turtle retina is discussed.  相似文献   

11.
The retina of the adult ferret, Mustelo furo, was studied with light and transmission electron microscopy to provide an anatomical basis for use of the ferret as a model for retinal research. The pigment epithelium is a simple cuboidal layer of cells characterized by a zone of basal folds, apical microvilli, and pigment granules at various stages of maturation. The distinction between rod and cone photoreceptor cells is based on their location, morphology, heterochromatin pattern and the electron density of their inner segments. The round, light-staining cone cell nuclei occupy the layer of perikarya along the apical border of the outer nuclear layer. The remainder of the outer nuclear layer consists of oblong, deeply-stained rod cell nuclei. Ribbon type synaptic complexes involving photoreceptor cell axons, horizontal cell processes, and bipolar cell dendrites characterize the outer plexiform layer. The inner nuclear layer is comprised of horizontal, bipolar, and amacrine cell perikarya as well as the perikarya of the Müller cells. The light-staining horizontal cell nuclei are prominent along the apical border of the inner nuclear layer. The light-staining amacrine cell nuclei form a more or less continuous layer along the basal border of the inner nuclear layer. Both conventional and ribbon-type synapses characterize the inner plexiform layer. The ganglion cells form a single cell layer. The optic fiber layer contains bundles of axons surrounded by Müller cell processes. Small blood vessels and capillaries are present in the basal portion of the retina throughout the region extending from the internal limiting membrane to the outer plexiform layer. The adult one-year-old retina is compared with the retina at the time of eye opening.  相似文献   

12.
The structure of the photoreceptor cells of the ground squirrel retina has been studied by light and electron microscopy. The ground squirrel photoreceptor cells are of particular morphologic interest because this mammal is believed to possess a pure cone retina. Light micrographs show that the ground squirrel retina possesses an unusually narrow outer nuclear layer, a characteristic feature of pure cone or predominantly cone retinae. By light microscopy all the photoreceptor outer segments appear uniform in size, shape and position and resemble cones more closely than rods. Electron micrographs of ground squirrel photoreceptor cells also reveal a uniform structure typical of cones of other vertebrates. Each of the photoreceptor outer segments is formed by flattened saccules lying one on top of the other and many of the saccules, as is characteristic of cones, are continuous with the overlying plasma membrane. The basal processes of the photoreceptor cells also are cone-like in nature since each contains several synaptic lamellae and makes contact with a large number of dendritic processes arising from cells in the inner nuclear layer. It is concluded that the ground squirrel retina, from a purely morphologic standpoint, is exclusively or almost exclusively pure cone in type.  相似文献   

13.
The organization of the outer plexi-form layer (OPL) of the pigeon retina is described by electron microscopy and Golgi impregnation. Six types of photoreceptor, four types of horizontal cell, eight types of bipolar cell, and an interplexiform cell type were found by Golgi impregnation. The OPL was tri-stratified due to the endings of the photoreceptors at three different levels. This stratification was reflected in the laminar arrangement of the dendrites of the horizontal and bipolar cells. Electron microscopy showed that the synaptic endings of the photoreceptors made ribbon synapses, both triads and dyads, and basal junctions with the process of second-order neurons. Horizontal cells formed conventional chemical synapses, while horizontal cell axon terminals were extensively linked by gap junctions.  相似文献   

14.
Summary Neural connections of cells ramifying in the inner plexiform layer of the cat retina have been studied by serial section electron microscopy. Flat cone bipolars and invaginating cone bipolars segregate their axon terminals to different sublaminae of the IPL (sublaminaa and sublaminab, respectively) where they relate to different subtypes of the same class of ganglion cell (a andb types respectively).Rod bipolar axon terminals end solely in sublaminab and synapse with amacrine cells (AI and AII). AI provides reciprocal synapses to clusters of rod bipolar axon terminals. The AII amacrine provides rod input toa type ganglion cells by means of chemical synapses and tob type ganglion cells through gap junctions with invaginating cone bipolar terminals.Amacrine cells exist which interconnect rod and cone bipolars, but some amacrines appear to be related specifically to neurons branching in particular sublaminae. Both large- and small-bodied ganglion cells have amacrine-dominated input while the medium-bodied ganglion cells with small dendritic trees have cone bipolar-dominated input.  相似文献   

15.
Summary A post-embedding, electron microscopic immunocytochemistry technique, modified from existing protocols, was used to examine the labelling patterns of GABA immunoreactivity and glycine immunoreactivity in goldfish retina. Retinae were fixed in mixed aldehyde solution, dehydrated in ethanol, staineden bloc with uranyl acetate and phosphotungstic acid and embedded in LR White resin. Substances were localized in thin sections by floating grids first on a drop of primary antiserum and then on a colloidal gold-IgG conjugate. Finally, grids were exposed to osmium vapour. The localization of GABA immunoreactivity matched that of [3H]-GABA uptake or glutamate decarboxylase immunoreactivity as described previously. In the outer retina, GABA immunoreactivity was found in the cell bodies and axon terminals of H1 horizontal cells and their dendrites opposite cone photoreceptor terminals. Selected amacrine cell bodies were labelled, as were many processes, both synaptic and non-synaptic, throughout the inner plexiform layer, including most amacrine cell processes contacting the synaptic terminals of type Mb bipolar cells. Numerous amacrine cells, their processes in the inner and outer plexiform layers, and photoreceptor terminals contained glycine immunoreactivity in a distribution similar to that shown by [3H]-glycine uptake. Despite the absence of osmium in the primary or secondary fixative, our protocol results in excellent visibility of synaptic structures and detectability of the colloidal gold immunolabel. Also, it does not cause extraction of the HRP/DAB reaction product and is therefore suitable for double-label analysis of neurons labelled with horseradish peroxidase.  相似文献   

16.
Ning N  Sun J  Du G  Han N  Zhang J  Chen N 《Neuroscience letters》2012,510(2):99-103
In the rabbit retina, there are two types of horizontal cell (HC). The axonless A-type HCs form a coupled network via connexin 50 (Cx50) gap junctions in the outer plexiform layer (OPL). The axon-bearing B-type HCs form two independently coupled networks; the dendritic network via gap junctions consisted of unknown Cx and the axon terminal network via Cx57. The present study was conducted to examine the localization and morphological features of Cx50 and Cx57 gap junctions in rabbit HCs at cellular and subcellular levels. The results showed that each gap junction composed of Cx50 or Cx57 showed distinct features. The larger Cx50 gap junctions were located more proximally than the smaller Cx50 gap junctions. Both Cx50 plaques formed symmetrical homotypic gap junctions, but some small ones had an asymmetrical appearance, suggesting the presence of heterotypic gap junctions or hemichannels. In contrast, Cx57 gap junctions were found in the more distal part of the OPL but never on the axon terminal endings entering the rod spherules, and they were exclusively homotypic. Interestingly, about half of the Cx57 gap junctions appeared to be invaginated. These distinct features of Cx50 and Cx57 gap junctions show the variety of HC gap junctions and may provide insights into the function of different types of HCs.  相似文献   

17.
Synaptic connections of the interplexiform cell in the retina of the cat   总被引:3,自引:0,他引:3  
Summary Electron microscopy of Golgi-impregnated material and of well fixed, ultrathin serial sections has revealed the synaptic connections of interplexiform cells in cat retina. In the inner plexiform layer these cells are postsynaptic to amacrine cells and probably presynaptic to both bipolars and amacrines. In the outer plexiform layer they are presynaptic to rod and cone bipolar cells and also pre- and postsynaptic to other interplexiform cell dendrites. The interplexiform cell in cat retina appears to be concerned with feeding back information from the inner plexiform layer to the dendrites of bipolar cells in the outer plexiform layer.  相似文献   

18.
Summary The morphology of -aminobutyric acid (GABA)-containing horizontal cells was examined in mature and developing chick retinas by GABA immunocytochemistry. In the outer plexiform layer of the mature retina, GABA-immunoreactive components were located in three different sublayers. In the inner (vitreal) layer most positively-stained fibres were laterally oriented processes from horizontal cells. Thick processes were found in the middle layer, and the relatively thin fibres in the outer (scleral) layer showed a concave curvature, suggesting their termination on photoreceptor terminals. By electron microscopy it was found that the principal cone pedicles were usually indented by immunoreactive lateral neurites of horizontal cells but that rod spherules faced only occasionally immunoreactive fibres. Accessory cones and single cones were also not usually indented by immunoreactive fibres. These observations may indicate that horizontal cells regulate the excitation of cone photoreceptors by several different inhibitory mechanisms. During retinal development, horizontal cells begin to extend lateral fibres by the ninth embryonic day, and some GABAergic horizontal cells also possess inwardly extending fibres until embryonic day 11. Between embryonic days 13 and 15, some immunoreactive cells were found among the bipolar cells, suggesting that they were still migrating to their final position. On embryonic day 17, the staining pattern was very similar to that of the mature retina. These results suggest that GABA immunohistochemistry may be an excellent tool for studying horizontal cell differentiation.  相似文献   

19.
The study was designed to determine whether dopaminergic neurotransmission in the retina can operate via volume transmission. In double immunolabelling experiments, a mismatch as well as a match was demonstrated in the rat retina between tyrosine hydroxylase (TH) and dopamine (DA) immunoreactive (ir) terminals and cell bodies and dopamine D2 receptor-like ir cell bodies and processes. The match regions were located in the inner nuclear and plexiform layers (D2 ir cell bodies plus processes). The mismatch regions were located in the ganglion cell layer, the outer plexiform layer, and the outer segment of the photoreceptor layer, where very few TH ir terminals can be found in relation to the D2 like ir processes. In similar experiments analyzing D1 receptor like ir processes versus TH ir nerve terminals, mainly a mismatch in their distribution could be demonstrated, with the D1 like ir processes present in the outer plexiform layer and the outer segment where a mismatch in D2 like receptors also exists. The demonstration of a mismatch between the localization of the TH terminal plexus and the dopamine D2 and D1 receptor subtypes in the outer plexiform layer, the outer segment and the ganglion cell layer (only D2 immunoreactivity (IR)) suggests that dopamine, mainly from the inner plexiform layer, may reach the D2 and D1 mismatch receptors via diffusion in the extracellular space. After injecting dopamine into the corpus vitreum, dopamine diffuses through the retina, and strong catecholamine (CA) fluorescence appears in the entire inner plexiform layer and the entire outer plexiform layer, representing the match and mismatch DA receptor areas, respectively. The DA is probably bound to D1 and D2 receptors in both plexiform layers, since the DA receptor antagonist chlorpromazine fully blocks the appearance of the DA fluorescence, while only a partial blockade is found after haloperidol treatment which mainly blocks D2 receptors. These results indicate that the amacrine and/or interplexiform DA cells, with sparse branches in the outer plexiform layer, can operate via volume transmission in the rat retina to influence the outer plexiform layer and the outer segment, as well as other layers of the rat retina such as the ganglion cell layer.  相似文献   

20.
Summary The dopaminergic amacrine cells of the cat retina have been stained by immunocytochemistry using an antibody to tyrosine hydroxylase (Toh). The complete population of Toh+cells has been studied by light microscopy of retinal wholemounts to evaluate morphological details of dendritic structure and branching patterns. Selected Toh+amacrine cells have been studied by serial-section electron microscopy to analyse synaptic input and output relationships. The majority of Toh+amacrine cells occur in the amacrine cell layer of the retina and have their dendrites ramifying and forming the characteristic rings in stratum 1 of the inner plexiform layer. A minority of Toh+cells have cell bodies displaced to the ganglion cell layer but their dendrites also stratify in stratum 1. All Toh+cells have some dendritic branches running in stratum 2 as well as in stratum 1, and frequently they have long axon-like processes (500–1000 m long) dipping down to run in stratum 5 before passing up to rejoin the major dendritic arbors in stratum 1. In addition Toh+stained processes follow blood vessels in the inner plexiform layer and in the ganglion cell layer. A population of Toh+cells found in the inferior retina appears to give rise to stained processes that pass to the outer plexiform layer and therein to run for as far as one millimeter.Electron microscopy reveals that Toh+amacrine cells are postsynaptic to amacrine cells and a few bipolar cell terminals in stratum 1 of the inner plexiform layer and are primarily presynaptic to All amacrine cell bodies and lobular appendages, and to another type of amacrine cell body and amacrine dendrites hypothesized to be the A17 amacrine cell. The Toh+dendrites in stratum 2 are presynaptic to All lobular appendages primarily. Stained axon-like processes running in stratum 5 prove to be presynaptic to All amacrine dendrites as they approach the rod bipolar axon terminals and they may also be presynaptic to the rod bipolar terminal itself. The Toh+stained dendrites that have been followed in the outer plexiform layer run along the top of the B-type horizontal cell somata and may have small synapses upon them. The only clear synapses seen in the outer plexiform layer are from the Toh+profiles upon vesicle filled amacrine-like profiles that are in turn presynaptic to bipolar cell dendrites in the outer plexiform layer. We presume the cells postsynaptic to the Toh+dendrites in the outer plexiform layer are interplexiform cells. Finally the Toh+profiles that course along blood vessel walls and in the ganglion cell layer appear to end either against the basal lamina of the blood vessel or at intercellular channels of vesicle-laden Muller cell end-feet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号