首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Adiponectin (APM1) is an adipocyte-derived peptide. The APM1 gene is located on chromosome 3q27 and linked to type 2 diabetes. In patients with type 2 diabetes, the adiponectin level in plasma is decreased in comparison to healthy subjects. To identify genetic defects of the APM1 gene that contribute to the development of type 2 diabetes, we genotyped 13 single nucleotide polymorphisms (SNPs) in 106 patients with type 2 diabetes, 325 patients with impaired glucose tolerance (IGT), and 497 nondiabetic control subjects in Swedish Caucasians by using dynamic allele-specific hybridization (DASH). We found that SNPs -11426(A/G) and -11377(G/C) in the proximal promoter region had significant differences of allele frequencies between type 2 diabetic patients and nondiabetic control subjects (P = 0.02 and P = 0.04, respectively). SNP-11426(A/G) was significantly associated with fasting plasma glucose in type 2 diabetic patients (P = 0.02) and in IGT subjects (P = 0.04), while the patients carrying CC and CG genotypes for SNP-11377(G/C) had a higher BMI than the patients with the GG genotype (P = 0.03). Haplotype analysis of 13 SNPs in the APM1 gene showed that estimates of haplotype frequencies in Swedish Caucasians are similar to those estimated in French Caucasians. However, no significant association of haplotypes with type 2 diabetes and IGT was detected in our study. The present study provides additional evidence that SNPs in the proximal promoter region of the APM1 gene contribute to the development of type 2 diabetes.  相似文献   

4.
Previously, we identified a locus on 11p influencing obesity in families with type 2 diabetes. Based on mouse studies, we selected TUB as a functional candidate gene and performed association studies to determine whether this controls obesity. We analyzed the genotypes of 13 single nucleotide polymorphisms (SNPs) around TUB in 492 unrelated type 2 diabetic patients with known BMI values. One SNP (rs1528133) was found to have a significant effect on BMI (1.54 kg/m(2), P = 0.006). This association was confirmed in a population enriched for type 2 diabetes, using 750 individuals who were not selected for type 2 diabetes. Two SNPs in linkage disequilibrium with rs1528133 and mapping to the 3' end of TUB, rs2272382, and rs2272383 also affected BMI by 1.3 kg/m2 (P = 0.016 and P = 0.010, respectively). Combined analysis confirmed this association (P = 0.005 and P = 0.002, respectively). Moreover, comparing 349 obese subjects (BMI >30 kg/m(2)) from the combined cohort with 289 normal subjects (BMI <25 kg/m(2)) revealed that the protective alleles have a lower frequency in obese subjects (odds ratio 1.32 [95% CI 1.04-1.67], P = 0.022). Altogether, data from the tubby mouse as well as these data suggest that TUB could be an important factor in controlling the central regulation of body weight in humans.  相似文献   

5.
The contribution of gluconeogenesis (GNG) to endogenous glucose output (EGO) in type 2 diabetes is controversial. Little information is available on the separate influence of obesity on GNG. We measured percent GNG (by the 2H2O technique) and EGO (by 6,6-[2H]glucose) in 37 type 2 diabetic subjects (9 lean and 28 obese, mean fasting plasma glucose [FPG] 8.3 +/- 0.3 mmol/l) and 18 control subjects (6 lean and 12 obese) after a 15-h fast. Percent GNG averaged 47 +/- 5% in lean control subjects and was significantly increased in association with both obesity (P < 0.01) and diabetes (P = 0.004). By multivariate analysis, percent GNG was independently associated with BMI (partial r = 0.27, P < 0.05, with a predicted increase of 0.9% per BMI unit) and FPG (partial r = 0.44, P = 0.0009, with a predicted increase of 2.7% per mmol/l of FPG). In contrast, EGO was increased in both lean and obese diabetic subjects (15.6 +/- 0.5 micromol x min(-1) x kg(-1) of fat-free mass, n = 37, P = 0.002) but not in obese nondiabetic control subjects (13.1 0.7, NS) as compared with lean control subjects (12.4 +/- 1.4). Consequently, gluconeogenic flux (percent GNG x EGO) was increased in obesity (P = 0.01) and markedly elevated in diabetic subjects (P = 0.0004), whereas glycogenolytic flux was reduced only in association with obesity (P = 0.05). Fasting plasma glucagon levels were significantly increased in diabetic subjects (P < 0.05) and positively related to EGO, whereas plasma insulin was higher in obese control subjects than lean control subjects (P = 0.05) and unrelated to measured glucose fluxes. We conclude that the percent contribution of GNG to glucose release after a 15-h fast is independently and quantitatively related to the degree of overweight and the severity of fasting hyperglycemia. In obese individuals, reduced glycogenolysis ensures a normal rate of glucose output. In diabetic individuals, hyperglucagonemia contributes to inappropriately elevated rates of glucose output from both GNG and glycogenolysis.  相似文献   

6.
7.
We conducted a community-based case-control study of African-American men and women in the Atherosclerosis Risk in Communities Study. The allele frequencies of the Gly972Arg variant of the insulin receptor substrate-1 (IRS-1) gene and the Ala54Thr variant of the fatty acid binding protein 2 (FABP2) gene were compared in 992 normal control subjects and three patient groups: 1) 321 type 2 diabetic individuals, 2) 260 severely obese individuals, and 3) 258 markedly hyperinsulinemic individuals without diabetes. Allele frequencies of Gly972Arg IRS-1 and Ala54Thr FABP2 were 0.07 and 0.22, respectively; there were no differences in allele or genotype frequencies between patients and control subjects for either gene variant. In weighted linear regression of all patients and control subjects, the presence of the IRS-1 gene variant was associated with a 0.85 (0.42) kg/m2 higher BMI (P = 0.04). In addition, individuals with at least one IRS-1 Arg972 allele and two FABP2 Thr54 alleles had a BMI of 33.3 (7.9) kg/m2, compared with 30.0 (6.3) kg/m2 for those with neither allele (P = 0.05). These results suggest that in African-Americans, these variants in the IRS-1 and FABP2 genes are not associated with the risk of type 2 diabetes, severe obesity, or marked hyperinsulinemia, but that their independent and joint effects may be associated with small increases in BMI.  相似文献   

8.
As part of an ongoing search for susceptibility genes in obese families, we performed linkage analyses in 101 French families between qualitative and quantitative traits related to morbid obesity and polymorphisms located in or near 15 candidate genes whose products are involved in body weight regulation. These included cholecystokinin A and B receptors (CCK-AR and CCK-BR), glucagon-like peptide 1 receptor (GLP-1R), the LIM/homeodomain islet-1 gene (Isl-1), the caudal-type homeodomain 3 (CDX-3), the uncoupling protein 1 (UCP-1), the beta3-adrenoceptor (beta3-AR), the fatty acid-binding protein 2 (FABP-2), the hormone-sensitive lipase (HSL), the lipoprotein lipase (LPL), the apoprotein-C2 (apo-C2), the insulin receptor substrate-1 (IRS-1), the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), tumor necrosis factor-alpha (TNF-alpha), and the liver carnitine palmitoyltransferase-1 (CPT-1). Phenotypes related to obesity such as BMI, adult life body weight gain, fasting leptin, insulin, fasting glycerol, and free fatty acids were used for nonparametric sib-pair analyses. A weak indication for linkage was obtained between the Isl-1 locus and obesity status defined by a z score over one SD of BMI (n = 226 sib pairs, pi = 0.54 +/- 0.02, P = 0.03). Moreover, a suggestive indication for linkage was found between the Isl-1 locus and BMI and leptin values (P = 0.001 and 0.0003, respectively) and leptin adjusted for BMI (P = 0.0001). Multipoint analyses for leptin trait with Isl-1 and two flanking markers (D5S418 and D5S407) showed that the logarithm of odds (LOD) score is 1.73, coinciding with the Isl-1 locus. Although marginally positive indications for linkage in subgroups of families were found with IRS-1, CPT-1, and HSL loci, our data suggested that these genes are not major contributors to obesity. Whether an obesity susceptibility gene (Isl-1 itself or another nearby gene) lies on chromosome 5q should be determined by further analyses.  相似文献   

9.
BACKGROUND: Obesity has emerged as one of the most serious public health concerns in the twenty-first century. the fat mass and obesity associated gene (FTO) has been found to contribute to the risk of obesity in humans. Our aims in this study were to investigate the association of rs9939609 single nucleotide polymorphism (SNP) of the FTO gene with different obesity-related parameters, to assess the FTO gene expression in subcutaneous and visceral adipose tissues from morbidly obese and its correlations with other adipocytokine gene expressions. METHODS: The association between the rs9939609 FTO gene variant and obesity related parameters in 75 obese/morbidly obese adult patients and 180 subjects with body mass index (BMI) < 30 kg/m(2) (control group) was examined. Gene expression analyses: subcutaneous adipose tissue samples were obtained from 52 morbidly obese and five subjects with BMI < 30 kg/m(2). Visceral adipose tissue was also obtained from 35 morbidly obese patients. Weight, height, BMI, SBP, DBP, fasting glucose, lipid profile, proinsulin, insulin, leptin, and adiponectin (RIA) of patients were also obtained. Insulin resistance by HOMA(IR). rs9939609 of FTO genotyping using allele discrimination in real-time PCR. Genomic study of RNA extraction of adipose tissue and real-time PCR (RT-PCR) of adipocytokines and a housekeeping gene were quantified using TaqMan probes. Relative quantification was calculated using the DeltaDelta Ct formula. RESULTS: The minor-(A) allele frequency of rs9939609 FTO gene in the whole population was 0.39. A strong association between this A allele and obesity was found, even after age-sex adjustment (p = 0.013). We found higher levels of FTO mRNA in subcutaneous adipose tissue from morbidly obese than in the control group (p = 0.021). FTO gene expression was lower in visceral than in subcutaneous adipose depot. However, this finding did not reach the level of statistical significance. A negative correlation between subcutaneous FTO gene expression and serum triglyceride levels and a positive correlation with leptin, perilipin, and visfatin gene expressions was found. In the visceral adipose tissue, these positive correlations were statistically significant only for perilipin. CONCLUSIONS: Our results show: (1) A strong association between rs9939609 SNP of the FTO gene variant and obesity in Spanish morbidly obese adult patients; (2) positive correlations between FTO mRNA and leptin, perilipin, and visfatin gene expressions in subcutaneous adipose tissue; (3) FTO and perilipin gene expressions were positively correlated in visceral fat depot. Overall these results may suggest a role of FTO in the regulation of lipolysis as well as in total body fat rather in fat distribution patterns.  相似文献   

10.
11.
Positional candidate gene analysis of the obesity-linked chromosome Xq24 locus identified two obesity-associated single nucleotide polymorphisms (SNPs) in the membrane amino acid transporter encoding the SLC6A14 (solute carrier family 6 [neurotransmitter transporter], member 14) gene in the Finnish population. Since we previously reported a modest evidence of linkage for this region in French obese families, we analyzed these SNPs in 1,267 obese adult case and 649 lean control subjects. SNPs 20649 C>T (odds ratio 1.23, 95% CI 1.04-1.45; P = 0.013) and 22510 C>G (1.36, 1.16-1.59; P = 0.0001) were shown to be associated with obesity in the French population. In addition, pedigree disequilibrium test results showed a modest excess of both at-risk SNP alleles in affected offspring (P = 0.05 and P = 0.08 for SNPs 20649 C>T and 22510 C>G, respectively). The SNP 22510 C>G at-risk G allele was associated, both in adult women with moderate obesity and in 234 obese girls, with higher body fat and modified perception of hunger and satiety (0.003 < P < 0.06). In conclusion, these data confirm an association of the SLC6A14 gene locus with obesity.  相似文献   

12.
The primary gene mutated in Charcot-Marie-Tooth type 2A is mitofusin-2 (Mfn2). Mfn2 encodes a mitochondrial protein that participates in the maintenance of the mitochondrial network and that regulates mitochondrial metabolism and intracellular signaling. The potential for regulation of human Mfn2 gene expression in vivo is largely unknown. Based on the presence of mitochondrial dysfunction in insulin-resistant conditions, we have examined whether Mfn2 expression is dysregulated in skeletal muscle from obese or nonobese type 2 diabetic subjects, whether muscle Mfn2 expression is regulated by body weight loss, and the potential regulatory role of tumor necrosis factor (TNF)alpha or interleukin-6. We show that mRNA concentration of Mfn2 is decreased in skeletal muscle from both male and female obese subjects. Muscle Mfn2 expression was also reduced in lean or in obese type 2 diabetic patients. There was a strong negative correlation between the Mfn2 expression and the BMI in nondiabetic and type 2 diabetic subjects. A positive correlation between the Mfn2 expression and the insulin sensitivity was also detected in nondiabetic and type 2 diabetic subjects. To determine the effect of weight loss on Mfn2 mRNA expression, six morbidly obese subjects were subjected to weight loss by bilio-pancreatic diversion. Mean expression of muscle Mfn2 mRNA increased threefold after reduction in body weight, and a positive correlation between muscle Mfn2 expression and insulin sensitivity was again detected. In vitro experiments revealed an inhibitory effect of TNFalpha or interleukin-6 on Mfn2 expression in cultured cells. We conclude that body weight loss upregulates the expression of Mfn2 mRNA in skeletal muscle of obese humans, type 2 diabetes downregulates the expression of Mfn2 mRNA in skeletal muscle, Mfn2 expression in skeletal muscle is directly proportional to insulin sensitivity and is inversely proportional to the BMI, TNFalpha and interleukin-6 downregulate Mfn2 expression and may participate in the dysregulation of Mfn2 expression in obesity or type 2 diabetes, and the in vivo modulation of Mfn2 mRNA levels is an additional level of regulation for the control of muscle metabolism and could provide a molecular mechanism for alterations in mitochondrial function in obesity or type 2 diabetes.  相似文献   

13.
14.
Type 1 diabetes is a disease of beta-cell destruction leading to insulin deficiency. Genes for type 1 diabetes have been identified; however, much of the genetic risk remains unexplained. Genetic variation within the apolipoprotein CIII (apoCIII) gene alters apoCIII levels, which are increased in type 1 diabetes and induce beta-cell apoptosis. We therefore hypothesize haplotypes within the apoCIII gene are associated with type 1 diabetes. DNA from 584 type 1 diabetic patients and 591 control subjects were genotyped for six single nucleotide polymorphisms (SNPs) in the apoCIII gene (C-641A, C-482T, T-455C, C1100T, C3175G, and T3206G). Two alleles of a haplotype block (promoter SNPs + C3175G) were associated with type 1 diabetes. The A-T-C-C allele frequency was higher in type 1 diabetes (0.19 vs. 0.16, P = 0.05), and the C-C-T-C allele was reduced in type 1 diabetes (0.60 vs. 0.65, P = 0.04). The odds ratio (OR) for A-T-C-C allele increased with 0, 1, and 2 copies (OR of 1.00, 1.24, and 1.60, respectively; P = 0.05) and decreased for the C-C-T-C allele (1.00, 0.97, and 0.73, respectively; P = 0.03). This haplotype block contains an insulin response element. Screening for this haplotype may identify at-risk individuals, and this pathway may offer a target for prevention of type 1 diabetes.  相似文献   

15.
Mutations in the WFS1 gene cause beta-cell death, resulting in a monogenic form of diabetes known as Wolfram syndrome. The role of variation in WFS1 in type 2 diabetes susceptibility is not known. We sequenced the WFS1 gene in 29 type 2 diabetic probands and identified 12 coding variants. We used 152 parent-offspring trios to look for familial association; the R allele at residue 456 (P = 0.04) and the H allele at residue 611 (P = 0.05) as well as the R456-H611 haplotype (P = 0.032) were overtransmitted to affected offspring from heterozygous parents. In a further cohort of 327 type 2 diabetic subjects and 357 normoglycemic control subjects, the H611 allele and the R456-H611 haplotype were present in more type 2 diabetic subjects than control subjects (one-tailed P = 0.06 and P = 0.023, respectively). In a combined analysis, the H611 allele was present in 60% of all diabetes chromosomes and 55% of all control chromosomes (odds ratio [OR] 1.24 [95% CI 1.03-1.48], P = 0.02), and the R456-H611 haplotype was significantly more frequent in type 2 diabetic subjects than in control subjects (60 vs. 54%, OR 1.29 [95% CI 1.08-1.54], P = 0.0053). Our results provide the first evidence that variation in the WFS1 gene may influence susceptibility to type 2 diabetes.  相似文献   

16.
17.
Qi L  Li T  Rimm E  Zhang C  Rifai N  Hunter D  Doria A  Hu FB 《Diabetes》2005,54(5):1607-1610
Recently, the genetic variability at adiponectin locus (APM1) was associated with cardiovascular risk in patients with type 2 diabetes. We sought to examine the associations of five variants of APM1 gene (C-11365G, A-4034C, A-3964G, T45G, and G276T) with the risk of cardiovascular diseases (CVDs) in a larger cohort of diabetic patients. Of 879 diabetic men from the Health Professionals Follow-up Study, 239 participants developed coronary heart disease or stroke during 14 years of follow-up and 640 CVD-negative subjects were used as control subjects. The risk of CVD was significantly lower in TT homozygotes at locus +276 than in other genotypes under a recessive inheritance model after adjusting for age, BMI, smoking, alcohol consumption, physical activity, aspirin use, HbA1c, and history of hypertension or hypercholesterolemia (odds ratio 0.38 [95% CI 0.18-0.79]; P = 0.009). In the CVD-negative control subjects, the allele 276T was associated with significantly higher plasma adiponectin levels in a dose-dependent pattern (GG 14.8, GT 16.2, and TT 18.8 microg/ml) after adjusting for age, BMI, and other variables (P for trend = 0.0019). In conclusion, our study showed significant associations between APM1 G276T and decreased CVD risk and increased plasma adiponectin levels in diabetic men.  相似文献   

18.
Type 2 diabetes is characterized by impaired insulin secretion. Some but not all studies suggest that a decrease in beta-cell mass contributes to this. We examined pancreatic tissue from 124 autopsies: 91 obese cases (BMI >27 kg/m(2); 41 with type 2 diabetes, 15 with impaired fasting glucose [IFG], and 35 nondiabetic subjects) and 33 lean cases (BMI <25 kg/m(2); 16 type 2 diabetic and 17 nondiabetic subjects). We measured relative beta-cell volume, frequency of beta-cell apoptosis and replication, and new islet formation from exocrine ducts (neogenesis). Relative beta-cell volume was increased in obese versus lean nondiabetic cases (P = 0.05) through the mechanism of increased neogenesis (P < 0.05). Obese humans with IFG and type 2 diabetes had a 40% (P < 0.05) and 63% (P < 0.01) deficit and lean cases of type 2 diabetes had a 41% deficit (P < 0.05) in relative beta-cell volume compared with nondiabetic obese and lean cases, respectively. The frequency of beta-cell replication was very low in all cases and no different among groups. Neogenesis, while increased with obesity, was comparable in obese type 2 diabetic, IFG, or nondiabetic subjects and in lean type 2 diabetic or nondiabetic subjects. However, the frequency of beta-cell apoptosis was increased 10-fold in lean and 3-fold in obese cases of type 2 diabetes compared with their respective nondiabetic control group (P < 0.05). We conclude that beta-cell mass is decreased in type 2 diabetes and that the mechanism underlying this is increased beta-cell apoptosis. Since the major defect leading to a decrease in beta-cell mass in type 2 diabetes is increased apoptosis, while new islet formation and beta-cell replication are normal, therapeutic approaches designed to arrest apoptosis could be a significant new development in the management of type 2 diabetes, because this approach might actually reverse the disease to a degree rather than just palliate glycemia.  相似文献   

19.
Insulin receptor substrate (IRS)-2 plays an important role in insulin signaling and its disruption results in diabetes in mice. In humans, the IRS-2 Gly1057Asp substitution was associated with lower risk of type 2 diabetes in lean individuals, but with a higher risk in obese individuals. To clarify the role of IRS-2 on the development of type 2 diabetes and obesity in Pima Indians, and particularly to investigate whether the effects of the Gly1057Asp polymorphism on metabolism are mediated by obesity, molecular scanning of the gene for mutations was performed and interaction of the polymorphism with obesity was tested. We identified the previously described Gly1057Asp mutation as well as a rare Asp819His mutation and four silent polymorphisms. The effect of the Gly1057Asp mutation on type 2 diabetes and obesity was tested in a large cohort of Pima Indians (n = 998). A subgroup of nondiabetic full-heritage Pima Indians (n = 233) had measurements of body composition, glucose tolerance, insulin action (M), endogenous glucose production (EGP; hyperinsulinemic clamp), acute insulin response (AIR, 25-g intravenous glucose tolerance test, n = 118 normal glucose-tolerant subjects), and percutaneous fat biopsy specimens from the periumbilical region (n = 160). A total of 132 nondiabetic subjects were included in longitudinal analyses. The frequency of the Asp1057 allele was 0.6. In cross-sectional analyses, subjects homozygous for the Asp1057 allele (Asp/Asp) had a higher prevalence of type 2 diabetes than heterozygote individuals and subjects homozygous for the Gly1057 allele (X/Gly, P = 0.04). There was no effect on BMI (P = 0.78) or gene-BMI interaction on the prevalence of type 2 diabetes (P = 0.57). In the nondiabetic subgroup, subjects with Asp/Asp had higher percent body fat (P = 0.01), BMI (P = 0.02), and waist circumference (P = 0.004), but there was no difference in metabolic characteristics (all P > 0.2). However, the relationship between percent body fat and fasting glucose, basal EGP, EGP during the clamp, AIR, and subcutaneous abdominal adipocyte size was significantly different in the Asp/Asp group (P for interaction = 0.02, 0.06, 0.0007, 0.08, and 0.006, respectively) compared with the X/Gly group, suggesting a more detrimental effect of Asp homozygosity on these traits with increasing percent body fat. In longitudinal analyses, among subjects in the upper tertile of change in percent body fat, those with Asp/Asp had a larger increase in fasting and postprandial glycemia and basal EGP and a larger decrease in M and AIR than subjects with X/Gly, independent of change in obesity (all P < 0.05). In conclusion, our findings suggest that the association of homozygosity for the Asp1057 allele in IRS-2 with type 2 diabetes in Pima Indians may be mediated by interaction of the polymorphism with obesity on several diabetes-related traits.  相似文献   

20.
The hormone resistin has been suggested to link obesity to type 2 diabetes by modulating steps in the insulin-signaling pathway and inducing insulin resistance. Thus, the resistin gene represents a potential candidate for the etiology of insulin resistance and type 2 diabetes. In this study, we analyzed the coding sequence of the three exons of the resistin gene, together with its 5' regulatory region and 3' untranslated region (UTR), by single-strand conformation polymorphism (SSCP) in 58 type 2 diabetic subjects, 59 obese subjects, and 60 normal subjects. Only one sequence variant was detected in the resistin gene. Sequencing of this variant revealed the presence of a single nucleotide substitution (SNP) in the 3'-UTR of exon 3 (G1326A) [corrected]. Because 3'-UTR SNPs have been shown to affect gene expression, we examined the frequency of this SNP in 591 subjects (198 obese subjects, 207 diabetic subjects, and 186 control subjects) by PCR amplification and BseRI digestion. No significant association was found between the G1326A [corrected] variant and diabetes and obesity. Comparison of clinical and metabolic parameters between G1326A [corrected] carriers and noncarriers again showed no significant difference. In conclusion, our data suggest that genetic defects of the resistin gene are unlikely to play a role in the etiology of these common disorders in our population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号