首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 514 Shiga toxin-producing Escherichia coli (STEC) isolates from diarrheic and healthy cattle in Spain were characterized in this study. PCR showed that 101 (20%) isolates carried stx(1) genes, 278 (54%) possessed stx(2) genes, and 135 (26%) possessed both stx(1) and stx(2). Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 326 (63%) and in 151 (29%) of the isolates, respectively. STEC isolates belonged to 66 O serogroups and 113 O:H serotypes (including 23 new serotypes). However, 67% were of one of these 15 serogroups (O2, O4, O8, O20, O22, O26, O77, O91, O105, O113, O116, O157, O171, O174, and OX177) and 52% of the isolates belonged to only 10 serotypes (O4:H4, O20:H19, O22:H8, O26:H11, O77:H41, O105:H18, O113:H21, O157:H7, O171:H2, and ONT:H19). Although the 514 STEC isolates belonged to 164 different seropathotypes (associations between serotypes and virulence genes), only 12 accounted for 43% of isolates. Seropathotype O157:H7 stx(2) eae-gamma1 ehxA (46 isolates) was the most common, followed by O157:H7 stx(1) stx(2) eae-gamma1 ehxA (34 isolates), O113:H21 stx(2) (25 isolates), O22:H8 stx(1) stx(2) ehxA (15 isolates), O26:H11 stx(1) eae-beta1 ehxA (14 isolates), and O77:H41 stx(2) ehxA (14 isolates). Forty-one (22 of serotype O26:H11) isolates had intimin beta1, 82 O157:H7 isolates possessed intimin gamma1, three O111:H- isolates had intimin type gamma2, one O49:H- strain showed intimin type delta, 13 (six of serotype O103:H2) isolates had intimin type epsilon and eight (four of serotype O156:H-) isolates had intimin zeta. We have identified a new variant of the eae intimin gene designated xi (xi) in two isolates of serotype O80:H-. The majority (85%) of bovine STEC isolates belonged to serotypes previously found for human STEC organisms and 54% to serotypes associated with STEC organisms isolated from patients with hemolytic uremic syndrome. Thus, this study confirms that cattle are a major reservoir of STEC strains pathogenic for humans.  相似文献   

2.
Fecal swabs obtained from 1,300 healthy lambs in 93 flocks in Spain in 1997 were examined for Shiga toxin-producing Escherichia coli (STEC). STEC O157:H7 strains were isolated from 5 (0.4%) animals in 4 flocks, and non-O157 STEC strains were isolated from 462 (36%) lambs in 63 flocks. A total of 384 ovine STEC strains were characterized in this study. PCR showed that 213 (55%) strains carried the stx(1) gene, 10 (3%) possessed the stx(2) gene, and 161 (42%) carried both the stx(1) and the stx(2) genes. Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 106 (28%) and 23 (6%) of the STEC strains, respectively. The STEC strains belonged to 35 O serogroups and 64 O:H serotypes (including 18 new serotypes). However, 72% were of 1 of the following 12 serotypes: O5:H-, O6:H10, O91:H-, O117:H-, O128:H-, O128:H2, O136:H20, O146:H8, O146:H21, O156:H-, O166:H28, and ONT:H21 (where NT is nontypeable). Although the 384 STEC strains belonged to 95 different seropathotypes (associations between serotypes and virulence genes), 49% of strains belonged to only 11. O91:H- stx(1) stx(2) (54 strains) was the most common seropathotype, followed by O128:H- stx(1) stx(2) (33 strains) and O6:H10 stx(1) (25 strains). Three strains of serotypes O26:H11, O156:H11, and OX177:H11 had intimin type beta1; 5 strains of serotype O157:H7 possessed intimin type gamma1; and 15 strains of serotypes O49:H-, O52:H12, O156:H- (12 strains), and O156:H25 had the new intimin, intimin type zeta. The majority (82%) of ovine STEC strains belonged to serotypes previously found to be associated with human STEC strains, and 51% belonged to serotypes associated with STEC strains isolated from patients with hemolytic-uremic syndrome. Thus, this study confirms that healthy sheep are a major reservoir of STEC strains pathogenic for humans.  相似文献   

3.
We have investigated 677 Shiga toxin-producing Escherichia coli (STEC) strains from humans to determine their serotypes, virulence genes, and clinical signs in patients. Six different Shiga toxin types (1, 1c, 2, 2c, 2d, and 2e) were distributed in the STEC strains. Intimin (eae) genes were present in 62.6% of the strains and subtyped into intimins alpha1, beta1, gamma1, epsilon, theta, and eta. Shiga toxin types 1c and 2d were present only in eae-negative STEC strains, and type 2 was significantly (P < 0.001) more frequent in eae-positive STEC strains. Enterohemorrhagic E. coli hemolysin was associated with 96.2% of the eae-positive strains and with 65.2% of the eae-negative strains. Clinical signs in the patients were abdominal pain (8.7%), nonbloody diarrhea (59.2%), bloody diarrhea (14.3%), and hemolytic-uremic syndrome (HUS) (3.5%), and 14.3% of the patients had no signs of gastrointestinal disease or HUS. Infections with eae-positive STEC were significantly (P < 0.001) more frequent in children under 6 years of age than in other age groups, whereas eae-negative STEC infections dominated in adults. The STEC strains were grouped into 74 O:H types by serotyping and by PCR typing of the flagellar (fliC) genes in 221 nonmotile STEC strains. Eleven serotypes (O157:[H7], O26:[H11], O103:H2, O91:[H14], O111:[H8], O145:[H28], O128:H2, O113:[H4], O146:H21, O118:H16, and O76:[H19]) accounted for 69% of all STEC strains. We identified 41 STEC strains belonging to 31 serotypes which had not previously been described as human STEC. Twenty-six of these were positive for intimins alpha1 (one serotype), beta1 (eight serotypes), epsilon (two serotypes), and eta (three serotypes). Our study indicates that different types of STEC strains predominate in infant and adult patients and that new types of STEC strains are present among human isolates.  相似文献   

4.
During a 1-year survey of Shiga toxin-producing Escherichia coli (STEC) prevalence in central France, 2,143 samples were investigated by PCR for Shiga toxin-encoding genes. A total of 330 (70%) of 471 fecal samples collected from healthy cattle at the Clermont-Ferrand slaughterhouse, 47 (11%) of 411 beef samples, 60 (10%) of 603 cheese samples, and 19 (3%) of 658 stool specimens from hospitalized children with and without diarrhea were positive for the stx gene(s). A STEC strain was isolated from 34% (162 of 471) of bovine feces, 4% (16 of 411) of beef samples, 1% (5 of 603) of cheese samples, and 1.5% (10 of 658) of stool specimens. Of the 220 STEC strains isolated, 34 (15%) harbored the stx(1) gene, 116 (53%) harbored the stx(2) gene, and 70 (32%) carried both the stx(1) and stx(2) genes. However, 32 (14.5%) were not cytotoxic for Vero cells. The eae gene, found in 12 (5%) of the 220 strains, was significantly associated with the stx(1) gene and with isolates from children. Sequences homologous to ehxA were found in 102 (46%) of the 220 strains. Thirteen serotypes, OX3:H2, O113:H21, O113:H4, OX3:H21, O6:H10, OX178:H19, O171:H2, O46:H38, O172:H21, O22:H16, O91:H10, O91:H21, and O22:H8, accounted for 102 (55%) of 186 typeable isolates, and only one strain (0.5% of the 186 STEC isolates from cattle), belonged to the O157:H7 serotype. We showed that the majority of the STEC isolates from cattle, beef, and cheese were not likely to be pathogenic for humans and that the STEC strains isolated from children in this study were probably not responsible for diarrheal disease. Finally, the strains associated with hemolytic-uremic syndrome in the same geographical area were shown to belong to particular subsets of the STEC population found in the bovine reservoir.  相似文献   

5.
The distribution of eight putative adhesins that are not encoded in the locus for enterocyte effacement (LEE) in 139 Shiga toxin-producing Escherichia coli (STEC) of different serotypes was investigated by PCR. Five of the adhesins (Iha, Efa1, LPF(O157/OI-141), LPF(O157/OI-154), and LPF(O113)) are encoded in regions corresponding to genomic O islands of E. coli EDL933, while the other three adhesins have been reported to be encoded in the STEC megaplasmid of various serotypes (ToxB [O157:H7], Saa [O113:H21], and Sfp [O157:NM]). STEC strains were isolated from humans (n = 54), animals (n = 52), and food (n = 33). They were classified into five seropathotypes (A through E) based on the reported occurrence of STEC serotypes in human disease, in outbreaks, and in the hemolytic-uremic syndrome (M. A. Karmali, M. Mascarenhas, S. Shen, K. Ziebell, S. Johnson, R. Reid-Smith, J. Isaac-Renton, C. Clark, K. Rahn, and J. B. Kaper, J. Clin. Microbiol. 41:4930-4940, 2003). The most prevalent adhesin was that encoded by the iha gene (91%; 127 of 139 strains), which was distributed in all seropathotypes. toxB and efa1 were present mainly in strains of seropathotypes A and B, which were LEE positive. saa was present only in strains of seropathotypes C, D, and E, which were LEE negative. Two fimbrial genes, lpfA(O157/OI-141) and lpfA(O157/OI-154), were strongly associated with seropathotype A. The fimbrial gene lpfA(O113) was present in all seropathotypes except for seropathotype A, while sfpA was not present in any of the strains studied. The distribution of STEC adhesins depends mainly on serotypes and not on the source of isolation. Seropathotype A, which is associated with severe disease and frequently is involved in outbreaks, possesses a unique adhesin profile which is not present in the other seropathotypes. The wide distribution of iha in STEC strains suggested that it could be a candidate for vaccine development.  相似文献   

6.
stx(2) genes from 138 Shiga toxin-producing Escherichia coli (STEC) isolates, of which 127 were of bovine origin (58 serotypes) and 11 of human origin (one serotype; O113:H21), were subtyped. The bovine STEC isolates from Australian cattle carried ehxA and/or eaeA and predominantly possessed stx(2-EDL933) (103 of 127; 81.1%) either in combination with stx(2vhb) (32 of 127; 25.2%) or on its own (52 of 127; 40.4%). Of 22 (90.9%) bovine isolates of serotype O113:H21, a serotype increasingly recovered from patients with hemolytic uremic syndrome (HUS) or hemorrhagic colitis, 20 contained both stx(2-EDL933) and stx(2vhb); 2 isolates contained stx(2vhb) only. Although 7 of 11 (63.6%) human O113:H21 isolates associated with diarrhea possessed stx(2-EDL933), the remaining 4 isolates possessed a combination of stx(2-EDL933) and stx(2vhb). Three of the four were from separate sporadic cases of HUS, and one was from an unknown source.  相似文献   

7.
A group of 1,623 ovine fecal samples recovered from 65 geographically distinct mutton sheep and prime lamb properties across New South Wales, Australia, were screened for the presence of Shiga toxin-producing Escherichia coli (STEC) virulence factors (stx(1), stx(2), eaeA, and ehxA). A subset was cultured for STEC isolates containing associated virulence factors (eaeA and/or ehxA), which were isolated from 17 of 20 (85%) and 19 of 20 (95%) tested prime lamb and mutton sheep properties, respectively. STEC isolates containing stx(1), stx(2), and ehxA were most commonly isolated (19 of 40 flocks; 47.5%), and this profile was observed for 10 different serotypes. Among 90 STEC isolates studied, the most common serotypes were O91:H(-) (22 isolates [24.4%]), O5:H(-) (16 isolates [17.8%]), O128:H2 (11 isolates [12.2%]), O123:H(-) (8 isolates [8.9%]), and O85:H49 (5 isolates [5.6%]). Two isolates (2.2%) were typed as O157:H(-). A total of 78 of 90 STEC isolates (86.7%) expressed Shiga toxin in Vero cell culture and 75 of 84 ehxA-positive isolates (89.3%) expressed enterohemolysin on washed sheep blood agar. eaeA was observed in 11 of 90 (12.2%) ovine STEC isolates, including serotypes O5:H(-), O84:H(-), O85:H49, O123:H(-) O136:H40, and O157:H(-). Although only 2 of 90 isolates were typed as O157:H(-), the predominant serotypes recovered during this study have been recovered from human patients with clinical disease, albeit rarely.  相似文献   

8.
The capacity of Shiga toxigenic Escherichia coli (STEC) to adhere to the intestinal mucosa undoubtedly contributes to pathogenesis of human disease. The majority of STEC strains isolated from severe cases produce attaching and effacing lesions on the intestinal mucosa, a property mediated by the locus of enterocyte effacement (LEE) pathogenicity island. This element is not essential for pathogenesis, as some cases of severe disease, including hemolytic uremic syndrome (HUS), are caused by LEE-negative STEC strains, but the mechanism whereby these adhere to the intestinal mucosa is not understood. We have isolated a gene from the megaplasmid of a LEE-negative O113:H21 STEC strain (98NK2) responsible for an outbreak of HUS, which encodes an auto-agglutinating adhesin designated Saa (STEC autoagglutinating adhesin). Introduction of saa cloned in pBC results in a 9.7-fold increase in adherence of E. coli JM109 to HEp-2 cells and a semilocalized adherence pattern. Mutagenesis of saa in 98NK2, or curing the wild-type strain of its megaplasmid, resulted in a significant reduction in adherence. Homologues of saa were found in several unrelated LEE-negative STEC serotypes, including O48:H21 (strain 94CR) and O91:H21 (strain B2F1), which were also isolated from patients with HUS. Saa exhibits a low degree of similarity (25% amino acid [aa] identity) with YadA of Yersinia enterocolitica and Eib, a recently described phage-encoded immunoglobulin binding protein from E. coli. Saa produced by 98NK2 is 516 aa long and includes four copies of a 37-aa direct repeat sequence. Interestingly, Saa produced by other STEC strains ranges in size from 460 to 534 aa as a consequence of variation in the number of repeats and/or other insertions or deletions immediately proximal to the repeat domain.  相似文献   

9.
During the past 10 years Shiga toxin-producing Escherichia coli (STEC) has emerged as one of the most important causes of food-borne infections in industrialized countries. In Finland, with a population of 5.1 million, however, only four STEC O157:H7 infections were identified from 1990 through 1995; the occurrence of non-O157 STEC infections was unknown. In 1996, we established a national prospective study to determine the prevalence of STEC serotypes in feces of Finns with bloody diarrhea. During this enhanced 1-year study period eight sporadic cases of STEC infection were found; of them, only two were indigenously acquired O157:H7 infections. In 1997, O157 infections increased dramatically, with O157 strains causing 51 of all 61 STEC infections. Altogether 14 non-O157:H7 STEC strains were found in Finland in the 1990s: O26:H11 (four strains), O26:HNM (HNM indicates nonmotile), O2:H29, O91:H21, O91:H40, O101:HNM, O107:H27, O157:HNM, O165:H25, OX3:H21, and Rough:H49. All O157:H7 and O26:H11 isolates produced enterohemolysin, but seven of the other STEC strains did not. Most (n = 63) of the 71 STEC strains isolated carried the stx2 gene only, five carried the stx1 gene only, and three carried both genes. The eaeA gene was detected in all other isolates except five non-O157 strains. There were seven distinct pulsed-field gel electrophoresis (PFGE) genotypes among 57 O157 strains and three distinct PFGE types among four O26:H11 strains. The main PFGE type was found among 65% of all O157 isolates.  相似文献   

10.
We have analyzed the prevalence of Shiga toxin-producing Escherichia coli (STEC) in stool specimens of patients with diarrhea or other gastrointestinal alterations from the Xeral-Calde Hospital of Lugo City (Spain). STEC strains were detected in 126 (2.5%) of 5,054 cases investigated, with a progressive increase in the incidence from 0% in 1992 to 4.4% in 1999. STEC O157:H7 was isolated in 24 cases (0.5%), whereas non-O157 STEC strains were isolated from 87 patients (1.7%). STEC strains were (after Salmonella and Campylobacter strains) the third most frequently recovered enteropathogenic bacteria. A total of 126 human STEC isolates were characterized in this study. PCR showed that 43 (34%) isolates carried stx(1) genes, 45 (36%) possessed stx(2) genes and 38 (30%) carried both stx(1) and stx(2). A total of 88 (70%) isolates carried an ehxA enterohemolysin gene, and 70 (56%) isolates possessed an eae intimin gene (27 isolates with type gamma1, 20 with type beta1, 8 with type zeta, 5 with type gamma2, and 3 with type epsilon). STEC isolates belonged to 41 O serogroups and 66 O:H serotypes, including 21 serotypes associated with hemolytic uremic syndrome and 30 new serotypes not previously reported among human STEC strains in other studies. Although the 126 STEC isolates belonged to 81 different seropathotypes (associations between serotypes and virulence genes), only four accounted for 31% of isolates. Seropathotype O157:H7 stx(1) stx(2) eae-gamma1 ehxA was the most common (13 isolates) followed by O157:H7 stx(2) eae-gamma1 ehxA (11 isolates), O26:H11 stx(1) eae-beta1 ehxA (11 isolates), and O111:H- stx(1) stx(2) eae-gamma2 ehxA (4 isolates). Our results suggest that STEC strains are a significant cause of human infections in Spain and confirm that in continental Europe, infections caused by STEC non-O157 strains are more common than those caused by O157:H7 isolates. The high prevalence of STEC strains (both O157:H7 and non-O157 strains) in human patients, and their association with serious complications, strongly supports the utilization of protocols for detection of all serotypes of STEC in Spanish clinical microbiology laboratories.  相似文献   

11.
Shiga toxigenic Escherichia coli (STEC) strains are a diverse group of organisms capable of causing severe gastrointestinal disease in humans. Within the STEC family, eae-positive STEC strains, particularly those belonging to serogroups O157 and O111, appear to have greater virulence for humans. However, in spite of being eae negative, STEC strains belonging to serogroup O113 have frequently been associated with cases of severe STEC disease, including hemolytic-uremic syndrome (HUS). Western blot analysis with convalescent-phase serum from a patient with HUS caused by an O113:H21 STEC strain indicated that human immune responses were directed principally against lipopolysaccharide O antigen. Accordingly, the serum was used to isolate a clone expressing O113 O antigen from a cosmid library of O113:H21 DNA constructed in E. coli K-12. Sequence analysis indicated that the O113 O-antigen biosynthesis (rfb) locus contains a cluster of nine genes which may be cotranscribed. Comparison with sequence databases identified candidate genes for four glycosyl transferases, an O-acetyl transferase, an O-unit flippase, and an O-antigen polymerase, as well as copies of galE and gnd. Two additional, separately transcribed genes downstream of the O113 rfb region were predicted to encode enzymes involved in synthesis of activated sugar precursors, one of which (designated wbnF) was essential for O113 O-antigen synthesis, and so is clearly a part of the O113 rfb locus. Interestingly, expression of O113 O antigen by E. coli K-12 significantly increased in vitro adherence to both HEp-2 and Henle 407 cells.  相似文献   

12.
Shiga toxin 2 (Stx2) has been reported as the main Shiga toxin associated with human disease. In addition, the Stx2 toxin type can have a profound impact on the degree of tissue damage in animal models. We have characterized the stx(2) subtype of 168 Shiga toxin-producing Escherichia coli (STEC) isolates of which 146 were derived from ovine sources (principally feces and meat) and 22 were isolated from humans. The ovine STEC isolates were of serotypes that have been shown to occur commonly in the gastrointestinal tract of healthy sheep. The major stx(2) subtype in the ovine isolates was shown to be stx(2d-Ount) (119 of 146 [81.5%]) and was predominantly associated with serotypes O75:H(-)/H8/H40, O91:H(-), O123:H(-), O128:H2, and OR:H2. However, 17 of 18 (94.4%) ovine isolates of serotype O5:H(-) possessed a stx(2d-O111/OX3a) subtype. Furthermore, STEC isolates of serotypes commonly found in sheep and recovered from both clinical and nonclinical human infections also contained a stx(2d) (stx(2d-Ount/O111/OX3a)) subtype. These studies suggest that a specific stx(2) subtype(s) associates with serotype and may have important epidemiological implications for tracing sources of E. coli during outbreaks of STEC-associated diseases in humans.  相似文献   

13.
Tellurite-containing media are widely used for the screening and isolation of Shiga toxin-producing Escherichia coli (STEC) O157:H7, but tellurite resistance among non-O157 STEC is poorly characterized. Therefore, we investigated 202 STEC strains representing 61 different serotypes from humans, animals or food for the presence of ter genes by PCR and their correlation with tellurite resistance, by assessing growth on cefixime-tellurite sorbitol MacConkey agar. All strains were screened for terC, terE and terF as markers for the ter gene cluster. Of the 202 strains, 127 contained terC and terE and were tellurite-resistant, but only 121 of these also contained terF. All 72 non-sorbitol-fermenting O157:H7 and O157:NM (non-motile) strains contained terC, terE and terF and expressed tellurite resistance. In contrast, all eight sorbitol-fermenting STEC O157:NM were terC-, terE- and terF-negative and tellurite-sensitive. Among non-O157 STEC, terC, terE and terF were found in all seven O145:NM, four O111:H8/NM, 17 of 18 O26:H11/NM and in 21 strains of 14 other serotypes. The strong correlation between the presence of ter genes and the ability to grow on tellurite-containing media suggest that the ter genes encode tellurite resistance in the vast majority of these strains. The presence of the ter gene cluster was significantly (P<0.00001) associated with the presence of eae genes. We conclude that the use of tellurite-containing media in screening for STEC will allow the detection of STEC O26, O111, O145 and non-sorbitol-fermenting O157, but most strains (in this study 74.3%) from other serotypes will be missed.  相似文献   

14.
Unlike Shiga toxin 2 (stx(2)) genes, most nucleotide sequences of Shiga toxin 1 (stx(1)) genes from Shiga toxin-producing Escherichia coli (STEC), Shigella dysenteriae, and several bacteriophages (H19B, 933J, and H30) are highly conserved. Consequently, there has been little incentive to investigate variants of stx(1) among STEC isolates derived from human or animal sources. However stx(1OX3), originally identified in an OX3:H8 isolate from a healthy sheep in Germany, differs from other stx(1) subtypes by 43 nucleotides, resulting in changes to 12 amino acid residues, and has been renamed stx(1c). In this study we describe the development of a PCR-restriction fragment length polymorphism (RFLP) assay that distinguishes stx(1c) from other stx(1) subtypes. The PCR-RFLP assay was used to study 378 stx(1)-containing STEC isolates. Of these, 207 were isolated from sheep, 104 from cattle, 45 from humans, 11 from meat, 5 from swine, 5 from unknown sources, and 1 from a cattle water trough. Three hundred fifty-five of the 378 isolates (93.9%) also possessed at least one other associated virulence gene (ehxA, eaeA, and/or stx(2)); the combination stx(1), stx(2), and ehxA was the most common (175 of 355 [49.3%]), and 90 of 355 (25.4%) isolates possessed eaeA. One hundred thirty-six of 207 (65.7%) ovine isolates possessed stx(1c) alone and belonged to 41 serotypes. Seventy-one of 136 (52.2%) comprised the common ovine serotypes O5:H(-), O128:H2, and O123:H(-). Fifty-two of 207 isolates (25.1%) possessed an stx(1) subtype; 27 (51.9%) of these belonged to serotype O91:H(-). Nineteen of 207 isolates (9.2%) contained both stx(1c) and stx(1) subtypes, and 14 belonged to serotype O75:H8. In marked contrast, 97 of 104 (93.3%) bovine isolates comprising 44 serotypes possessed an stx(1) subtype, 6 isolates possessed stx(1c), and the remaining isolate possessed both stx(1c) and stx(1) subtypes. Ten of 11 (91%) isolates cultured from meat in New Zealand possessed stx(1c) (serotypes O5:H(-), O75:H8/H40, O81:H26, O88:H25, O104:H(-)/H7, O123:H(-)/H10, and O128:H2); most of these serotypes are commonly recovered from the feces of healthy sheep. Serotypes containing stx(1) recovered from cattle rarely were the same as those isolated from sheep. Although an stx(1c) subtype was never associated with the typical enterohemorrhagic E. coli serogroups O26, O103, O111, O113, and O157, 13 human isolates possessed stx(1c). Of these, six isolates with serotype O128:H2 (from patients with diarrhea), four O5:H(-) isolates (from patients with hemolytic-uremic syndrome), and three isolates with serotypes O123:H(-) (diarrhea), OX3:H8 (hemolytic-uremic syndrome), and O81:H6 (unknown health status) represent serotypes that are commonly isolated from sheep.  相似文献   

15.
A total of 722 Shiga toxin-producing Escherichia coli (STEC) isolates recovered from humans, cattle, ovines and food during the period from 1992 to 1999 in Spain were examined to determine antimicrobial resistance profiles and their association with serotypes, phage types and virulence genes. Fifty-eight (41%) out of 141 STEC O157:H7 strains and 240 (41%) out of 581 non-O157 STEC strains showed resistance to at least one of the 26 antimicrobial agents tested. STEC O157:H7 showed a higher percentage of resistant strains recovered from bovine (53%) and beef meat (57%) than from human (23%) and ovine (20%) sources, whereas the highest prevalence of antimicrobial resistance in non-O157 STEC was found among isolates recovered from beef meat (55%) and human patients (47%). Sulfisoxazole (36%) had the most common antimicrobial resistance, followed by tetracycline (32%), streptomycin (29%), ampicillin (10%), trimethoprim (8%), cotrimoxazole (8%), chloramphenicol (7%), kanamycin (7%), piperacillin (6%), and neomycin (5%). The multiple resistance pattern most often observed was that of streptomycin, sulfisoxazole, and tetracycline. Ten (7%) STEC O157:H7 and 71 (12%) non-O157 strains were resistant to five or more antimicrobial agents. Most strains showing resistance to five or more antimicrobial agents belonged to serotypes O4:H4 (4 strains), O8:H21 (3 strains), O20:H19 (6 strains), O26:H11 (8 strains eae-beta1), O111:H- (3 strains eae-gamma2), O118:H- (2 strains eae-beta1), O118:H16 (5 strains eae-beta1), O128:H- (2 strains), O145:H8 or O145:H- (2 strains eae-gamma1), O157:H7 (10 strains eae-gamma1), O171:H25 (3 strains), O177:H11 (5 strains eae-beta1), ONT:H- (3 strains/1 eae-beta1) and ONT:H21 (2 strains). Interestingly, most of these serotypes, i.e., those indicated in bold) were found among human STEC strains isolated from patients with hemolytic uremic-syndrome (HUS) reported in previous studies. We also detected, among non-O157 strains, an association between a higher level of multiple resistance to antibiotics and the presence of the virulence genes eae and stx(1). Moreover, STEC O157:H7, showed an association between certain phage types, PT21/28 (90%), PT23 (75%), PT34 (75%), and PT2 (54%), with a higher number of resistant strains. We conclude that the high prevalence of antimicrobial resistance detected in our study is a source of concern, and cautious use of antibiotics in animals is highly recommended.  相似文献   

16.
Infections with Shiga toxin-producing Escherichia coli (STEC) result in frequent cases of sporadic and outbreak-associated enteric bacterial disease in humans. Classification of STEC is by stx genotype (encoding the Shiga toxins), O and H antigen serotype, and seropathotype (subgroupings based upon the clinical relevance and virulence-related genotypes of individual serotypes). The espZ gene is encoded in the locus of enterocyte effacement (LEE) pathogenicity island responsible for the attaching and effacing (A/E) lesions caused by various E. coli pathogens (but not limited to STEC), and this individual gene ( approximately 300 bp) has previously been identified as hypervariable among these A/E pathogens. Sequence analysis of the espZ locus encoded by additional STEC serotypes and strains (including O26:H11, O121:H19, O111:NM, O145:NM, O165:H25, O121:NM, O157:NM, O157:H7, and O5:NM) indicated that distinct sequence variants exist which correlate to subgroups among these serotypes. Allelic discrimination at the espZ locus was achieved using Light Upon eXtension real-time PCR and by liquid microsphere suspension arrays. The allele subtype of espZ did not correlate with STEC seropathotype classification; however, a correlation with the allele type of the LEE-encoded intimin (eae) gene was supported, and these sequence variations were conserved among individual serotypes. The study focused on the characterization of three clinically significant seropathotypes of LEE-positive STEC, and we have used the observed genetic variation at a pathogen-specific locus for detection and subtyping of STEC.  相似文献   

17.
We compared the pathogenicity of intimin-negative non-O157:H7 Shiga toxin (Stx)-producing Escherichia coli (STEC) O91:H21 and O104:H21 strains with the pathogenicity of intimin-positive O157:H7 and O157:H(-) strains in neonatal pigs. We also examined the role of Stx2d-activatable genes and the large hemolysin-encoding plasmid of O91:H21 strain B2F1 in the pathogenesis of STEC disease in pigs. We found that all E. coli strains that made wild-type levels of Stx caused systemic illness and histological lesions in the brain and intestinal crypts, whereas none of the control Stx-negative E. coli strains evoked comparable central nervous system signs or intestinal lesions. By contrast, the absence of intimin, hemolysin, or motility had little impact on the overall pathogenesis of systemic disease during STEC infection. The most striking differences between pigs inoculated with non-O157 STEC strains and pigs inoculated with O157 STEC strains were the absence of attaching and effacing intestinal lesions in pigs inoculated with non-O157:H7 strains and the apparent association between the level of Stx2d-activatable toxin produced by an STEC strain and the severity of lesions.  相似文献   

18.
Shiga toxin-producing Escherichia coli (STEC) belonging to the serogroup O91 are among the most common non-O157 STEC serogroups associated with human illness in Europe. This study aimed to analyse the virulence factors, antimicrobial resistance genes and phylogenetic relatedness among 48 clinical STEC O91 isolates collected during 2003–2019 in Switzerland. The isolates were subjected to whole genome sequencing using short-read sequencing technologies and a subset of isolates additionally to long-read sequencing. They belonged to O91:H10 (n = 6), O91:H14 (n = 40), and O91:H21 (n = 2). Multilocus sequence typing showed that the O91:H10 isolates all belonged to sequence type (ST)641, while the O91:H14 isolates were assigned to ST33, ST9700, or were non-typeable. Both O91:H21 isolates belonged to ST442. Shiga toxin gene stx1a was the most common Shiga toxin gene subtype among the isolates, followed by stx2b, stx2d and stx2a. All isolates were LEE-negative and carried one or two copies of the IrgA adhesin gene iha. In a subset of long-read sequenced isolates, modules of the Locus of Adhesion and Autoaggregation pathogenicity island (LAA-PAI) carrying iha and other genes such as hes, lesP or agn43 were identified. A large proportion of STEC O91:H14 carried the subtilase cytotoxin gene subA, colicin genes (cba, cea, cib and cma) or microcin genes (mcmA, mchB, mchC and mchF). STEC O91:H14 were further distinguished from STEC O91:H10/H21 by one or more virulence factors found in extraintestinal pathogenic E. coli (ExPEC), including hlyF, iucC/iutA, kpsE and traT. The hlyF gene was identified on a novel mosaic plasmid that was unrelated to hlyF+ plasmids described previously in STEC. Core genome phylogenetic analysis revealed that STEC O91:H10 and STEC O91:H21 were clonally conserved, whereas STEC O91:H14 were clonally diverse. Among three STEC O91:H14 isolates, a number of resistance genes were identified, including genes that mediate resistance to aminoglycosides (aadA, aadA2, aadA9, aadA23, aph(3'')-Ib and aph(6)-Id), chloramphenicol (cmlA), sulphonamides (sul2 and sul3), and trimethoprim (drfA12). Our data contribute to understanding the genetic diversity and differing levels of virulence potential within the STEC O91 serogroup.  相似文献   

19.
Shiga toxin-producing Escherichia coli (STEC) strains belonging to serogroup O26 have been associated with sporadic cases and outbreaks of hemorrhagic colitis and hemolytic uremic syndrome. In addition to chromosomal virulence genes, STEC strains usually harbor a large plasmid that carries genes associated with pathogenicity. The complete nucleotide sequence and genetic organization of 6 plasmids carried by STEC O26:H11 strain H30 were determined. The large virulence plasmid (pO26-Vir) was approximately 168 kb in size and contained 196 open reading frames (ORFs). pO26-Vir possesses a mosaic structure and shows similarity to the virulence plasmids in locus of enterocyte effacement (LEE)-negative STEC O113:H21 EH41 (pO113), in E. coli clinical strain C1096 (pSERB1), and in E. coli O157:H7 RIMD 0509952 (pO157). Plasmid pO26-Vir shares several highly conserved regions with pO157 and carries important virulence genes, including toxB, katP, espP, and the hly gene cluster. In addition, pO26-Vir possesses genes encoding for type IV pili (pilL-V). The second largest plasmid, pO26-L (73 kb) contains 101 ORFs. pO26-L carries the tetracycline resistance gene and has regions that show similarity to the E. coli conjugative resistance plasmid NR1. The third largest plasmid, pO26-S4 (5.8 kb), is homologous to the ColE2 colicinogenic plasmid that encodes for colicin E2. The remaining 3 plasmids, pO26-S1 (1.5 kb), pO26-S2 (3.1 kb), and pO26-S3 (4.2 kb), carry very little genetic information except for putative proteins involved in plasmid replication and DNA maintenance. The data presented underscore the diversity among the STEC virulence plasmids and provide insights into the evolution of these plasmids in STEC strains that cause serious human illness.  相似文献   

20.
Genomic O island 122 (OI-122) of the verocytotoxin-producing Escherichia coli (VTEC) strain EDL933 contains four putative virulence genes, Z4321, Z4326, Z4332, and Z4333. However, strain CL3 (serotype O113:H21) contains only Z4321, not the other three genes. To determine whether Z4321 is part of a different genomic island in CL3, a region of 27,293 bp up- and downstream of Z4321 was sequenced and found to contain elements of two different EDL933 genomic islands (OI-48 and OI-122) and a Yersinia pestis-like hemolysin/adhesin gene cluster. The region contained OI-48 genes Z1635, Z1636, and Z1637 at the left terminus and Z1641, Z1642, Z1643, and Z1644 at the right. The middle portion consisted of OI-48 gene Z1640, which was separated into three fragments by genomic segments including the Y. pestis cluster and EDL933 OI-122 genes Z4322, Z4321, and Z4318. In a PCR investigation of 36 VTEC strains of different serotypes, intact Z1640 was present in strains of serotypes O157:H7, O26:H11, O103:H2, O111:NM, and O145:NM, which are associated with hemolytic uremic syndrome and outbreaks. In contrast, fragmented Z1640 was seen in strains of nonepidemic serotypes, such as O91:H21 and O113:H21, and in animal serotypes that have not been associated with human disease, indicating that Z1640 might be a virulence gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号