首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transplantation with bone marrow (BM) hematopoietic stem cells (HSC) has been used for curative therapy of hematologic diseases and inborn errors of metabolism for decades. More recently, alternative sources of HSC, particularly those induced to exit marrow and traffic to peripheral blood in response to external stimuli, have become the most widely used hematopoietic graft and show significant superiority to marrow HSC. Although a variety of agents can mobilize stem cells with different kinetics and efficiencies and these agents can be additive or synergistic when used in combination, currently G-CSF is the predominant stem cell mobilizer used clinically based upon potency, predictability and safety. Recent studies have demonstrated that the interaction between the chemokine stromal-derived factor 1 (SDF-1/CXCL12) and its receptor CXCR4 serves as a key regulator of HSC trafficking. AMD3100, a novel bicyclam CXCR4 antagonist, induces the rapid mobilization of HSC with both short- and long-term repopulation capacity. Mobilization with G-CSF and AMD3100 in clinical trials resulted in more patients achieving sufficient PBSC for transplantation than with G-CSF alone. Thus, chemokine axis-mobilization could allow rapid PBSC harvests with increased cell yields in difficult-to mobilize patients. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts demonstrated prompt and stable engraftment.Enhanced homing properties of chemokine axis-mobilized PBSC suggest that these cells may have greater therapeutic utility in other areas including tissue repair and regeneration.  相似文献   

2.
BACKGROUND: AMD3100, a selective antagonist of CXCR4, rapidly mobilizes CD34+ hematopoietic progenitor cells (HPCs) from marrow to peripheral blood with minimal side effects. STUDY DESIGN AND METHODS: To further investigate potential clinical utility of AMD3100 for CD34+ cell mobilization and collection, a Phase I study in normal volunteers was performed examining single-dose administration of AMD3100 alone and in combination with a standard 5-day granulocyte-colony-stimulating factor (G-CSF) regimen. RESULTS: AMD3100 (160 microg/kg x 1 on Day 5) significantly increased both G-CSF-stimulated (10 microg/kg/day) mobilization of CD34+ cells (3.8-fold) and leukapheresis yield of CD34+ cells. Moreover, collection of CD34+ cells was comparable between individuals mobilized by a single-dose regimen of AMD3100 (240 microg/kg) and individuals mobilized with a 5-day regimen of G-CSF. AMD3100-mobilized leukapheresis products contained significantly greater numbers of T and B cells compared to G-CSF-stimulated leukapheresis products. CONCLUSION: These findings indicate that AMD3100 can be used alone or as an adjunct to G-CSF to mobilize cells for HPC transplantation.  相似文献   

3.
Jiang S  Fu Y  Avraham HK 《Transfusion》2011,51(Z4):65S-71S
The cannabinoid receptors CB(1) and CB(2) are seven-transmembrane Gαi protein-coupled receptors and are expressed in certain mature hematopoietic cells. We recently showed that these receptors are expressed in murine and human hematopoietic stem cells (HSCs) and that CB(2) agonists induced chemotaxis, enhanced colony formation of marrow cells, as well as caused in vivo mobilization of murine HSCs with short- and long-term repopulating abilities. Based on these observations, we have further explored the role of CB(2) and its agonist AM1241 on hematopoietic recovery following sublethal irradiation in mice. Cannabinoid receptor 2 knockout mice (Cnr2(-/-) deficient mice) exhibited impaired recovery following sublethal irradiation as compared with irradiated wild-type (WT) mice, as determined by low colony-forming units and low peripheral blood counts. WT mice treated with CB(2) agonist AM1241 following sublethal irradiation demonstrated accelerated marrow recovery and increased total marrow cells (approximately twofold) and total lineage- c-kit(+) cells (approximately sevenfold) as well as enhanced HSC survival as compared with vehicle control-treated mice. When the CB(2) agonist AM1241 was administered to WT mice 12 days before their sublethal irradiation, analysis of hematopoiesis in these mice showed decreased apoptosis of HSCs, enhanced survival of HSCs, as well as increase in total marrow cells and c-kit+ cells in the marrow. Thus, CB(2) agonist AM1241 promoted recovery after sublethal irradiation by inhibiting apoptosis of HSCs and promoting survival, as well as enhancing the number of HSCs entering the cell cycle.  相似文献   

4.
To detect as yet unidentified cell-surface molecules specific to hematopoietic stem cells (HSCs), a modified signal sequence trap was successfully applied to mouse bone marrow (BM) CD34(-)c-Kit(+)Sca-1(+)Lin(-) (CD34(-)KSL) HSCs. One of the identified molecules, Endomucin, is an endothelial sialomucin closely related to CD34. High-level expression of Endomucin was confined to the BM KSL HSCs and progenitor cells, and, importantly, long-term repopulating (LTR)-HSCs were exclusively present in the Endomucin(+)CD34(-)KSL population. Notably, in the yolk sac, Endomucin expression separated multipotential hematopoietic cells from committed erythroid progenitors in the cell fraction positive for CD41, an early embryonic hematopoietic marker. Furthermore, developing HSCs in the intraembryonic aorta-gonad-mesonephros (AGM) region were highly enriched in the CD45(-)CD41(+)Endomucin(+) fraction at day 10.5 of gestation (E10.5) and in the CD45(+)CD41(+)Endomucin(+) fraction at E11.5. Detailed analyses of these fractions uncovered drastic changes in their BM repopulating capacities as well as in vitro cytokine responsiveness within this narrow time frame. Our findings establish Endomucin as a novel cell-surface marker for LTR-HSCs throughout development and provide a powerful tool in understanding HSC ontogeny.  相似文献   

5.
INTRODUCTION: Pharmacological mobilization has been exploited as a means to obtain hematopoietic stem progenitor cells (HSPCs) for hematopoietic reconstitution. HSPCs mobilized from bone marrow into peripheral blood (PB) are a preferred source of stem cells for transplantation, because they are easily accessible and evidence indicates that they engraft faster after transplantation than HSPCs directly harvested from bone marrow (BM) or umbilical cord blood (UCB). AREAS COVERED: Since chemokine-chemokine receptor axes are involved in retention of HSPCs in the BM microenvironment, chemokine receptor agonists have been proposed as therapeutics to facilitate the mobilization process. These compounds include agonists of the CXCR4 receptor expressed on HSPCs (CTCE-0021 and ATI-2341) or chemokines binding to chemokine receptors expressed on granuclocytes and monocytes (e.g., CXCL2, also known as the growth-related oncogene protein-beta (Gro-β); CCL3, also known as macrophage inflammatory protein-1α (MIP-1α); or CXCL8, also known as IL-8) could be employed alone or in combination with other mobilizing agents (e.g., G-CSF or Plerixafor (AMD3100)). We discuss the current state of knowledge about chemokine receptor agonists and the rationale for their application in mobilization protocols. EXPERT OPINION: Evidence is accumulating that CXCR4 receptor agonists could be employed alone or with other agents as mobilizing drugs. In particular they may provide an alternative for patients that are poor mobilizers.  相似文献   

6.
SUMMARY: OBJECTIVE: In a significant proportion of patients with hematologic malignancies (5-30%) poor mobilization of hematopoietic stem cells (HSC) is observed. This compromises the application of effective and potentially curative high-dose chemotherapy (HDC) treatment. CASE REPORT: Here we report the case of a 38-year-old female patient who was treated for recurrent follicular B-cell non-Hodgkin's lymphoma grade III. In this patient, we failed twice to mobilize stem cells using chemotherapy followed by granulocyte-colony stimulating factor (G-CSF). Recently a new chemokine receptor CXCR4 antagonist, AMD3100 (plerixafor), was introduced which can be combined with G-CSF mobilization and has been reported to increase the number of harvested stem cells significantly. Using this protocol, we were able to harvest a HSC product. This product was transplanted 3 weeks after the harvest (after HDC), and the patient had an uncomplicated recovery of granulopoiesis (day 11 after transplantation of autologous HSC). CONCLUSION: Plerixafor has the potency to become an important tool in mobilizing HSC, especially in those patients in whom HSC cannot be mobilized by the combination of G-CSF and chemotherapy alone.  相似文献   

7.
Thrombopoietin expands hematopoietic stem cells after transplantation   总被引:10,自引:0,他引:10       下载免费PDF全文
Multiple lines of evidence indicate that thrombopoietin (TPO) contributes to the development of hematopoietic stem cells (HSC), supporting their survival and proliferation in vitro. To determine whether TPO supports the impressive expansion of HSC observed following transplantation, we transplanted normal marrow cells into lethally irradiated Tpo(-/-) and Tpo(+/+) mice and quantified HSC self-renewal and expansion and hematopoietic progenitor cell homing. Although essentially identical numbers of marrow-associated colony forming unit-culture (a surrogate measure of stem cell homing) were observed in each type of recipient 24 hours following transplantation, we found that a minimum of fourfold greater numbers of marrow cells were required to radioprotect Tpo-null mice than to radioprotect controls. To assess whether long-term repopulating (LTR) HSCs self-renew and expand in Tpo(-/-) recipients or controls, we performed limiting-dilution secondary transplants using donor cells from the Tpo(-/-) or Tpo(+/+) recipients 5-7.5 weeks following primary transplantation. We found that LTR HSCs expand to levels 10-20 times greater within this time period in normal recipients than in Tpo-null mice and that physiologically relevant amounts of TPO administered to the Tpo(-/-) recipients could substantially correct this defect. Our results establish that TPO greatly promotes the self-renewal and expansion of HSCs in vivo following marrow transplantation.  相似文献   

8.
Hematopoietic stem cells (HSCs) reside in specialized bone marrow (BM) niches regulated by the sympathetic nervous system (SNS). Here, we have examined whether mononuclear phagocytes modulate the HSC niche. We defined three populations of BM mononuclear phagocytes that include Gr-1(hi) monocytes (MOs), Gr-1(lo) MOs, and macrophages (MΦ) based on differential expression of Gr-1, CD115, F4/80, and CD169. Using MO and MΦ conditional depletion models, we found that reductions in BM mononuclear phagocytes led to reduced BM CXCL12 levels, the selective down-regulation of HSC retention genes in Nestin(+) niche cells, and egress of HSCs/progenitors to the bloodstream. Furthermore, specific depletion of CD169(+) MΦ, which spares BM MOs, was sufficient to induce HSC/progenitor egress. MΦ depletion also enhanced mobilization induced by a CXCR4 antagonist or granulocyte colony-stimulating factor. These results highlight two antagonistic, tightly balanced pathways that regulate maintenance of HSCs/progenitors in the niche during homeostasis, in which MΦ cross talk with the Nestin(+) niche cell promotes retention, and in contrast, SNS signals enhance egress. Thus, strategies that target BM MΦ hold the potential to augment stem cell yields in patients that mobilize HSCs/progenitors poorly.  相似文献   

9.
The quiescence of hematopoietic stem cells (HSCs) is critical for preserving a lifelong steady pool of HSCs to sustain the highly regenerative hematopoietic system. It is thought that specialized niches in which HSCs reside control the balance between HSC quiescence and self-renewal, yet little is known about the extrinsic signals provided by the niche and how these niche signals regulate such a balance. We report that CXCL12 produced by bone marrow (BM) stromal cells is not only the major chemoattractant for HSCs but also a regulatory factor that controls the quiescence of primitive hematopoietic cells. Addition of CXCL12 into the culture inhibits entry of primitive hematopoietic cells into the cell cycle, and inactivation of its receptor CXCR4 in HSCs causes excessive HSC proliferation. Notably, the hyperproliferative Cxcr4(-/-) HSCs are able to maintain a stable stem cell compartment and sustain hematopoiesis. Thus, we propose that CXCR4/CXCL12 signaling is essential to confine HSCs in the proper niche and controls their proliferation.  相似文献   

10.
In vitro self-renewal division of hematopoietic stem cells   总被引:29,自引:0,他引:29       下载免费PDF全文
Little is known about how hematopoietic stem cells (HSCs) self-renew. We studied the regeneration of HSCs in culture. Effects of various cytokines on cell division of CD34(-/low) c-Kit(+)Sca-1(+) lineage marker-negative (CD34(-)KSL) bone marrow cells of the mouse were first evaluated in serum-free single cell culture. We then performed a competitive repopulation assay on divided cells to ask if such cell division involved self-renewal of HSCs.In the presence of stem cell factor (SCF), thrombopoietin (TPO) induced a first cell division of CD34(-)KSL cells more efficiently than did interleukin (IL)-3 or IL-6. Multilineage repopulating cells were detected in a significant proportion of cells derived from single cells in culture with TPO and SCF, although this culture condition led to a substantial decrease in HSC number. These regenerated repopulating cells could be further transplanted into secondary recipients. When paired daughter cells were separately studied, one of a pair gave rise to repopulating cells with self-renewal potential, suggesting asymmetric self-renewal division. This study provides evidence that one HSC regenerates at least one HSC in culture.  相似文献   

11.
Multipotent self-renewing hematopoietic stem cells (HSCs) are responsible for reconstitution of all blood cell lineages. Whereas growth stimulatory cytokines have been demonstrated to promote HSC self-renewal, the potential role of negative regulators remains elusive. Receptors for tumor necrosis factor (TNF) and Fas ligand have been implicated as regulators of steady-state hematopoiesis, and if overexpressed mediate bone marrow failure. However, it has been proposed that hematopoietic progenitors rather than stem cells might be targeted by Fas activation. Here, murine Lin(-)Sca1(+)c-kit(+) stem cells revealed little or no constitutive expression of Fas and failed to respond to an agonistic anti-Fas antibody. However, if induced to undergo self-renewal in the presence of TNF-alpha, the entire short and long-term repopulating HSC pool acquired Fas expression at high levels and concomitant activation of Fas suppressed in vitro growth of Lin(-)Sca1(+)c-kit(+) cells cultured at the single cell level. Moreover, Lin(-)Sca1(+)c-kit(+) stem cells undergoing self-renewal divisions in vitro were severely and irreversibly compromised in their short- and long-term multilineage reconstituting ability if activated by TNF-alpha or through Fas, providing the first evidence for negative regulators of HSC self-renewal.  相似文献   

12.
13.
BACKGROUND: Effects of mobilization regimen on the composition of leukapheresis products (LPs) and on hematopoietic reconstitution after autologous peripheral blood progenitor cell transplantation (PBPCT) are not well known. STUDY DESIGN AND METHODS: The effects of three different mobilization regimens--stem cell factor (SCF) plus granulocyte colony stimulating factor (G-CSF) plus cyclophosphamide (CCP), G-CSF alone, and G-CSF plus CCP--on the composition of LPs from patients with nonhematologic PBPC malignancies compared to LPs from G-CSF-mobilized healthy donors and normal marrow (BM) samples were analyzed. The impact of LP composition on both short- and long-term engraftment after autologous PBPCT was also evaluated. RESULTS: The most effective regimen for mobilization of CD34+ hematopoietic progenitor cells (HPCs) into peripheral blood was SCF, G-CSF, and CCP, providing the highest numbers of all CD34+ HPCs subsets analyzed. Patients mobilized with SCF plus G-CSF plus CCP showed the highest numbers of neutrophils and monocytes, whereas the highest numbers of lymphocytes and NK cells were observed in LPs from G-CSF-mobilized patients. The overall number of CD34+ HPCs was the strongest factor for predicting recovery of platelets, whereas the number of myelomonocytic-committed CD34+ precursors was the most powerful independent prognostic factor for WBC and neutrophil recovery. The overall number of CD4+ T cells returned showed an independent prognostic value for predicting the occurrence of infections, during the first year after transplant. CONCLUSIONS: The use of different mobilization regimens modifies the overall number of CD34+ HPCs obtained during leukapheresis procedures, and also affects both the absolute and the relative composition of the LPs in different CD34+ and CD34- cell subsets.  相似文献   

14.
The mobilization and collection of hematopoietic stem and progenitor cells (HSPC) is central to many potentially curative treatments for cancer and some non-malignant conditions. Recombinant human cytokines have been the mainstay of therapeutic HSPC mobilization, particularly G-CSF. Even with currently used mobilization regimens using G-CSF with or without chemotherapy, up to 60% of patients can fail to mobilize enough HSPC for a transplant procedure. Recombinant human stem cell factor (ancestim, rhSCF, Stemgen®) is another such cytokine, which has shown promising synergy when used in combination with G-CSF for HSPC mobilization. It provides a useful second-line option for prior failed-mobilizer patients and those who are anticipated to mobilize poorly due to recognised risk factors. It may also have utility in promoting bone marrow recovery in cases of refractory bone marrow failure such as aplastic anaemia and prolonged non-engraftment after allogeneic HSPC transplantation. We review the literature supporting the use of rhSCF in the context of HSPC mobilization and bone marrow failure. The emergence of other novel agents for HSPC mobilization such as plerixafor (AMD3100, Mozobil?) will further demarcate the role of Ancestim as a second- or third-line mobilization agent for the mobilization-refractory patient.  相似文献   

15.
The regulation of HSC proliferation and engraftment of the BM is an important but poorly understood process, particularly during ontogeny. Here we show that in mice, all HSCs are cycling until 3 weeks after birth. Then, within 1 week, most became quiescent. Prior to 4 weeks of age, the proliferating HSCs with long-term multilineage repopulating activity displayed an engraftment defect when transiting S/G2/M. During these cell cycle phases, their expression of CXC chemokine ligand 12 (CXCL12; also referred to as stromal cell-derived factor 1 [SDF-1]) transiently increased. The defective engrafting activity of HSCs in S/G2/M was reversed when cells were allowed to progress into G1 prior to injection or when the hosts (but not the cells) were pretreated with a CXCL12 antagonist. Interestingly, the enhancing effect of CXCL12 antagonist pretreatment was exclusive to transplants of long-term multilineage repopulating HSCs in S/G2/M. These results demonstrate what we believe to be a new HSC regulatory checkpoint during development. They also suggest an ability of HSCs to express CXCL12 in a fashion that changes with cell cycle progression and is associated with a defective engraftment that can be overcome by in vivo administration of a CXCL12 antagonist.  相似文献   

16.
BACKGROUND: AMD3100 is a small-molecule CXCR4 antagonist that has been shown to induce the mobilization of CD34 + hematopoietic progenitor cells from bone marrow to peripheral blood. AMD3100 has also been shown to augment the mobilization of CD34 + cells in cancer patients when administered in combination with granulocyte colony-stimulating factor (G-CSF) (filgrastim). The purpose of this study was to characterize the exposure-response relationship of AMD3100 in mobilizing CD34 + cells when administered as a single agent in healthy volunteers. METHODS: AMD3100 concentrations and CD34 + cell counts obtained from 29 healthy subjects in a single-dose, intensively sampled pharmacokinetic/pharmacodynamic (PK-PD) study were analyzed by use of nonlinear mixed effects regression with the software NONMEM. FOCE (first order conditional estimation) with interaction was the estimation method, and simultaneous PK-PD fitting was adopted. RESULTS: The pharmacokinetics of AMD3100 was described by a 2-compartment model with first-order absorption. The population estimates (+/-SE) for clearance and central volume of distribution were 5.17 +/- 0.49 L/h and 16.9 +/- 3.79 L, respectively. CD34 + cell mobilization was best described by an indirect effect model that stimulates the entry process of CD34 + from bone marrow to peripheral blood in the form of a sigmoid maximum effect model. The population estimates (+/-SE) of maximum effect, concentration causing 50% of maximum response, and equilibration time were 12.6 +/- 4.89, 53.6 +/- 11.9 mug/L, and 5.37 +/- 1.31 hours, respectively. CONCLUSIONS: This study characterizes the exposure-response relationship of AMD3100 in mobilizing CD34 + cells after subcutaneous administration. This PK-PD model will be useful in assessing relevant covariates and for optimizing the use of AMD3100 in various patient populations.  相似文献   

17.
Hematopoietic progenitor cells (HPCs) normally reside in the bone marrow (BM) but can be mobilized into the peripheral blood (PB) after treatment with GCSF or chemotherapy. In previous studies, we showed that granulocyte precursors accumulate in the BM during mobilization induced by either GCSF or cyclophosphamide (CY), leading to the accumulation of active neutrophil proteases in this tissue. We now report that mobilization of HPCs by GCSF coincides in vivo with the cleavage of the N-terminus of the chemokine receptor CXCR4 on HPCs resident in the BM and mobilized into the PB. This cleavage of CXCR4 on mobilized HPCs results in the loss of chemotaxis in response to the CXCR4 ligand, the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12). Furthermore, the concentration of SDF-1 decreased in vivo in the BM of mobilized mice, and this decrease coincided with the accumulation of serine proteases able to directly cleave and inactivate SDF-1. Since both SDF-1 and its receptor, CXCR4, are essential for the homing and retention of HPCs in the BM, the proteolytic degradation of SDF-1, together with that of CXCR4, could represent a critical step leading to the mobilization of HPCs into the PB in response to GCSF or CY.  相似文献   

18.
The optimal stem cell source for stem cell gene therapy has not been defined. Most gene transfer studies have used peripheral blood or marrow repopulating cells collected after administration of granulocyte colony-stimulating factor and stem cell factor (G-CSF/SCF). For clinical applications, however, growth factor administration may not be feasible. Thus, in the current study we used a competitive repopulation assay in the dog to directly compare transduction efficiency of steady-state marrow, G-CSF/SCF-primed marrow, and G-CSF/SCF-mobilized peripheral blood. Cells from all three sources were transduced, cryopreserved, and thawed together before infusion into myeloablated dogs. Gene marking in hematopoietic repopulating cells was assessed by polymerase chain reaction. While primed marrow resulted in the highest long-term marking levels, steady-state marrow was transduced at least as efficiently as mobilized peripheral blood in all three dogs. These results suggest that steady-state marrow may be an appropriate source for genetic modification of hematopoietic stem cells.  相似文献   

19.
Stem cells harvested from peripheral blood are the most commonly used graft source in hematopoietic stem cell transplantation. While G-CSF is the most frequently used agent for stem cell mobilization, the use of G-CSF alone results in suboptimal stem cell yields in a significant proportion of patients undergoing autologous transplantation. Plerixafor (AMD3100, Genzyme Corporation) is a bicyclam molecule that antagonizes the binding of the chemokine stromal cell-derived factor-1 (SDF-1) to its cognate receptor CXCR4. Plerixafor results in the rapid and reversible mobilization of hematopoietic stem cells into the peripheral circulation and is synergistic when combined with G-CSF. In clinical studies of autologous stem cell transplantation, the combination of plerixafor and G-CSF allows the collection of large numbers of stem cells in fewer apheresis sessions and can salvage those who fail G-CSF mobilization alone.  相似文献   

20.
Stem cells harvested from peripheral blood are the most commonly used graft source in hematopoietic stem cell transplantation. While G-CSF is the most frequently used agent for stem cell mobilization, the use of G-CSF alone results in suboptimal stem cell yields in a significant proportion of patients undergoing autologous transplantation. Plerixafor (AMD3100, Genzyme Corporation) is a bicyclam molecule that antagonizes the binding of the chemokine stromal cell-derived factor-1 (SDF-1) to its cognate receptor CXCR4. Plerixafor results in the rapid and reversible mobilization of hematopoietic stem cells into the peripheral circulation and is synergistic when combined with G-CSF. In clinical studies of autologous stem cell transplantation, the combination of plerixafor and G-CSF allows the collection of large numbers of stem cells in fewer apheresis sessions and can salvage those who fail G-CSF mobilization alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号