首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The superficial dorsal horn of birds as well as mammals contains both cholinergic and nitrergic neuronal structures as evident from the presence of the synthesizing enzymes such as choline acetyltransferase and nitric oxide synthase, which is an NADPH diaphorase. In the rat, both systems develop only postnatally. Rats are altricial at birth whereas pigeons and chickens are semiprecocial or precocial, respectively, at the time of hatching. Immunocytochemical studies of choline acetyltransferase and nitric oxide synthase in the developing avian spinal cord (starting with embryonic day 12 of 18 in the pigeon and 14 of 21 in the chicken) showed that both systems are well developed in the superficial dorsal horn at the time of hatching in both avian species. In the pigeon, choline acetyltransferase-positive superficial dorsal horn neurons appear only on the day of hatching (E18), whereas nitric oxide synthase-positive neurons can be first detected at stage E14. In the chicken, nitric oxide synthase-positive neurons are present already at stage E14, whereas choline acetyltransferase-positive neurons appear at stage E20. Autonomic and somatic motor neurons show adult-like choline acetyltransferase-immunoreactivity and/or nitric oxide synthase-immunoreactivity at the earliest stages investigated. It is concluded that the stage of maturation at birth or hatching plays an important role in the development of superficial dorsal horn cholinergic and nitrergic systems.  相似文献   

2.
The aim of the present study was to determine the distribution of nitric oxide-synthesizing neurons in the pigeon brain and spinal cord. Tissue sections were stained for reduced nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d). In the telencephalon, intensely stained neurons with dendrites extending distally were seen in most regions. The ectostriatum was characterized by intensely and diffusely stained neuropil. In the diencephalon, intensely positive neurons were seen in the lateral hypothalamic region and lateral mammillary nucleus. In the mesencephalon, intensely stained, multipolar neurons were abundantly scattered in the central gray, nucleus intercollicularis, reticular formation, nucleus tegmenti pedunculo-pontinus, pars compacta, area ventralis of Tsai, and ansa lenticularis. In the rhombencephalon, positively-stained neurons were found in the pontine nuclei and reticular formation. The cerebellar cortex, except for Purkinje cells, was a preferential region for NADPH-d activity. Positive end-bulbs made contact on somata in the nucleus magnocellularis cochlearis. In the spinal cord, NADPH-d positive neurons were seen in layer II and the marginal nucleus. Our results demonstrated that the distribution of NADPH-d-containing neurons in the pigeon brain and spinal cord is more complex than in other avian species. Our findings indicate that NADPH-d-containing neurons are present in several sensory pathways, including olfactory, visual, auditory, and somatosensory tracts, although some nuclei in each system did not show NADPH-d activity. The wide distribution of NADPH-d activity in the pigeon CNS suggests that nitric oxide modulates sensory transmission in avian central nervous system.  相似文献   

3.
The motility of the avian cloaca is under neural control, but little is known about the neural network that accomplishes this function. This present study was designed to determine the distribution of nitric oxide-synthesising neurons in the pigeon cloaca by enzyme histochemistry for reduced nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d). NADPH-d-positive staining was seen in the neurons and fibres in the cloaca. The highest density of nerve fibres was noted in the coprodeum and the lowest in the proctodeum. In the coprodeum, NADPH-d neurons were found singly, formed small groups of 2–10 neurons, or were seen in plexuses in the muscle layer, lamina propria, or around the arterioles. Several NADPH-d-positive neurons were also observed in the ganglia of the cloaca. NADPH-d fibres ran in the muscle layer, lamina muscularis mucosae and lamina propria, or surrounded blood vessels. The distribution pattern of acetylcholinesterase (AChE)-stained neurons and fibres in the cloaca was similar to that of NADPH-d. Double staining for NADPH-d and AChE showed colocalisation of the 2 enzymes in many neurons of the cloaca. Tyrosine hydroxylase (TH)-immunoreactive nerve fibres originating outside the cloaca were also noted. In the urodeum and proctodeum, neurons or fibres positive for NADPH-d, AChE or TH were scattered in the lamina propria. Nerve fibres immunoreactive for calcitonin-gene related peptide, galanin, methionine-enkephalin, substance P, and vasoactive intestinal peptide were found sparsely in the cloaca. Our results demonstrate that nitrergic neurons constitute a subpopulation which is closely associated with the cholinergic system in the pigeon cloaca.  相似文献   

4.
Summary The responses of dorsal horn neurons to both electrical stimulation of a cutaneous nerve and natural stimulation of skin receptors have been studied in an avian species, the pigeon. Neurons located in either lamina I or lamina IV were recorded. Most lamina IV neurons had short-latency responses to electrical stimulation of a cutaneous nerve and were activated by stimulation of sensitive mechanoreceptors. This points to an input from mechanoreceptors innervated by large afferent fibers. Lamina I neurons which were usually located near the entrance zone of small fibers had longer latency responses and had often an input from several groups of afferent fibers including C-fibers. Many lamina I neurons were activated specifically by noxious stimulation. Some had an input from sensitive mechanoreceptors but possibly through an additional synapse. A few lamina I neurons responded specifically to activation of cold receptors. Some dorsal horn neurons showed segmental inhibition. Altogether, the characteristics of dorsal horn neurons in the pigeon studied so far were similar to those in mammalian species.  相似文献   

5.
The indirect immunofluorescent method was employed to investigate the distribution of neuronal nitric oxide synthase-like immunoreactivity(nNOS-LI) in the spinal cord of the golden hamster and to compare it to data obtained from rats. Immunoreactive neurons were found throughout the cervico-sacral extent in the dorsal horn (mainly in laminae I-III) and in the preganglionic autonomic regions, i.e., the sympathetic intermediolateral nucleus (IML), lateral funicle (LF), intercalated region (IC), the area surrounding the central canal (CA), and the sacral preganglionic parasympathetic cell group. While the distribution of immunoreactive cells was generally similar in both species, some differences were observed. For example in the hamster LF, a higher percentage of stained neurons was seen than in the IML, while the situation was rather inverse in the rat. In order to study the coincidence of nNOS-LI in the population of preganglionic sympathetic neurons (PSN) that innervate the superior cervical ganglion (SCG), these were identified by retrograde axonal transport of fluoro-gold (FG) following unilateral injection into the SCG. PSN were localized ipsilateral to the injection site mainly in the IML and LF of spinal segments C7-Th4. The portion of double-labeled neurons of the IML were lower in hamster (17% in C7, 34% in C8) of FG-labeled cells) than in rat (47% in C8, 77% in Th2), while in the LF of segments C8-Th2 in both species the majority of FG-neurons contained nNOS. While only very few double-labeled neurons were detected in the IC in hamster and rat, a striking difference was observed in the CA, where no double-labeled neurons were found in hamster, but up to 50% in rat. Double immunofluorescence detection of nNOS and substance P (SP) showed that in both the autonomic regions and the dorsal horn, SP-LI fibers and puncta were present in close spatial relationship to nNOS-LI cell bodies. These results were basically identical in the hamster and rat. Unilateral transection of the dorsal roots of segments C6-Th2 in rats resulted in a clear reduction of SP-LI structures in the dorsal horn 5 days after rhizotomy, but not in the autonomic regions. Compared to the unlesioned side, the numbers of nNOS-LI neurons in the superficial laminae of the dorsal horn were reduced to 32-46% in the lesioned segments, and to 53% and 87%, respectively, in the two segments cranial to the rhizotomized segments but remained unchanged caudally to the lesion. Numbers of nNOS-LI cell bodies in the autonomic regions were not altered following dorsal root transection. The present study provides data on the widespread distribution of nNOS in the spinal cord of golden hamster and describes the partial coincidence of the enzyme in PSN. The effects of dorsal rhizotomy on nNOS-LI neurons in the dorsal horn reveal that primary-afferent fibers provide a stimulatory influence on neurons of the dorsal horn to generate the gaseous neuroactive substance, nitric oxide.  相似文献   

6.
The objective of the present study was to characterize the trkB receptor immunoreactive (-ir) cells in the intermediolateral cell column (IML) of the upper thoracic spinal cord. Small trkB-ir cells (area = 56.1 ± 4.4 μm2) observed in the IML showed characteristics of oligodendrocytes and were frequently observed in close apposition to choline acetyltransferase (ChAT)-ir cell bodies. Large trkB-ir cells (area = 209.3 ± 25.2 μm2) showed immunoreactivity for the neuronal marker NeuN, indicating their neuronal phenotype, as well as for ChAT, a marker for preganglionic neurons. TrkB and ChAT were co-localized in IML neurons primarily in cases that had received in vivo administration of nerve growth factor (NGF). These findings reveal two different cell types, oligodendrocytes and neurons, in the IML of the spinal cord that show trkB immunoreactivity, suggesting their regulation by brain derived neurotrophic factor (BDNF) and/or neurotrophin-4 (NT-4). In addition, there is evidence that NGF may play a role in the regulation of trkB-ir preganglionic neurons in the IML.  相似文献   

7.
Conclusion During specific detection of ChAT a precipitate which differs in amount and color is formed in the perikaryon of the neuron, whereas blood vessels and glial cells do not react with acetyl CoA. All motoneurons of the lumbar enlargement of the spinal cord contain different levels of activity of the enzyme. A positive reaction is found in the spinal ganglia in 58% of pseudounipolar cells, which are evidently true cholinergic neurons.Translated from Arkhiv Anatomii, Gistologii i Émbriologii, Vol. 75, No. 9, pp. 52–56, September, 1978.  相似文献   

8.
We used anterograde transport of WGA-HRP to examine the topography of corticospinal projections from the forelimb areas within the rostral and caudal motor cortex subregions in the cat. We compared the pattern of these projections with those from the somatic sensory cortex. The principal finding of this study was that the laminar distribution of projections to the contralateral gray matter from the two motor cortex subregions was different. The rostral motor cortex projected preferentially to laminae VI–VIII, whereas caudal motor cortex projected primarily to laminae IV–VI. Confirming earlier findings, somatic sensory cortex projected predominantly to laminae I–VI inclusive. We found that only rostral motor cortex projected to territories in the rostral cervical cord containing propriospinal neurons of cervical spinal segments C3-4 and, in the cervical enlargement, to portions presumed to contain Ia inhibitory interneurons. We generated contour maps of labeling probability on averaged segmental distributions of anterograde labeling for all analyzed sections using the same algorithm. For rostral motor cortex, heaviest label in the dorsal part of lamina VII in the contralateral cord was consistently located in separate medial and lateral zones. In contrast, no consistent differences in the mediolateral location of label was noted for caudal motor cortex. To summarize, laminae I–III received input only from the somatic sensory cortex, while laminae IV–V received input from both somatic sensory and caudal motor cortex. Lamina VI received input from all cortical fields examined. Laminae VII–IX received input selectively from the rostral motor cortex. For motor cortex, our findings suggest that projections from the two subregions comprise separate descending pathways that could play distinct functional roles in movement control and sensorimotor integration.  相似文献   

9.
Summary The morphology, background activity and responses to stimulation of primary afferent inputs of small neurones in the superficial dorsal horn which could only be excited from the skin by noxious stimulation were investigated by intracellular recording and ionophoresis of HRP. Neurones which gave similar responses to afferent stimulation were morphologically heterogeneous with respect to dendritic tree geometry and axonal projection, but were located around the lamina I/II border. Cutaneous excitatory receptive fields responding to noxious stimulation were generally small; most neurones had more extensive inhibitory fields responding to innocuous mechanical stimulation, in many cases overlapping the excitatory fields. Generally, stimulation of the excitatory field resulted in depolarization of the neurone and increased action potential firing, and stimulation of the inhibitory field resulted in hyperpolarization. Electrical stimulation of peripheral nerves revealed the existence of converging excitatory inputs carried by different fibre groups, and all neurones received an inhibitory input activated at low threshold. Excitatory responses were short-lived and occurred consistently in response to repeated stimulation. Central delay measurements gave evidence of a number of A monosynaptic inputs but only one A monosynaptic input; inhibitory inputs along A fibres were polysynaptic. The constant latency and regularity of the C response suggested monosynaptic connections. Low intensity stimulation of inhibitory inputs elicited a short-lived i.p.s.p. which increased in amplitude with increasing stimulus strength until it disappeared into a more prolonged hyperpolarization. This was associated with inhibition of background action potentials, and increased in duration with increasing stimulus strength up to C levels, indicating an A and C component. It is suggested that the level of excitability of these neurones depends on the relative amounts of concurrent noxious and innocuous stimulation, and that the resultant output, which is conveyed mainly to other neurones within the spinal cord, could modulate reflex action at the spinal level as well as affecting components of ascending sensory pathways.Supported by grant no. 11853/1.5 from the Wellcome Trust  相似文献   

10.
Summary Somatotopic organization and response characteristics were examined in 234 dorsal horn neurons in the cervical enlargement of the spinal cord of anesthetized pigeons. Neurons located in the nucleus proprius (laminae III–V) were activated by light mechanical stimulation (movement of feathers) of cutaneous receptors. Both slowly adapting and rapidly adapting responses were observed, the latter being more numerous. Although most neurons responded to vibratory stimuli, an input from Pacinian-like receptors (Herbst corpuscles in birds) has still to be demonstrated. There was no evidence of an input from high-threshold receptors (nociceptors). Latencies to electrical stimulation of the receptive field suggest a contribution of large myelinated afferent fibers only. Neurons in the avian Clarke's column (within lamina V of the cervical enlargement) were activated by proprioreceptor stimulation. Receptive fields were usually small but larger on proximal parts of the wing (forearm and arm) than on distal parts (hand with fingers). There was a distinct topographic organization of receptive fields. Rostral parts of the wing (prepatagium, alula) were represented rostrally (C12, C13) and caudal parts (secondaries) caudally (C14). Furthermore, distal and ventral parts of the wing were represented medially and proximal and dorsal parts laterally. Despite its very specialized function (bird flight) the somatotopic representation of the wing in the spinal dorsal horn is very similar to that of the forelimb of mammalian species.  相似文献   

11.
目的观察一氧化氮合酶(NOS)和乙酰胆碱酯酶(AChE)阳性神经元在扬子鳄胸髓的分布。方法采用还原型尼克酰胺腺嘌呤二核苷酸脱氢酶(NADPH-d)法和亚铁氰化铜法观察扬子鳄胸髓NOS和AChE阳性神经元的分布。结果扬子鳄胸髓前角、后角和中央灰质内可见NOS和AChE阳性神经元,白质内含有丰富的NOS和AChE阳性神经纤维。结论扬子鳄胸髓有NOS和AChE阳性神经元分布。  相似文献   

12.
Extracellular recordings of neuronal activity made in the lumbosacral spinal segments of the anesthetized cat have disclosed the existence of a set of neurons in Rexed's laminae III–VI that discharged in a highly synchronized manner during the occurrence of spontaneous negative cord dorsum potentials (nCDPs) and responded to stimulation of low-threshold cutaneous fibers (<1.5×T) with mono- and polysynaptic latencies. The cross-correlation between the spontaneous discharges of pairs of synchronic neurons was highest when they were close to each other, and decreased with increasing longitudinal separation. Simultaneous recordings of nCDPs from several segments in preparations with the peripheral nerves intact have disclosed the existence of synchronized spontaneous nCDPs in segments S1–L4. These potentials lasted between 25 and 70 ms and were usually larger in segments L7–L5, where they attained amplitudes between 50 and 150 μV. The transection of the intact ipsilateral hindlimb cutaneous and muscle nerves, or the section of the dorsal columns between the L5 and L6, or between the L6 and L7 segments in preparations with already transected nerves, had very small effects on the intersegmental synchronization of the spontaneous nCDPs and on the power spectra of the cord dorsum potentials recorded in the lumbosacral enlargement. In contrast, sectioning the ipsilateral dorsal horn and the dorsolateral funiculus at these segmental levels strongly decoupled the spontaneous nCDPs generated rostrally from those generated caudally to the lesion and reduced the magnitude of the power spectra throughout the whole frequency range. These results indicate that the lumbosacral intersegmental synchronization between the spontaneous nCDPs does not require sensory inputs and is most likely mediated by intra- and intersegmental connections. It is suggested that the occurrence of spontaneous synchronized nCDPs is due to the activation of tightly coupled arrays of neurons, each comprising one or several spinal segments. This system of neurons could be involved in the modulation of the information transmitted by cutaneous and muscle afferents to functionally related, but rostrocaudally distributed spinal interneurons and motoneurons, as well as in the selection of sensory inputs during the execution of voluntary movements or during locomotion. Electronic Publication  相似文献   

13.
Nitric oxide and acetylcholine are important neuromodulators implicated in brain plasticity and disease. We have examined the cellular and fiber localization of nitric oxide in the cat superior colliculus (SC) and its degree of co-localization with ACh using nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry and an antibody to neuronal nitric oxide synthase. ACh was localized using an antibody against choline acetyltransferase. We also made injections of biocytin into the region of the parabrachial brainstem to confirm that this region is a source of nitric oxide containing fibers in SC. NADPHd labeled neurons within the superficial layers of the superior colliculus included pyriform, vertical fusiform, and horizontal morphologies. Labeled neurons in the intermediate gray layer were small to medium in size, and mostly of stellate morphology. Neurons in the deepest layers had mostly vertical or stellate morphologies. NADPHd labeled fibers formed dense patches of terminal boutons within the intermediate gray layer and streams of fibers within the deepest layers of SC. Choline acetyltransferase antibody labeling in adjacent sections indicated that many fibers must contain both labels. Over 94% of neurons in the pedunculopontine tegmental and lateral dorsal tegmental nuclei were also labeled by both NADPHd and choline acetyltransferase. In addition, biocytin labeled fibers from this region were localized in the NADPHd labeled patches. We conclude that nitric oxide is contained in a variety of cell types in SC and that both nitric oxide and ACh likely serve as co-modulators in this midbrain structure.  相似文献   

14.
The authors developed a polyclonal antibody against a fusion protein containing 598 amino acids from a human choline acetyltransferase (ChAT) cDNA and 12 amino acids derived from an expression vector, and examined immunohistochemical reactivity for ChAT in large motor neurons (30 μn and more in somal minimal diameter) of the lumbar spinal cords of four patients with amyotrophic lateral sclerosis (ALS) and of four control cases. In controls, the number of large neurons included in the tissue with a total thickness of 100 μm ranged from 74 to 105 (average 87). About 60–90% (average 80%) of the neurons were positively stained in their perikarya with an anti-human ChAT antibody. In the cases of ALS, the number of large motor neurons was greatly reduced (25–60, average 38). About 4–13% (average 8%) were positively stained. These results indicate that not only large neurons are reduced in number, but also their positivity for ChAT is decreased in the anterior horn of ALS spinal cord.  相似文献   

15.
Summary Preganglionic sympathetic neurons (SPNs) in the chicken were demonstrated immunohistochemically using cholera toxin subunit B (CTb) as a retrograde tracer. After injection of CTb-solution into the superior cervical ganglion, labeled SPNs were mainly found in the ipsilateral sympathetic preganglionic column of Terni (the column of Terni), with only a few in the intermediate zone. They were observed from the caudal half of the 15th cervical segment to the rostral tip of the 3rd thoracic segment. Cell somata of SPNs were loosely packed with-in the column of Terni, where they had an elliptic shape with the long axis oriented rostrocaudally. In the horizontal plane three kinds of dendrites could be discriminated on the basis of their orientation. Longitudinally oriented dendrites emanated from the rostral and the caudal poles of the SPNs. Medially oriented dendrites were observed to cross the midline and enter the contralateral column of Terni, where they further branched to form a loose dendritic plexus; some extended beyond the lateral limit of the contralateral column of Terni to reach the intermediate zone. Laterally oriented dendrites formed periodically arranged dendritic bundles projecting into the intermediate zone. The present findings provide a detailed account of the dendritic organization of SPNs in the chicken, and suggest that avian SPNs share certain structural features in common with mammalian SPNs.  相似文献   

16.
17.
The ventral horn of the rat spinal cord was investigated with respect to the somatotopic organization of the motor neurons that innervate the lumbar muscles. Neurotracer 1,1′‐dioctadecyl‐3,3,3′,3′‐tetramethylindocarbocyanine perchlorate (DiI) was applied to specific sites in lumbar muscles. Spinal cord segments at L1 through L4 levels were cut into 40‐μm serial transverse sections. Labeled neurons were located in the ventromedial nucleus (VM) and lateromedial nucleus (LM) nuclei of Rexed’s lamina IX. Motor neurons innervating the m. interspinales lumborum and m. multifidus were without exception present in the VM, whereas all motor neurons innervating the m. rectus abdominis were present in the LM. Forty percent of motor neurons innervating the m. quadratus lumborum were present in the VM and the other 60% were in the LM. Although most of the motor neurons innervating the m. psoas major were present in the LM, a few labeled neurons existed in the VM. These results suggest that the border zone demarcating the areas of innervation of the dorsal and ventral rami of spinal nerves crosses the m. quadratus lumborum.  相似文献   

18.
19.
NADPH diaphorase-reactive neurons and fibres are present within the entire spinal cord. Moderately to strongly stained neurons were found in the dorsal horn, in particular in lamina III, as well as around the central canal. A dense accumulation of stained neurons was localized in putative preganglionic sympathetic and parasympathetic nuclei. The somatic motor neurons of the ventral horn were found unlabelled. In view of the recently established identity of NADPH diaphorase with nitric oxide synthase, these results suggest that nitric oxide is involved in sensory and autonomic information processing in the spinal cord.  相似文献   

20.
Male rats were perfused with paraformaldehyde and picric acid. The cervical spinal cord was cryosectioned and immunostained with a monoclonal antibody against the postsynaptic receptor for the neurotransmitter glycine. The anterior horn contained glycinoceptive neurons of varying morphology. Cholinergic cells were identified in the same tissue sections when subsequently immunostained with a monoclonal antibody against choline acetyltransferase, the biosynthetic enzyme of acetylcholine. Immunoreactivity for the glycine receptor was detected in the plasma membrane and for choline acetyltransferase in the perikaryal cytoplasm of identical anterior horn cells, classified as small, medium and large motoneurons. This suggests that motoneurons have receptors for glycine on their cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号