首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta2-adrenoceptor (beta2AR) fused to the long splice variant of G(s)alpha (G(s)alphaL), but not the beta2AR fused to the short splice variant of G(s)alpha (G(s)alphaS) shows the hallmarks of high constitutive activity, i.e., strong activation of adenylyl cyclase (AC) by GTP and strong inhibition of AC by inverse agonist. These coupling differences are the result of differences in GDP affinity of G(s)alpha splice variants. The aim of this study was to identify experimental variables that differentially affect beta2AR coupling to G(s)alphaS and G(s)alphaL. NaCl substantially reduced agonist-independent AC activation by GTP and inverse agonist inhibition and enhanced agonist stimulation of AC in Sf9 insect cell membranes expressing the beta2AR-G(s)alphaL fusion protein. Salts reduced inverse agonist inhibition and increased agonist stimulation of AC in the order of efficiency NaI approximately KI > NaBr approximately KBr > NaCl approximately LiCl approximately KCl approximately RbCl approximately CsCl approximately choline chloride, indicating that monovalent anions determine salt effects. Salts inhibited guanosine 5'-O-(3-thiotriphosphate)-mediated AC activation by G(salphaL) without beta2AR in the order of efficiency NaI > NaBr > NaCl. NaCl enhanced the affinity of G(s)alphaL for GDP. Salts had much smaller effects on beta2AR ligand regulation of AC in membranes expressing beta2AR-G(s)alphaS than in membranes expressing beta2AR-G(s)alphaL. These data are explained by a model in which anions increase the GDP affinity of G(s)alphaL more efficiently than the GDP affinity of G(s)alphaS, and, thereby, decrease the efficiency of the agonist-free beta2AR and increase the efficiency of the agonist-occupied beta2AR at promoting GDP dissociation from G(s)alphaL. Thus, monovalent anions differentially regulate beta2AR-coupling to G(s)alphaS and G(s)alphaL.  相似文献   

2.
Previous studies revealed pharmacological differences between human and guinea pig histamine H(2) receptors (H(2)Rs) with respect to the interaction with guanidine-type agonists. Because H(2)R species variants are structurally very similar, comparative studies are suited to relate different properties of H(2)R species isoforms to few molecular determinants. Therefore, we systematically compared H(2)Rs of human (h), guinea pig (gp), rat (r), and canine (c). Fusion proteins of hH(2)R, gpH(2)R, rH(2)R, and cH(2)R, respectively, and the short splice variant of G(salpha), G(salphaS), were expressed in Sf9 insect cells. In the membrane steady-state GTPase activity assay, cH(2)R-G(salphaS) but neither gpH(2)R-G(salphaS) nor rH(2)R-G(salphaS) showed the hallmarks of increased constitutive activity compared with hH(2)R-G(salphaS), i.e., increased efficacies of partial agonists, increased potencies of agonists with the extent of potency increase being correlated with the corresponding efficacies at hH(2)R-G(salphaS), increased inverse agonist efficacies, and decreased potencies of antagonists. Furthermore, in membranes expressing nonfused H(2)Rs without or together with mammalian G(salphaS) or H(2)R-G(salpha) fusion proteins, the highest basal and GTP-dependent increases in adenylyl cyclase activity were observed for cH(2)R. An example of ligand selectivity is given by metiamide, acting as an inverse agonist at hH(2)R-G(salphaS), gpH(2)R-G(salphaS), and rH(2)R-G(salphaS) in the GTPase assay in contrast to being a weak partial agonist with decreased potency at cH(2)R-G(salphaS). In conclusion, the cH(2)R exhibits increased constitutive activity compared with hH(2)R, gpH(2)R, and rH(2)R, and there is evidence for ligand-specific conformations in H(2)R species isoforms.  相似文献   

3.
In a steady-state GTPase activity assay, N-[3-(1H-imidazol-4-yl)propyl)]guanidines and N(G)-acylated derivatives are more potent and efficacious at fusion proteins of guinea pig (gpH(2)R-G(salphaS)) than human (hH(2)R-G(salphaS)) histamine H(2) receptor, coupled to the short splice variant of G(salpha), G(salphaS). Whereas Ala-271 (hH(2)R) and Asp-271 (gpH(2)R) in transmembrane domain 7 were identified to determine the potency differences of guanidine-type agonists, the molecular basis for the efficacy differences remains to be elucidated. A homology model of the gpH(2)R suggested that an H-bond between Tyr-17 and Asp-271 stabilizes an active receptor conformation of the gpH(2)R. In the present study, we generated a mutant hH(2)R-G(salphaS) with Cys-17--> Tyr-17/Ala-271--> Asp-271 exchanges (hH(2)R-->gpH(2)R) that exhibited an enhanced level of constitutive GTPase activity and adenylyl cyclase activity compared with wild-type hH(2)R-G(salphaS) and gpH(2)R-G(salphaS). Potencies and efficacies of guanidines and N(G)-acylguanidines were increased at this mutant receptor compared with hH(2)R-G(salphaS), but they were still lower than at gpH(2)R-G(salphaS), suggesting that aside from Tyr-17 and Asp-271 additional amino acids contribute to the distinct pharmacological profiles of both species isoforms. Another hH(2)R-G(salphaS) mutant with a Cys-17--> Tyr-17 exchange showed inefficient coupling to G(salphaS) as revealed by reduced agonist-stimulated GTPase and basal adenylyl cyclase activities. Collectively, our present pharmacological study confirms the existence of an H-bond between Tyr-17 and Asp-271 favoring the stabilization of an active receptor conformation. Distinct potencies and efficacies of agonists and inverse agonists further support the concept of ligand-specific conformations in wild-type and mutant H(2)R-G(salphaS) fusion proteins.  相似文献   

4.
The interaction of an agonist-bound G-protein-coupled receptor (GPCR) with its cognate G-protein initiates a sequence of experimentally quantifiable changes in both the GPCR and G-protein. These include the release of GDP from G(alpha), the formation of a ternary complex between the nucleotide-free G-protein and the GPCR, which has a high affinity for agonist, followed by the binding of GTP to G(alpha), the dissociation of the GPCR/G-protein complex, and the hydrolysis of GTP. The efficacy of an agonist is a measure of its ability to activate this cascade. It has been proposed that efficacy reflects the ability of the agonist to stabilize the active state of the GPCR. We examined a series of beta(2)-adrenoceptor (beta(2)AR) agonists (weak partial agonists to full agonists) for their efficacy at promoting two different steps of the G-protein activation/deactivation cycle: stabilizing the ternary complex (high-affinity, GTP-sensitive agonist binding), and steady-state GTPase activity. We obtained results for the wild-type beta(2)AR and a constitutively active mutant of the beta(2)AR (beta(2)AR(CAM)) using fusion proteins between the GPCRs and G(salpha) to facilitate GPCR/G-protein interactions. There was no correlation between efficacy of ligands in activating GTPase and their ability to stabilize the ternary complex at beta(2)AR(CAM). Our results suggest that the GPCR state that optimally promotes the GDP release and GTP binding is different from the GPCR state that stabilizes the ternary complex. By strongly stabilizing the ternary complex, certain partial agonists may reduce the rate of G-protein turnover relative to a full agonist.  相似文献   

5.
In this article, we pharmacologically characterized two naturally occurring human histamine H3 receptor (hH3R) isoforms, hH3R(445) and hH3R(365). These abundantly expressed splice variants differ by a deletion of 80 amino acids in the intracellular loop 3. In this report, we show that the hH3R(365) is differentially expressed compared with the hH3R(445) and has a higher affinity and potency for H3R agonists and conversely a lower potency and affinity for H3R inverse agonists. Furthermore, we show a higher constitutive signaling of the hH3R(365) compared with the hH3R(445) in both guanosine-5'-O-(3-[35S]thio) triphosphate binding and cAMP assays, likely explaining the observed differences in hH3R pharmacology of the two isoforms. Because H3R ligands are beneficial in animal models of obesity, epilepsy, and cognitive diseases such as Alzheimer's disease and attention deficit hyperactivity disorder and currently entered clinical trails, these differences in H3R pharmacology of these two isoforms are of great importance for a detailed understanding of the action of H3R ligands.  相似文献   

6.
Impromidine (IMP) and arpromidine (ARP)-derived guanidines are more potent and efficacious guinea pig (gp) histamine H(2)-receptor (gpH(2)R) than human (h) H(2)R agonists and histamine H(1)-receptor (H(1)R) antagonists with preference for hH(1)R relative to gpH(1)R. We examined N(G)-acylated imidazolylpropylguanidines (AIPGs), which are less basic than guanidines, at hH(2)R, gpH(2)R, rat H(2)R (rH(2)R), hH(1)R, and gpH(1)R expressed in Sf9 cells as probes for ligand-specific receptor conformations. AIPGs were similarly potent H(2)R agonists as the corresponding guanidines IMP and ARP, respectively. Exchange of pyridyl in ARP against phenyl increased AIPG potency 10-fold, yielding the most potent agonists at the hH(2)R-G(salpha) fusion protein and gpH(2)R-G(salpha) identified so far. Some AIPGs were similarly potent and efficacious at hH(2)R-G(salpha) and gpH(2)R-G(salpha). AIPGs stabilized the ternary complex in hH(2)R-G(salpha) and gpH(2)R-G(salpha) differently than the corresponding guanidines. Guanidines, AIPGs, and small H(2)R agonists exhibited distinct agonist properties at hH(2)R, gpH(2)R, and rH(2)R measuring adenylyl cyclase activity. In contrast to ARP and IMP, AIPGs were partial H(1)R agonists exhibiting higher efficacies at hH(1)R than at gpH(1)R. This is remarkable because, so far, all bulky H(1)R agonists exhibited higher efficacies at gpH(1)R than at hH(1)R. Collectively, our data suggest that AIPGs stabilize different active conformations in hH(2)R, gpH(2)R, and rH(2)R than guanidines and that, in contrast to guanidines, AIPGs are capable of stabilizing a partially active state of hH(1)R.  相似文献   

7.
To explore the feasibility of developing inhibitors of signaling by opioid receptors and other G protein-coupled receptors (GPCRs) that use the same G protein pool, we investigated the capacity of a minigene encoding the third intracellular loop of the delta-opioid receptor (delta-i3L) to act as competitive antagonist of the receptor-G protein interface interaction. In delta-i3L-expressing cells, the peptide blocked high-affinity agonist binding to both the delta- and the mu-opioid (delta-OR and mu-OR) and attenuated opioid and alpha2-adrenergic receptor (alpha2AR)-dependent [35S]guanosine-5'-O-(3-thio)triphosphate binding. Furthermore, delta-i3L expression resulted in inhibition of delta-, mu-OR-, and alpha2AR-receptor-mediated cAMP accumulation, whereas the cAMP response produced by activation of the beta2-adrenergic receptor was unaffected, suggesting that the inhibitory effects of delta-i3L expression were selective for Gi/Go proteins. Moreover, although delta-i3L expression also attenuated drastically phospholipase C accumulation and Ca2+ release following mu- and delta-OR stimulation, it failed to inhibit carbachol-mediated stimulation of inositol phosphate accumulation in M1-muscarinic receptor-expressing human embryonic kidney 293 cells. Finally, we also examined the effects of delta-i3L expression on the regulation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway. Our results demonstrate that, although ERK activation by mu- and delta-ORs is attenuated by the presence of delta-i3L, ERK activation mediated by alpha2AR remained unaffected. Collectively, our data demonstrate that the delta-i3L can be used as potent inhibitor of G protein signaling for various GPCRs that use a common pool of G proteins.  相似文献   

8.
In this study, we explored the relationship between ligand-induced regulation of surface delta opioid receptors and G protein activation. G protein activation was assessed with [(35)S]guanosine-5'-O-(3-thio)triphosphate (GTP gamma S) binding assays conducted at both 37 and 0 degrees C. Ligand-independent (constitutive) activity of the delta-receptor was readily observed when the [(35)S]GTP gamma S binding assay was performed at 37 degrees C. We identified a new class of alkaloid inverse agonists (RTI-5989-1, RTI-5989-23, RTI-5989-25), which are more potent than the previously described peptide inverse agonist ICI-174864 (N,N-diallyl-Tyr-Aib-Aib-Phe-Leu). Treatment with these inverse agonists for 18 h caused up-regulation of surface receptors. Eighteen-hour treatment with etorphine resulted in approximately 90% loss of surface receptor, whereas fentanyl, diprenorphine, and morphine caused between 20 and 50% loss. The abilities of ligands to modulate [(35)S]GTP gamma S binding at 37 degrees C showed a strong correlation with their abilities to regulate surface receptor number (r(2) = 0.86). Interestingly, the ability of fentanyl to activate G proteins was markedly temperature sensitive. Fentanyl showed no stimulation of [(35)S]GTP gamma S binding at 0 degrees C but was as efficacious as etorphine, morphine, and diprenorphine at 37 degrees C. Neither the ligand-induced receptor increases nor decreases were perturbed by pertussis toxin pretreatment, suggesting that functional G proteins are not required for ligand-regulated delta-opioid receptor trafficking.  相似文献   

9.
The selectivities, potencies and efficacies of beta3-adrenoceptor (beta3-AR) agonists on human three beta-AR subtypes expressed in Chinese hamster ovary (CHO) cells were investigated using radioligand binding assay and cyclic AMP (cAMP) accumulation assay. The three beta-AR subtypes showed the nature of G protein-coupled receptors with the constitutive activity. BRL37344, CL-316,243 and a newly synthesized beta3-AR agonist N-5984, 6-[2-(R)-[[2-(R)-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-2,3-dihydro-1,4-benzodioxine-2-(R)-carboxylic acid, were compared for the potency and selectivity for the beta3-AR. In the radioligand binding assay, the affinity of N-5984 for beta3-ARs was 14, 70 and 220 times more potent than those of BRL37344, isoproterenol and CL-316,243, respectively. N-5984 had higher selectivity than BRL37344 for human beta3-ARs compared with either for beta1-ARs or beta2-ARs. N-5984 showed higher potency and intrinsic activity of cAMP production than BRL37344 in CHO cells expressing the beta3-ARs. CL-316,243 had almost no activity of cAMP production in CHO cells expressing any subtype of beta-ARs. These results indicate that N-5984 is the most potent and selective agonist for human beta3-ARs than any other agonists tested.  相似文献   

10.
Fluorescence studies with purified human beta(2)-adrenoceptor (beta(2)AR) revealed that the endogenous catecholamines, (-)-epinephrine (EPI), (-)-norepinephrine (NE), and dopamine (DOP), stabilize distinct active receptor conformations. However, the functional relevance of these ligand-specific conformations is as yet poorly understood. We addressed this question by studying fusion proteins of the beta(1)-adrenoceptor (beta(1)AR) and beta(2)AR with the short and long splice variants of G(s)alpha (G(s)alpha(S) and G(s)alpha(L)), respectively. Fusion proteins ensure efficient receptor/G-protein coupling and defined stoichiometry of the coupling partners. EPI, NE, DOP, and the prototypical synthetic betaAR agonist, (-)-isoproterenol (ISO), showed marked differences in their efficacies at stabilizing the high-affinity ternary complex at beta(1)AR-G(s)alpha and beta(2)AR-G(s)alpha fusion proteins. Ternary complex formation was more sensitive to disruption by GTP with the beta(2)AR than with the beta(1)AR. Generally, in steady-state GTPase assays, ISO, EPI, and NE were full agonists, and DOP was a partial agonist. Exceptionally, at beta(1)AR-G(s)alpha(L), NE was only a partial agonist. Generally, in adenylyl cyclase assays, ISO, EPI, and NE were full agonists, and DOP was a partial agonist. At beta(2)AR-G(s)alpha(L), NE was only a partial agonist. There was no correlation between efficacy at stabilizing the ternary complex and activating GTPase, and there were also dissociations between K(i) values for high-affinity agonist binding and EC(50) values for GTPase activation. In contrast to synthetic partial agonists, DOP did not exhibit increased efficacy at betaAR-G(s)alpha(L) versus betaAR-G(s)alpha(S) fusion proteins. In conclusion, our data with betaAR-G(s)alpha fusion proteins show that endogenous catecholamines and ISO stabilize distinct conformations in the beta(1)AR and beta(2)AR.  相似文献   

11.
Agonists and GTP exert reciprocal effects on the stability of the G protein-coupled receptor/G protein complex, implying bidirectional control over the receptor/G protein interface. To investigate this relationship, we compared the ability of a series of hydroxyl-substituted phenethylamine and imidazoline agonists to stimulate [(35)S]guanosine 5'-O-(3-thio)triphosphate ([(35)S]GTPgammaS) binding in membranes from alpha(2A/D)-adrenergic receptor-transfected PC12 cells with the magnitude of the GTP-induced reduction in agonist affinity in [(3)H]rauwolscine-binding studies. Agents previously described as full and partial agonists in functional studies showed similar relative efficacies in promoting GTP binding (r = 0.97) as well as similar relative potencies (r = 0.94). Efficacy among agonists for promotion of [(35)S]GTPgammaS binding was closely correlated with the relative influence of GTPgammaS on agonist binding (r = 0.97), consistent with a bidirectional allosteric influence by agonists and GTP on receptor/G protein complexation. In an additional series of tolazoline derivatives, a range in efficacy from full agonism to strong inverse agonism was observed, depending on the presence or absence of hydroxyl substituents. Together these results suggest that agonist-induced repositioning of transmembrane helices via their hydroxyl interactions is a critical determinant of the stability of the receptor/G protein complex and therefore of agonist efficacy.  相似文献   

12.
The gastrin-releasing peptide receptor (GRP-R) is a G protein-coupled receptor that mediates a variety of cellular responses, including cell growth and modulation of neuronal activity by activation of heterotrimeric GTP-binding proteins in the Gq family. To understand the regulation of GRP-R signaling we have substituted alanine for each of 10 amino acid residues within the transmembrane (TM) helices of the GRP-R predicted to project into the binding pocket of the receptor and analyzed the importance of each of these residues for receptor function. Two mutations showed selective loss of either agonist (Y285A) or antagonist (F313A) affinity for the GRP-R. In addition, we identified two amino acid residues, Phe(270) and Asn(281), in the sixth TM segment, which are important for receptor-G protein interaction. In a competition-binding assay with an antagonist radioligand, bombesin showed a 20- to 100-fold decreased affinity for the N281A and F270A mutant GRP-R compared with wild-type GRP-R. The saturation-binding isotherms are best fit by a two-state model, indicating that the receptors are in either a low-affinity (K(D2)) or a high-affinity (K(D1)) state. The ratio of the two affinities (K(D2)/K(D1)) was significantly increased for both mutants compared with wild-type GRP-R, whereas the fraction of mutant receptors in the high-affinity state (R(1)) was decreased. GDP/guanosine-5'-O-(3-thio)triphosphate exchange catalyzed by the N281A mutant was lower than that observed for the wild-type GRP-R. However, for both mutants, bombesin was still able to stimulate 1,4,5-inositol triphosphate in transfected cells albeit with reduced activity. We conclude that these two TM residues are important for receptor-G protein coupling, and postulate that each mutation may affect GRP-R conformational change to the high-affinity, G protein-coupled state.  相似文献   

13.
To investigate differences in agonist affinity, potency, and efficacy across rat brain regions, five representative cannabinoid compounds were investigated in membranes from three different rat brain regions for their ability to maximally stimulate [(35)S]guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) binding and bind to cannabinoid receptors (measured by inhibition of [(3)H]antagonist binding) under identical assay conditions. In all three brain regions, the rank order of potency for the stimulation of [(35)S]GTPgammaS binding and the inhibition of [(3)H]SR141716A binding for these compounds were identical, with CP55940 approximately levonantradol > WIN55212-2 >/= Delta(9)-tetrahydrocannabinol (Delta(9)-THC) > methanandamide. The rank order of efficacy was not related to potency, and relative maximal agonist effects varied across regions. Receptor binding fit to a three-site model for most agonists, stimulation of [(35)S]GTPgammaS binding fit to a two-site model for all agonists, and high-affinity receptor binding did not appear to produce any stimulation of [(35)S]GTPgammaS binding. WIN55212-2, methanandamide, and Delta(9)-THC also were assayed for the inhibition of adenylyl cyclase in cerebellar membranes. The rank orders of potency and efficacy were similar to those for [(35)S]GTPgammaS binding, but the efficacies and potencies of methanandamide and Delta(9)-THC compared with WIN55212-2 were higher for adenylyl cyclase inhibition, implying receptor/G-protein reserve.  相似文献   

14.
Immunoprecipitation of a fusion protein between the alpha(1b)-adrenoceptor and Galpha(11) following a [(35)S]GTPgammaS [guanosine-5'-O-(3-thio)triphosphate] binding assay resulted in incorporation of low levels of nucleotide. The agonist phenylephrine increased incorporation some 30-fold. Agonist-induced binding represented 1.0 mol of [(35)S]GTPgammaS/mol of fusion protein. This was to the G protein linked to the receptor rather than endogenous Galpha(q)/Galpha(11) as a fusion protein containing the alpha(1b)-adrenoceptor and a form of Galpha(11) (G(208)A) unable to exchange guanine nucleotides effectively, bound [(35)S]GTPgammaS very poorly. Fusion proteins between A(293)E, D(142)A, and 3CAM mutants of the alpha(1b)-adrenoceptor and Galpha(11) bound substantially greater levels of [(35)S]GTPgammaS in the absence of agonist than the fusion incorporating the wild-type receptor. Constitutive binding of the nucleotide induced by these mutants was only 20% of the level achieved by phenylephrine. These mutant receptors thus do not provide an accurate mimic of the agonist-occupied state. Phentolamine reduced the binding of [(35)S]GTPgammaS and acted as a partial inverse agonist for each of the constitutively active mutants. [(35)S]GTPgammaS binding to Galpha(11) was elevated by phenylephrine in both wild-type and constitutively active mutant forms of the fusion proteins, but agonist potency and binding affinity were 50 times higher for the fusions containing the mutated receptors. These studies provide the first direct demonstration of the capacity of constitutively active mutants of a receptor to stimulate guanine nucleotide exchange on the alpha subunit of a G(q) family G protein and defines a strategy potentially suitable for any receptor that couples to these G proteins.  相似文献   

15.
S18327 displayed modest affinity for human (h)D(2) and hD(3) receptors and high affinity for hD(4) receptors. At each, S18327 antagonized stimulation of [(35)S]guanosine-5'-O-(3-thio)triphosphate binding by dopamine (DA). It also blocked activation of mitogen-activated protein kinase at hD(3) receptors. The affinity of S18327 at hD(1) and hD(5) sites was modest. S18327 showed pronounced affinity for human serotonin (h5-HT)(2A) receptors and human alpha(1A)-adrenergic receptors (hARs), at which it antagonized increases in intracellular Ca(2+) concentration levels elicited by 5-HT and norepinephrine (NE), respectively. S18327 presented significant affinity for halpha(2A)-ARs and antagonized NE-induced[(35)S]guanosine-5'-O-(3-thio)triphosphate binding both at these sites and at alpha(2)-ARs in rat amygdala. Reflecting blockade of alpha(2)-autoreceptors, S18327 enhanced firing of adrenergic neurons in locus ceruleus, accelerated hippocampal synthesis of NE, and increased dialysate levels of NE in hippocampus, accumbens, and frontal cortex. S18327 abolished inhibition of ventrotegmental area-localized dopaminergic neurons by apomorphine. However, S18327 alone did not affect their activity and only modestly enhanced cerebral turnover of DA and dialysate levels of DA in striatum and accumbens. In contrast, S18327 markedly increased dialysate levels of DA in frontal cortex, an action abolished by the selective alpha(2)-AR agonist, S18616. Finally, S18327 reduced synthesis and dialysate levels of 5-HT in striatum and suppressed firing of dorsal raphe-localized serotonergic neurons, an action attenuated by the alpha(1)-AR agonist cirazoline. In conclusion, S18327 possesses marked antagonist activity at alpha(1)-ARs and D(4) and 5-HT(2A) receptors and less potent antagonist activity at alpha(2)-ARs and D(1) and D(2) receptors. Antagonism by S18327 of alpha(2)-ARs enhances adrenergic transmission and reinforces frontocortical dopaminergic transmission, whereas blockade of alpha(1)-ARs inhibits dorsal raphe-derived serotonergic pathways. As further described in the accompanying paper, this profile of activity may contribute to the potential antipsychotic properties of S18327.  相似文献   

16.
Guanine nucleotides were shown to alter N-methyl-d-aspartate (NMDA) receptor-effector coupling by competitive antagonism at the glutamate binding site, rather than via interaction with an intracellularly located GTP-binding protein. Thus, in contrast to known G-protein linked receptors, micromolar concentrations of guanine nucleotides and their analogs decreased both agonist [( 3H]glutamate) and antagonist [( 3H]-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid binding to the NMDA receptor complex. The most potent compound, the GDP analog guanosine-5'-O-(2-thiodiphosphate) (GDP beta S), was studied in detail. GDP beta S exhibited almost 200-fold selectivity for the glutamate recognition site vs. the strychnine-insensitive glycine binding site. IC50 values were 2.7 +/- 1.4 and 484 +/- 97 microM, respectively. GDP beta S also inhibited N-[1-(2-thienyl)cyclohexyl-3H]piperidine binding (IC50 was 28.0 +/- 3.7 microM) in an NMDA-reversible fashion. [3H]-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid saturation binding studies revealed an increase in Kd from 263 +/- 49 (control) to 552 +/- 134 nM (8 microM GDP beta S) without any change in maximum binding (4.94 +/- 0.34 and 5.19 +/- 0.58 pmol/mg of protein, respectively). GDP beta S was also a competitive inhibitor of the following NMDA-stimulated responses: elevation of cyclic GMP in neonatal rat cerebellar slices, release of preloaded [3H]norepinephrine from superfused rat hippocampal slices and elevation of cytosolic calcium concentration in fura-2-loaded cultured rat forebrain neurons. IC50 values were 78.4, 53.4 and 1.6 microM, respectively. Finally, GDP beta S resembled known NMDA receptor antagonists in its ability to block NMDA receptor-induced seizures after i.c.v. administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Opioid agonists acting at their receptors alter intracellular events by initiating activation of various types of Gi/Go proteins. This can be measured by the binding of the stable GTP analog [(35)S]guanosine-5'-O-(3-thio)triphosphate ([(35)S]GTPgammaS). In this study agonist efficacy is defined by the degree to which an opioid stimulates the binding of [(35)S]GTPgammaS. This allows for a definition of full and partial agonists; a full agonist causing a greater stimulation of [(35)S]GTPgammaS binding than a partial agonist. The hypothesis that the rate of agonist-stimulated [(35)S]GTPgammaS binding is dependent upon agonist efficacy was tested using membranes from C6 glioma cells expressing mu- or delta-opioid receptors. At maximal concentrations the rate of agonist-stimulated [(35)S]GTPgammaS binding followed the efficacy of mu-agonists in stimulating [(35)S]GTPgammaS binding, i.e., [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin > morphine > meperidine > butorphanol > nalbuphine. At submaximal concentrations of mu- or delta-full agonists the [(35)S]GTPgammaS association rate was also reduced, such that the rate of [(35)S]GTPgammaS binding correlated with the extent of [(35)S]GTPgammaS bound, whether this binding was stimulated by a full agonist or a partial agonist. Agonists also stimulated [(35)S]GTPgammaS dissociation, showing that binding of this stable nucleotide was reversible. Comparison of the delta-agonists [D-Ser(2),Leu(5)]-enkephalin-Thr and (+/-)-4-((alpha-R*)-alpha-((2S*,5R*)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxylbenzyl)-N,N-diethylbenzamide, a compound with slow dissociation kinetics, showed the measured rate of G protein activation was not influenced by the agonist switching between receptors. The results are consistent with the idea that the active state(s) of the receptor induced by full or partial agonists is the same, but the number of activated receptors determines the rate of G protein activation.  相似文献   

18.
Human dopamine D(2) (hD(2)) and D(3) (hD(3)) receptors were expressed at similar, high expression levels in Chinese hamster ovary (CHO) cells, and their coupling to G proteins and further signal transduction pathways were compared. In competition radioligand-binding experiments, guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) treatment of hD(2S)- or hD(3)-CHO cell membranes induced a rightward shift and steeping of the dopamine inhibition curve. This effect was pronounced for hD(2) receptors and small for hD(3) receptors. Activation of G proteins was investigated in [(35)S]GTPgammaS-binding assays. Dopamine stimulated [(35)S]GTPgammaS binding 330 and 70% over basal levels on hD(2)-CHO and hD(3)-CHO cell membranes, respectively. (+)-7-(Dipropylamino)-5, 6,7,8-tetrahydro-2-naphthalenol and PD128907 were partial agonists for both receptors. Haloperidol, risperidone, raclopride, and nemonapride inhibited dopamine-stimulated [(35)S]GTPgammaS binding with potencies comparable to their binding affinities for hD(2) and hD(3) receptors in CHO cell membranes; inverse agonism could not be detected with this assay. Receptor stimulation by dopamine inhibited forskolin-induced cyclic AMP formation in hD(2)-CHO and hD(3)-CHO cells by 70%. Furthermore, the extracellular acidification rate increased when hD(2)-CHO and hD(3)-CHO cells were stimulated by dopamine; this effect was abolished by pertussis toxin pretreatment. In this study, we could demonstrate clear functional effects at different levels of the signaling cascade of hD(2) and hD(3) receptors in CHO cells when expressed at high levels. High-affinity agonist binding to hD(2) and hD(3) receptors was still present, but effects of receptor-G protein uncoupling at hD(3) receptors were small, indicating that hD(3) receptors maintain relatively high-affinity agonist binding in the absence of G proteins.  相似文献   

19.
An assay for measuring agonist-stimulated [35S]guanosine-5'-O-(3-thio)triphosphate (GTPgamma35S) binding to heterotrimeric GTP binding proteins was developed for use in 96-well format using commercially available anti-G protein antibodies captured by anti-IgG-coated scintillation proximity assay beads. Use of an anti-Galphaq/11 antibody to measure GTPgamma35S binding mediated by M1, M3, and M5 receptors stably expressed in Chinese hamster ovary (CHO) cells resulted in a marked increase in agonist-stimulated/basal binding ratio compared with whole membrane binding. Pertussis toxin (PTX) treatment of CHO M1 cells before membrane preparation resulted in a marked reduction in agonist-stimulated GTPgamma35S binding to whole membranes. Direct coupling of M1 receptors in CHO cells to inhibitory G proteins was demonstrated using an anti-Galphai(1-3) antibody, and this binding was inhibited by 76% following PTX treatment. However, PTX had no effect on M1-mediated binding determined using anti-Galphaq/11. CHO M2 receptors mediated robust agonist-stimulated GTPgamma35S binding measured with anti-Galphai(1-3), but coupled only weakly to Galphaq/11. Using membranes from rat striatum, GTPgamma35S binding stimulated by oxotremorine M was demonstrated using anti-Galphaq/11, anti-Galphai(1-3), and anti-Galphao antibodies. Agonist-stimulated binding to striatal membranes showed a marked antibody-dependent GDP requirement with robust signals obtained using 0.1 microM GDP for anti-Galphaq/11 compared with 50 microM GDP for anti-Galphai(1-3) and anti-Galphao. The potencies observed for pirenzepine and AFDX 116 blockade of agonist-stimulated GTPgamma35S binding to striatal membranes determined with anti-Galphaq/11 and anti-Galphao suggested mediation of these responses primarily by M1 and M4 receptors, respectively. Antibody capture GTPgamma35S binding using scintillation proximity assay technology provides a convenient, productive alternative to immunoprecipitation for exploration of receptor-G protein interaction in cells and tissues.  相似文献   

20.
In this study, we explored the relationship between regulation of surface mu-opioid receptor number, ligand-induced G protein activation (measured by [(35)]S]guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) binding) and second messenger signaling (measured by the inhibition of cAMP accumulation). Etorphine and two isomers of cis-beta-hydroxy-3-methylfentanyl (RTI-1a and RTI-1b), which were full agonists for G protein activation and signaling, caused approximately a 50% loss of surface receptors after 1 h of treatment. Fentanyl and morphine were full agonists for inhibiting cAMP accumulation and partial agonists for stimulating [(35)S]GTPgammaS binding and internalization. Although both agonists were approximately 80% as efficacious as etorphine in stimulating [(35)S]GTPgammaS binding, fentanyl induced a 35% loss of surface receptors, whereas morphine only caused a 10% loss. Additionally, both long- and short-term treatment with the opioid antagonist naloxone caused increases in surface receptors. Unexpectedly, the weak partial agonists buprenorphine and one isomer of cis-beta-hydroxy-3-methylfentanyl (RTI-1d) also were found to cause an increase in surface receptors. Treatment with pertussis toxin (PTX) diminished agonist-induced loss of surface receptors. Furthermore, the abilities of morphine and fentanyl to cause internalization were more impaired after PTX treatment than that of etorphine. PTX treatment also significantly enhanced the increase in surface receptor number caused by 18-h treatment with naloxone and buprenorphine. The results of this study suggest that disruption of G protein coupling by PTX treatment affects ligand-regulated mu-receptor trafficking and that partial agonists for signaling can vary greatly in the ability to regulate the number of surface mu-opioid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号