首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The binding kinetics, pharmacologic properties, ontogeny and localization of L-glutamate binding sites were studied in membrane preparations and sections of normal and olivopontocerebellar atrophy (OPCA) human cerebellum. One binding component was found with a Kd value in the order of 150 x 10(-9) M. No significant changes of Kd values were observed with age, whereas the highest Bmax value was observed at the age of 1 year. L-Aspartate, ibotenate, quisqualate and L-homocysteic acid were potent inhibitors of L-[3H]glutamate binding. Quantitative densitometric measurements indicated the presence of L-glutamate sites in both the molecular and granule cell layer. In OPCA cerebella a very significant decrease of L-[3H]glutamate specific binding (Bmax) was observed, whereas Kd values were found unchanged. The pharmacologic properties of L-[3H]glutamate binding sites of OPCA cerebellar tissues were similar to those of normal cerebellum. [3H]quinuclidinyl benzylate binding, expressed in fmol/mg protein, did not show significant differences between normal and OPCA cerebella.  相似文献   

2.
We used standard techniques of receptor autoradiography to study the distribution of inhibitory and excitatory amino acid neurotransmitter receptors in human normal cerebellar cortex. Benzodiazepine (BDZ) receptor density was relatively high in both granule cell and molecular layers. GABAA receptor density was highest in granule cell layer with lower receptor density in molecular layer. There was a lower density of GABAB receptors than GABAA receptors in both molecular and granule cell layers with a relatively higher density of GABAB receptors in molecular layer than in granule cell layer. In granule cell layer, the density of the N-methyl-D-aspartate (NMDA) subtype of excitatory amino acid receptors was greatest whereas in molecular layer the quisqualate (QA) receptor subtype density was greatest. With [3H]N-(1-[2-thienyl]cyclohexyl)3-4-piperidine as a ligand, there was no specific binding to the phencyclidine receptor. Molecular layer was also characterized by relatively high density of a non-NMDA/non-QA displaceable glutamate binding site. We studied also the cerebellar cortex of 4 cases of olivopontocerebellar atrophy (OPCA), a syndrome in which Purkinje and granule cells degenerate. In these specimens, there was significant decrement of BDZ and GABAA receptors in both molecular and granule cell layers, with loss of GABAB receptors in molecular layer. NMDA receptors were depleted in granule cell layer while QA receptors and the non-NMDA/non-QA glutamate binding site were significantly depleted in molecular layer. Our normal human and OPCA data are largely consistent with animal data about the cellular localization of cerebellar cortical amino acid neurotransmitter receptors.  相似文献   

3.
The present study has examined excitatory amino acid transmitter binding sites as measured autoradiographically in cryostat sections prepared from developing rat cerebella during the period of granule cell neuritogenesis. The external germinal layer (EGL) and molecular layer (ML), which during development contain granule cells at early stages of axon growth, contained only low levels of NMDA-displaceable L-[3H]glutamate binding sites. Similarly, [3H]glycine binding to the NMDA receptor linked binding site was not enriched in the EGL. Radioligand binding to the NMDA receptor was always greater in the granular layer (GL) than in the ML. The developmental increases in NMDA-displaceable L-[3H]glutamate and in [3H]glycine binding to the GL were similar but NMDA displaceable L-[3H]glutamate binding density increased before [3H]glycine binding sites. Glycine increased NMDA-displaceable L-[3H]glutamate binding only in the adult cerebellum. These results suggest that NMDA stimulation of neuritogenesis in granule cell cultures may reflect stimulation of dendritogenesis in the developing glomerulus rather than a stimulation of axon growth in the EGL. Also, NMDA receptors may be present in an immature form during cerebellar development and have different properties to the adult receptor. Binding sites for [3H]kainate and [3H]AMPA were present in both the GL and ML and increased during development. At all times the amount of binding sites for [3H]kainate were highest in the GL whereas those for [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate were highest in the ML.  相似文献   

4.
The distribution of cerebellar [3H]muscimol binding sites was studied autoradiographically in normal C57BL/6J mice and in the weaver, reeler, Purkinje cell degeneration and staggerer mutant mice. In the normal 79-day-old mouse cerebellum, the highest concentration of [3H]muscimol binding sites was observed in the granule cell layer. A much lower grain density was present over the Purkinje cell and molecular layers and negligible numbers of binding sites were seen over the deep cerebellar nuclei and white matter. A significant decrease in [3H]muscimol labeling was observed over the cerebellar cortex of the 81-86-day-old weaver mutant; this was most pronounced in the vermis where granule cell loss was the greatest. Over the hemispheres, where fewer granule cells degenerate, a higher density of binding sites remained. In the 27-29-old reeler cerebellum, where Purkinje cells are malpositioned, no labeling was seen over the deep Purkinje cell masses. In the quasi-normal superficial cortex, labeling density over the surviving granule cell layer was only slightly decreased. In the 54-57-day-old Purkinje cell degeneration mutant, where essentially all Purkinje cells have disappeared by day 45, a 29% decrease in grain density over the granule cell layer was observed, while labeling was still present in the molecular layer. Virtually no [3H]muscimol labeling was detected over any part of the cerebellar cortex of the 25-27-day-old staggerer mutant (which lacks parallel fiber-Purkinje cell synapses), although clusters of surviving granule cells were present in significant numbers in the lateral aspects of the cortex. Our autoradiographic data indicate that GABAA receptors are associated with granule cells in both the molecular and granule cell layers. Furthermore, our results raise the possibility that the maintenance of receptor levels may be dependent upon synaptic contacts between the granule cell and its main postsynaptic target, the Purkinje cell.  相似文献   

5.
In vitro autoradiography and test-tube assay of the sodium-dependent binding of D-[3H]aspartate were used to localize and quantify the uptake site for the excitatory amino acid neurotransmitters glutamate and aspartate in the cerebellar cortex of human cerebellar hemispheres. Autoradiograms revealed a pronounced heterogeneity in the distribution of D-[3H]aspartate binding in cortex from adult brains, with the highest binding density corresponding to the Purkinje cell layer, high binding in molecular layer and low binding in granule cell layer. In contrast, cerebellar cortex from infants at term (40 weeks gestation) had only low binding of the ligand in both the molecular and the Purkinje cell layers. Both methods employed for measuring D-[3H]aspartate binding showed that the number of binding sites in Purkinje and molecular layers increased rapidly from term to 20 weeks postnatal age and achieved levels higher than those found in adult cerebellum. It is concluded that a substantial increase in the numbers of glutamate/aspartate uptake sites takes place in the human cerebellum during the early postnatal period. It is deduced that the excess uptake sites are eliminated as the cerebellum matures.  相似文献   

6.
Light microscopic autoradiography of [3H]quinuclidinyl benzilate binding sites was used to study the distribution of muscarinic cholinergic receptors in mouse mutants which have abnormalities affecting specific cerebellar cell types. In the normal C57BL/6J mouse, binding sites were distributed throughout the cerebellar cortex, with the highest levels in the granule cell layer and deep cerebellar nuclei. Normal binding site density was observed in the cerebellum of the weaver mutant in which the majority of granule cells had degenerated. The density of [3H]quinuclidinyl benzilate binding sites was elevated in the cortex of the reeler, despite a reduction in the number of granule cells. The concentration of binding sites was also high over the Purkinje cell masses where granule cells were largely absent. No significant reduction in cortical [3H]quinuclidinyl benzilate binding site density was detected in the Purkinje cell degeneration mutant, in which essentially all Purkinje cells had degenerated. In contrast, receptor binding in the deep cerebellar nuclei of this mutant was significantly increased. A substantial increase in labeling was observed in the cortex and deep nuclei of the staggerer cerebellum in which a large fraction of Golgi II cells, Purkinje cells, granule cells and mossy fibers have degenerated. We discuss the possibility that the persistence of [3H]quinuclidinyl benzilate binding sites in all four mutants may imply a non-neuronal localization for a large proportion of muscarinic receptors in the mouse cerebellar cortex.  相似文献   

7.
Light microscopic autoradiography of [3H]quinuclidinyl benzilate (QNB) binding sites was used to study the distribution of muscarinic acetylcholine receptors in the mouse, rat, guinea pig, and rabbit cerebellar cortex. In the mouse, the laminar distribution of grain density was similar throughout the cortex, with slightly higher levels over lobules IX and X. The highest [3H]QNB labeling was present over the granule cell layer, and low levels were observed over the molecular layer. In the rat, the general distribution was similar to that of the mouse in that the granule cell layer was most densely labeled and the highest concentration of [3H]QNB binding sites was present in lobules IX and X of the archicerebellum. In these lobules, however, the laminar distribution of grain density was reversed so that the molecular layer was more densely labeled than the granule cell layer. In addition, several discrete columns of elevated grain density traversed the granule cell layer in caudal regions of lobule IX. The distribution of [3H]QNB binding sites in the guinea pig cerebellum was similar to that of the rat in that the molecular layer of lobules IX and X was again more intensely labeled than other cerebellar regions. In the remaining lobules, grain density was equal over the granule cell and molecular layers. In the rabbit cerebellar cortex, slightly higher grain density was observed in the granule cell layer than in the molecular layer. In lobules IX and X and in the hemisphere of X, the Purkinje cell layer was most densely labeled; parasagittal columns of very high grain density were present over the molecular layer of several cortical regions, including lobules, I, II, III, IV, V, IX, X, and the hemispheres of IX and X. Since muscarinic receptors have previously been found on blood vessels, there is a possibility that some proportion of receptor labeling may be localized to these structures. Microvessels and capillaries in each of the species examined were more numerous in the granule cell layer than in the molecular layer and white matter. The distribution of blood vessels in many cerebellar lobules of mice, rats, and guinea pigs corresponded quite closely to the general distribution of [3H]QNB binding sites. Unique patterns of labeling in lobules IX and X were not accompanied by corresponding patterns of blood vessel distribution, however. In the mouse, there was a slight increase in muscarinic receptor density observed in the archicerebellum, with no corresponding increase in the density of blood vessels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
A Frostholm  A Rotter 《Brain research》1987,465(1-2):157-166
The characteristics of [3H]muscimol binding were investigated in cerebellar sections from 7-day-old mice. The binding sites were found to possess the kinetic properties and pharmacological specificity characteristic of high-affinity GABAA receptors. [3H]Muscimol binding sites in the developing C57BL/6J mouse cerebellum were visualized by light microscopic autoradiography. A distinct band of labeling situated over the molecular layer was apparent from day 1 to day 7. The external granule cell layer remained unlabeled throughout development. Labeling over the internal granule cell layer gradually increased from birth; it became more dense and well defined until adult levels of grain density were reached at 35-42 days of age. The deep cerebellar nuclei were moderately labeled at birth and gradually decreased in density thereafter. The observed ontogeny of granule cell [3H]muscimol binding sites suggests that the synthesis of receptors is initiated at a time immediately after cessation of cell division, coinciding with the beginning of granule cell translocation across the molecular layer. Since, at this time, granule cells have not yet formed synapses with the GABAergic Golgi II cells, nor have they, in turn, formed the vast majority of synaptic contacts with Purkinje cells, it follows that receptor appearance precedes the formation of afferent connections, and may also precede efferent synaptic contacts. The timing of the appearance of [3H]muscimol binding sites raises the possibility that their initial acquisition may be related to developmental events other than the interaction of the granule cell with its pre- or postsynaptic neuronal partners.  相似文献   

9.
The distribution of cerebellar [3H]flunitrazepam binding sites was studied autoradiographically in Purkinje cell degeneration (pcd/pcd), weaver (wv/wv), staggerer (sg/sg) and reeler (rl/rl) mutant mice. In the normal 78-day-old C57BL/6J mouse cerebellum, the highest concentration of [3H]flunitrazepam binding sites was observed over the molecular layer. Intermediate grain density was present over the Purkinje cell layer and intermediate to high density over the deep cerebellar nuclei. Low labeling was observed over the granule cell layer. Negligible concentrations of binding sites were seen in the white matter. In 45-49-day-old Purkinje cell degeneration mutants, where essentially all Purkinje cells have disappeared by day 45, there was a small decrease in grain density over the cerebellar cortex. Concomitantly, a substantial increase in grain density was observed over the deep cerebellar nuclei of the pcd/pcd mutants when compared to littermate controls. A significant increase in [3H]flunitrazepam labeling was observed over the cerebellar cortex of 81-86-day-old wv/wv mutants; this was most pronounced in the vermis where the granule cell loss was greatest. Over the hemispheres, where fewer granule cells degenerate, a lower density of binding sites was seen. Grain density over the wv/wv deep cerebellar nuclei was comparable to that of littermates. Substantially lower [3H]flunitrazepam labeling was detected over the cerebellar cortex of 25-27-day-old sg/sg mutants in which the number of granule, Purkinje and Golgi cells is greatly reduced; the labeling over the deep nuclei, however, was significantly increased. In 27-29-day-old rl/rl mutant cerebella, where all classes of cells are malpositioned, labeling density over all areas of the cerebellar cortex, including the Purkinje cell masses, was increased. Our autoradiographic data suggest that a proportion of cerebellar cortical benzodiazepine receptors are associated with Purkinje cells; we propose that the remainder of the receptors are localized on Golgi cells, while granule cells are devoid of receptors. In the deep cerebellar nuclei, the observed increase in benzodiazepine receptors in the pcd/pcd and sg/sg mutants may be a manifestation of denervation supersensitivity subsequent to the loss of innervation by Purkinje cell axon terminals. The finding of a high receptor density in the Purkinje cell masses of the rl/rl mutant, where Purkinje cells are devoid of afferent basket cell input, suggests that benzodiazepine receptors are expressed and maintained in the absence of a full complement of GABAergic afferents.  相似文献   

10.
3H]AMPA binding to glutamate receptor subpopulations in rat brain   总被引:4,自引:0,他引:4  
The glutamate analog (RS)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA), displaced 11% of the binding of L-[3H]glutamate to rat brain membranes, amounting to 22% of the specific binding displaceable by excess non-radioactive glutamate. AMPA-sensitive L-[3H]glutamate binding was additive with that displaced by kainic acid (1 microM) plus N-methyl-D-aspartate (10 microM) when low concentrations of non-radioactive AMPA (1 microM) were employed to determine non-specific background, but partially overlapped when higher concentration of AMPA (100 microM) were used. [3H]AMPA binding was 21% specific (displaceable by non-radioactive 0.1 mM AMPA) in sodium-, calcium- and chloride-free buffer, but increased to over 30% in the presence of 0.1 M chloride. AMPA-sensitive glutamate binding and AMPA binding were both stimulated dramatically by thiocyanate and by several other anions. [3H]AMPA binding activity was resistant to freezing and thawing, optimal at 0-4 degrees C, and detectable at slightly reduced levels by filtration assays and in tissue section autoradiography. AMPA showed a heterogeneous affinity in displacement of L-[3H]glutamate, and [3H]AMPA binding showed heterogeneity with respect to AMPA, quisqualate, and glutamic acid diethyl ester. Scatchard plots gave a best fit for two sites with Kd values of 28 and 500 nM and Bmax values of 200 and 1800 fmol/mg protein, respectively. [3H]AMPA was inhibited by quisqualate (IC50 = 60 nM), L-glutamate (2 microM), (RS)-3-hydroxy-4,5,6,7-tetrahydroisoxazolo-[5,4-c]-pyridine-7-carboxylic acid (7-HPCA, 5 microM), kainic acid (20 microM) and glutamic acid diethyl ester (21 microM) but insensitive to L-aspartate, ibotenic acid, N-methyl-D-aspartate, (RS)-2-amino-phosphonobutyric acid and (RS)-2-amino-phosphonovaleric acid. This is consistent with labeling of a quisqualate-specific subpopulation of glutamate receptors. The high affinity (28 nM) and intermediate affinity (0.5 microM) AMPA sites had similar pharmacological specificity and brain regional distribution as determined by autoradiography. The latter revealed high densities of [3H]AMPA binding in the superficial layers of the cerebral cortex; stratum pyramidale, stratum radiatum, and stratum oriens of the hippocampus; and stratum moleculare of the dentate gyrus. Within the cerebellum, higher densities of binding were observed in the molecular layer than in the granule cell layer. In many regions, [3H]AMPA binding had a similar distribution to that of L-[3H]glutamate binding displaced by AMPA (1 microM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
In vitro autoradiography was used to characterize and quantitatively map the sodium-independent binding of [3H]glutamate in rat brain. Measured in the presence of chloride, glutamate binding to frozen brain sections was specific, saturable, and reversible, with a Kd in the low micromolar range. At least two distinct binding sites were detected which had different affinities for quisqualic acid (0.7 microM and 1.2 mM). Autoradiograms revealed very high levels of binding in rostral forebrain areas, especially olfactory structures and frontal cortex. High levels of binding were found in sensory cortex, certain hippocampal subfields, caudate, lateral septum, and other limbic structures. Lowest levels were seen in globus pallidus, preoptic area, brainstem reticular formation, and spinal trigeminal nucleus. All other regions, including midbrain, thalamus, hypothalamus, and cerebellar cortex exhibited moderate levels of [3H]glutamate binding. Within the hippocampus glutamate binding was greatest in the inner two-thirds of the dentate molecular layer, subiculum, and CA1 stratum radiatum. CA3 was much less densely labeled; CA2 and CA4 were intermediate. Unlike cell layers in the cerebellum, hippocampal pyramidal and granule cell layers appeared mostly devoid of binding. The relationship of these binding sites to putative glutamate receptor subclasses and glutamatergic pathways is discussed.  相似文献   

12.
Using quantitative autoradiography, we have characterized the binding properties of the non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist [3H]6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in adult human cerebellum. Saturation experiments revealed [3H]CNQX binding to a single class of sites with similar affinity in the molecular and granule cell layer (Kd = 89.0 ± 6.4 and 83.3 ± 9.9nM, respectively). The maximum number of [3H]CNQX binding sites was much higher in the molecular compared to the granule cell layer (Bmax = 16.2 ± 1.1 and 2.8 ± 0.5 pmol/mg protein, respectively). Inhibition experiments were performed in order to examine the pharmacological profile of [3H]CNQX binding in the molecular layer. [3H]CNQX labeled sites with high affinity for both non-NMDA agonists, (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate. Dose-response curves for inhibition of [3H]CNQX by AMPA and Kainate were biphasic. The potency of AMPA for displacement of [3H]CNQX binding (Ki © 1994 Wiley-Liss, Inc.:2.8 ± 0.8 nM and 12.5 ± 0.8 μM) was 4- to 6-fold greater than the corresponding potency of kainate (Ki:18.1 ± 5.7 nm and 48.7 ± 9.3 μM). In conclusion, the pharmacological analysis of [3H]CNQX binding in the human cerebellar molecular layer reflects the existence of multiple binding sites of the non-NMDA receptor that have different affinities for both AMPA and kainate. © 1994 Wiley-Liss, Inc.  相似文献   

13.
We used in vitro receptor autoradiography to study four cases of olivopontocerebellar atrophy (OPCA) and three age- and postmortem delay-matched controls. In OPCA, benzodiazepine receptors were unchanged in cerebellar cortex but increased in the dentate nucleus, perhaps related to loss of Purkinje cell or brainstem afferents. Muscimol binding was reduced primarily in the granule cell layer. The density of muscarinic cholinergic receptors was reduced in molecular and granule cell layers, but appeared increased in the dentate.  相似文献   

14.
The 22L strain of scrapie was injected stereotaxically into the cerebellum of C57BL/6J mice to determine its effect on several cerebellar neurotransmitter systems during the early clinical stages of the disease. In this model vacuolar lesions are restricted to the cerebellum with no evidence of vacuolization in other brain regions. Although vacuolar lesions develop throughout all cell layers of the cerebellum, they are most severe in the granule cell layer. Modest but significant (P less than 0.01) reductions in cerebellar weight, glutamate decarboxylase activity, and in the affinity of the N6-[adenine-2,8-3H]cyclohexyladenosine binding sites, were observed in scrapie affected mice. The densities of the high- and low-affinity adenosine receptors were unaffected. Adenosine receptors in the cerebellum are highly localized to the axon terminals of the glutamatergic, GABA receptive granule cells. GABA, benzodiazepine, glutamate, and muscarinic cholinergic receptors were not significantly altered. In addition, the high-affinity uptake of glutamate, and the activity of choline acetyltransferase were not significantly changed. GABA high-affinity uptake was slightly increased. Even though the granule cell layer of the cerebellum had undergone severe vacuolation, only modest neurotransmitter changes were apparent. Although these results suggest a tenuous relationship between scrapie pathology and the integrity of neurotransmitter systems, it is possible that compensatory neurochemical changes in uncompromised neuronal populations may have masked potentially specific neurotransmitter effects.  相似文献   

15.
Previous studies have shown that the alpha subunit of the GABAA receptor contains the flunitrazepam binding site. In the present study, in situ hybridization and receptor autoradiography were used to examine the temporal and spatial relationships between alpha 1 subunit mRNA and [3H]flunitrazepam binding sites in the developing mouse cerebellum. A [35S]cRNA probe was used to study the expression of GABAA/benzodiazepine receptor alpha 1 subunit mRNA by in situ hybridization. At postnatal day (P) 1, a diffuse band of labeling was observed in the molecular/Purkinje cell layer; subsequently, this band became progressively more concentrated and restricted to the interface between the granular and molecular layers. By P5-P7, high intensity labeling was clearly associated with Purkinje cells. Clusters of grains became visible over basket and stellate cells in the molecular layer between P11 and P13; the internal granule cell layer and the deep cerebellar nuclei showed an increasingly strong hybridization signal during postnatal development. The external germinal layer was devoid of labeling throughout its existence. The developmental distribution of [3H]flunitrazepam binding sites was studied by receptor autoradiography. Cerebellar labeling was detectable at birth, with the highest levels present over the deep cerebellar nuclei, and relatively low levels equally distributed over the molecular and Purkinje cell layers. Cerebellar cortical grain density increased gradually during postnatal weeks 1 and 2, with the molecular, Purkinje and granule cell layers remaining essentially equally labeled. Between P11 and P15, the labeling over the molecular layer increased dramatically, reaching the high adult levels by P20. As with the in situ hybridization studies, there was a complete absence of [3H]flunitrazepam binding sites in the external germinal layer throughout development. These results indicate that, in the Purkinje cell, the production of mRNA and the synthesis of the alpha 1 subunit occur prior to the formation of afferent inhibitory synapses, suggesting that GABAA/benzodiazepine receptor expression precedes, and is independent of GABAergic synaptic input.  相似文献   

16.
In vitro quantitative autoradiography with [3H]MK-801 was used to determine Kd and Bmax values for the NMDA receptor-coupled channel in subregions of the rat hippocampal formation. A single form of the channel with an apparent Kd in the 15-20 nM range was found for [3H]MK-801 binding in the presence of both 1 microM glutamate and 1 microM glycine. Specific binding was highest in the molecular layer of the dentate gyrus, followed by CA1 stratum radiatum and CA1 stratum oriens. Fewer binding sites were observed in the hilus of the dentate gyrus, cerebral cortex, CA1 stratum pyramidale, CA3 subregion (stratum oriens, stratum pyramidale, stratum radiatum), and thalamus. Selective destruction of dentate granule cells by colchicine microinjections reduced the amount of specific [3H]MK-801 binding by half in the molecular layer of the dentate, compared to intact tissue. [3H]MK-801 binding did not change in other hippocampal subregions as a consequence of colchicine injection. Electrolytic entorhinal cortical lesions produced no changes in regional MK-801 binding site density in any of the regions under study. To address the tissue shrinkage following entorhinal cortex lesions, detailed analysis of the binding site density per fixed (16 microns) length of granule cell dendrite, and of the aggregate density across the entire molecular layer revealed no change in the number of MK-801 binding sites per unit length of dendrite in the molecular layer of the dentate gyrus. These findings indicate that NMDA receptor-coupled channels are confined to a postsynaptic location in the perforant path-dentate granule cell system of the adult rat.  相似文献   

17.
Postmortem cerebellar and frontal cortical membrane homogenates from human alcoholics, control subjects without neurological or psychiatric illnesses, and rats that chronically drank alcohol were studied to determine the binding characteristics of an imidazobenzodiazepine, [3H]Ro 15-4513. This ligand binds to classical gamma-aminobutyric acidA (GABAA)/benzodiazepine receptors, as well as to a "diazepam-insensitive" site associated with the GABAA receptor complex in the cerebellar granule cell layer. There were no differences in the density of the binding sites between alcoholics and their controls, between alcohol-drinking AA rats that had a choice between 10% alcohol or water for about 10 weeks and their controls, or between Wistar rats that had been given 20% alcohol as their only fluid for 4 months and their controls, which were pair-fed isocalorically with sucrose. The affinity for the cerebellar binding of [3H]Ro 15-4513 was higher in the alcoholics than the controls. No differences were observed in the frontocortical binding. No affinity differences were observed in the rat models. There were no differences between the groups in the characteristics of [3H]Ro 15-4513 binding to human cerebellum in the presence of micromolar diazepam, thus revealing the diazepam-insensitive binding. When this component was subtracted from the total cerebellar binding, to reveal the diazepam sensitive binding, both the KD and Bmax were lower in the alcoholic than the control group. The binding of [3H]muscimol, a GABAA agonist, tended to be higher in the frontal cortices of alcoholics; a similar trend for greater effects was observed in the alcoholics for the GABA inhibition of [3H]Ro 15-4513 binding. These results suggest that no drastic changes occur through chronic alcohol abuse in the numbers of cerebellar and frontocortical benzodiazepine receptors in humans and rodent models; however, the data indicate that the alcoholics have either acquired or innate differences in classical benzodiazepine recognition sites of the cerebellum and in the coupling of these sites to GABAA sites in the frontal cortex, without any differences in cerebellar granule cell-specific diazepam-insensitive [3H]Ro 15-4513 binding sites.  相似文献   

18.
Four lines of mutant mice were used to investigate (1) the neuronal localization of cannabinoid receptors in the cerebellar molecular layer and (2) the anatomical association of these receptors with elements of the two second messenger systems in the brain. Two of the mutant lines--Purkinje cell degeneration and nervous--are selectively deficient in Purkinje cells; the other two--weaver and reeler--are deficient in granule cells. In the heterozygous mice, [3H]CP 55,940 binding to cannabinoid receptors was discretely and densely localized to the molecular layer, as was [3H]forskolin binding to adenylate cyclase and [3H]phorbol 12,13-dibutyrate binding to protein kinase C, a component of the phosphoinositide cycle. [3H]CP 55,940 and [3H]forskolin binding was selectively reduced in weaver and reeler homozygous mice but unchanged in Purkinje cell deficient and nervous homozygotes. No decreases in [3H]phorbol 12,13-dibutyrate binding were found in any of the homozygous mutants relative to the heterozygous littermates. The results suggest that cannabinoid receptors and adenylate cyclase are localized to granule cell axons in the molecular layer, whereas protein kinase C is equally distributed in parallel fibers and Purkinje cell dendrites.  相似文献   

19.
The distribution of muscarinic receptors in the developing rodent cerebellum was studied by light microscopic autoradiography of [3H]quinuclidinyl benzilate binding sites. Muscarinic receptors were not detected in the mouse cerebellar plate until embryonic day 16, at which time they were clustered in the ventromedial region of the cerebellar anlagen. At postnatal day 1, additional areas of higher grain density became visible in the dorsolateral medullary zone, internal to the newly forming granular layer. Labeling increased throughout the entire cerebellum between postnatal days 5 and 10, becoming markedly higher in the lateral hemispheres than in the vermis. This elevated density of binding sites in the hemispheres became reduced to that of the vermis by postnatal day 13 in the mouse, and PD20 in the rat. In adult animals, the cortical grain density was highest in the granule and Purkinje cell layers, low in the molecular layer and absent from the white matter. Receptor labeling was, however, observed over many areas of white matter throughout early development; this became more restricted to specific tracts during the third postnatal week. At no time during development were binding sites observed in the external germinal layer. Microvessels and capillaries, structures which have been shown to contain [3H]quinuclidinyl benzilate binding sites, may partially account for the observed ontogenic pattern.  相似文献   

20.
Following lesions of the fimbria-fornix, there is a time-dependent increase in interictal spikes and seizure susceptibility. This may result from sprouting of local excitatory and inhibitory circuits in response to the loss of subcortical and commissural innervation of the hippocampal formation. We used receptor autoradiography to examine the density of N-methyl-D-aspartate (NMDA)-sensitive L-[3H]glutamate and [3H]-kainate (KA) binding sites in the hippocampal formation at 5 days, 3 months, and 1 year following bilateral aspiration lesions of the fimbria-fornix. At 5 days post-lesion, the CA3 and CA1 strata radiatum and oriens displayed a decrease (20-42%, P less than 0.01) in NMDA-sensitive L-[3H]glutamate binding. The initial decrease was followed by a moderate recovery at later time points but was still evident at 1 year postlesion. This may reflect a lesion-induced turnover of synaptic complexes, down-regulation of postsynaptic receptors, or loss of presynaptic receptors. Five days following fimbria-fornix lesion there was also a decrease (13-15%, P less than 0.05) in [3H]KA binding in CA3 strata radiatum and pyramidale. However, at 3 months postlesion KA receptor density was elevated by 29-33% (P less than 0.01) in the outer molecular layer of the dentate gyrus with no significant change in binding to the inner molecular layer. By 1 year postlesion, the density of [3H]KA binding sites was not significantly different from that observed in control animals of the same age. The increase in KA receptor density in the outer molecular layer 3 months after fimbria-fornix lesion may reflect sprouting of the perforant path input or mossy fibers to this region and contribute to the increase in interictal spikes and seizures susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号