首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
beta3-adrenergic receptor (beta3-AR) activation produces a negative inotropic effect in human ventricles. Here we explored the role of beta3-AR in the human atrium. Unexpectedly, beta3-AR activation increased human atrial tissue contractility and stimulated the L-type Ca2+ channel current (I Ca,L) in isolated human atrial myocytes (HAMs). Right atrial tissue specimens were obtained from 57 patients undergoing heart surgery for congenital defects, coronary artery diseases, valve replacement, or heart transplantation. The I(Ca,L) and isometric contraction were recorded using a whole-cell patch-clamp technique and a mechanoelectrical force transducer. Two selective beta3-AR agonists, SR58611 and BRL37344, and a beta3-AR partial agonist, CGP12177, stimulated I(Ca,L) in HAMs with nanomolar potency and a 60%-90% efficacy compared with isoprenaline. The beta3-AR agonists also increased contractility but with a much lower efficacy (approximately 10%) than isoprenaline. The beta3-AR antagonist L-748,337, beta1-/beta2-AR antagonist nadolol, and beta1-/beta2-/beta3-AR antagonist bupranolol were used to confirm the involvement of beta3-ARs (and not beta1-/beta2-ARs) in these effects. The beta3-AR effects involved the cAMP/PKA pathway, since the PKA inhibitor H89 blocked I(Ca,L) stimulation and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) strongly increased the positive inotropic effect. Therefore, unlike in ventricular tissue, beta3-ARs are positively coupled to L-type Ca2+ channels and contractility in human atrial tissues through a cAMP-dependent pathway.  相似文献   

2.
3.
4.
5.
This study investigates the effect of the aryloxypropanolamines 4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one (CGP 12177), bupranolol, and 3-(2-ethylphenoxy)-1[(1S)-1,2,3,4-tetrahydronaphth-1-ylamino]-(2S)-2-propanol oxalate (SR 59230A) [commonly used as beta(3)- and/or atypical beta-adrenergic receptors (beta-AR) ligands] on the contractile function of rat intralobar pulmonary artery. Affinities of beta-AR ligands for alpha(1)-adrenergic receptors (alpha(1)-AR) were also evaluated using [(3)H]prazosin binding competition experiments performed in rat cortical membranes. In intralobar pulmonary artery, CGP 12177 did not modify the basal tone, but antagonized the contraction induced by the alpha(1)-AR agonist phenylephrine (PHE). In arteries precontracted with PHE, CGP 12177 elicited relaxation, whereas in those precontracted with prostaglandin F(2alpha) (PGF(2alpha)), it further enhanced contraction. CGP 12177 induced an increase in intracellular calcium concentration in pressurized arteries loaded with Fura PE-3 and precontracted with PGF(2alpha). In PGF(2alpha) precontracted arteries, phentolamine (an alpha-AR antagonist) and phenoxybenzamine (an irreversible alpha-AR antagonist) antagonized the contractile responses to PHE and CGP 12177. Both responses were also decreased by bupranolol and SR 59230A. Specific [(3)H]prazosin binding was displaced by CGP 12177, bupranolol, and SR 59230A with pK(i) values of 5.2, 5.7, and 6.6, respectively. In contrast, (+/-)-(R*,R*)-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acetic acid sodium (BRL 37344) and disodium 5-[(2R)-2-([(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino)propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL 316243) (nonaryloxypropanolamines beta(3)-AR agonists) displayed very low affinity for [(3)H]prazosin binding sites (pK(i) values below 4). These data suggest that CGP 12177 exhibits partial agonist properties for alpha(1)-AR in rat pulmonary artery. They also show that bupranolol and SR 59230A exert an alpha(1)-AR antagonist effect. As a consequence, these aryloxypropanolamine compounds should be used with caution when investigating the role of beta(3)- and atypical beta-AR in the regulation of vascular tone.  相似文献   

6.
Functional studies have demonstrated that adrenoceptor agonist-evoked relaxation is mediated primarily by beta3-adrenergic receptors (ARs) in human bladder. Thus, the use of selective beta3-AR agonists in the pharmacological treatment of overactive bladder is being explored. The present studies investigated the effects of a novel selective beta3-AR agonist, (R)-3'-[[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]ethyl]amino]-[1,1'-biphenyl]-3-carboxylic acid (GW427353; solabegron) on bladder function in the dog using in vitro and in vivo techniques. GW427353 stimulated cAMP accumulation in Chinese hamster ovary cells expressing the human beta3-AR, with an EC50 value of 22 +/- 6 nM and an intrinsic activity 90% of isoproterenol. At concentrations of 10,000 nM, GW427353 produced a minimal response in cells expressing either beta1-ARs or beta2-ARs (maximum response <10% of that to isoproterenol). In dog isolated bladder strips, GW427353 evoked relaxation that was attenuated by the nonselective beta-AR antagonist bupranolol and 1-(2-ethylphenoxy)-3-[[(1S)-1,2,3,4-tetrahydro-1-naphthalenyl]amino]-(2S)-2-propanol (SR59230A) (reported to have beta3-AR antagonist activity). The relaxation was unaffected by atenolol, a selective beta1-AR antagonist, or (+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol (ICI 118551), a selective beta2-AR antagonist. GW427353 increased the volume required to evoke micturition in the anesthetized dog following acetic acid-evoked bladder irritation, without affecting the ability of the bladder to void. GW427353-evoked effects on bladder parameters in vivo were inhibited by bupranolol. The present study demonstrates that selective activation of beta3-AR with GW427353 evokes bladder relaxation and facilitates bladder storage mechanisms in the dog.  相似文献   

7.
Pharmacological characterization of KUR-1246, a selective uterine relaxant   总被引:1,自引:0,他引:1  
The aim of the present study was to evaluate the efficacy and beta 2-adrenoceptor (AR) selectivity of KUR-1246, a new uterine relaxant. Inhibition of spontaneous or drug-induced uterine contractions by KUR-1246 was evaluated in pregnant rats and rabbits by an organ bath method or by a balloon method. The selectivity of KUR-1246 was assessed simultaneously in organs isolated from late-pregnant rats. The affinity of KUR-1246 for human beta 1-, beta 2-, and beta 3-ARs was determined using two radioligands. KUR-1246 suppressed both spontaneous and drug-induced contractions in isolated uteri, the rank order of potency being isoproterenol > KUR-1246 > terbutaline > ritodrine. ICI-118551 (selective beta 2-AR antagonist) competitively antagonized the KUR-1246-induced inhibition of spontaneous uterine contractions, but CGP-20712A (selective beta 1-AR antagonist) and SR-58894A (selective beta 3-AR antagonist) did not. All beta-AR agonists tested produced significant inhibition of spontaneous uterine contractions in vivo: ED(30) value for KUR-1246 was 0.13 microg/kg/min, a potency about 6 times and 400 times greater than that of terbutaline and ritodrine, respectively. In contrast, the positive chronotropic effect was minimal in KUR-1246-treated rats. KUR-1246 displaced radioligand binding to beta 1-, beta 2-, and beta 3-ARs, the pK(i) values being 5.75 +/- 0.03, 7.59 +/- 0.08, and 4.75 +/- 0.03 for beta 1-, beta 2-, and beta 3-ARs, respectively. For the selectivity of KUR-1246 for human beta 2-AR, we obtained values of 39.2 ([IC(50) for beta 1-AR]/[IC(50) for beta 2-AR]) and 198.2 ([IC(50) for beta 3-AR]/[IC(50) for beta 2-AR]), indicating an apparently higher affinity for human beta 2-AR than for other beta-AR subtypes. The present study clearly demonstrated that KUR-1246 is a more selective beta 2-AR agonist than the drugs presently used for relaxing uterine muscle.  相似文献   

8.
Astrocytomas and glioblastomas have been particularly difficult to treat and refractory to chemotherapy. However, significant evidence has been presented that demonstrates a decrease in astrocytoma cell proliferation subsequent to an increase in cAMP levels. The 1321N1 astrocytoma cell line, as well as other astrocytomas and glioblastomas, expresses β(2)-adrenergic receptors (β(2)-ARs) that are coupled to G(s) activation and consequent cAMP production. Experiments were conducted to determine whether the β(2)-AR agonist (R,R')-fenoterol and other β(2)-AR agonists could attenuate mitogenesis and, if so, by what mechanism. Receptor binding studies were conducted to characterize β(2)-AR found in 1321N1 and U118 cell membranes. In addition, cells were incubated with (R,R')-fenoterol and analogs to determine their ability to stimulate intracellular cAMP accumulation and inhibit [(3)H]thymidine incorporation into the cells. 1321N1 cells contain significant levels of β(2)-AR as determined by receptor binding. (R,R')-fenoterol and other β(2)-AR agonists, as well as forskolin, stimulated cAMP accumulation in a dose-dependent manner. Accumulation of cAMP induced a decrease in [(3)H]thymidine incorporation. There was a correlation between concentration required to stimulate cAMP accumulation and inhibit [(3)H]thymidine incorporation. U118 cells have a reduced number of β(2)-ARs and a concomitant reduction in the ability of β(2)-AR agonists to inhibit cell proliferation. These studies demonstrate the efficacy of β(2)-AR agonists for inhibition of growth of the astrocytoma cell lines. Because a significant portion of brain tumors contain β(2)-ARs to a greater extent than whole brain, (R,R')-fenoterol, or some analog, may be useful in the treatment of brain tumors after biopsy to determine β(2)-AR expression.  相似文献   

9.
The beta adrenergic activation of adenylate cyclase was examined in membrane homogenates of rat interscapular brown adipose tissue (IBAT). In control membranes, isoproterenol and norepinephrine (NE) stimulated adenylate cyclase with activation constants of about 20 and 300 nM, respectively. Exposure of rats to 4 degrees C for 3 days increased the maximal stimulation of adenylate cyclase to these agonists but did not alter the respective activation constants. The beta 1-selective antagonist 1-(2-cyanophenoxy)-3-beta-(3-phenylureido)ethylamino-2-pr opa nol blocked isoproterenol stimulation of adenylate cyclase in control and cold-exposed membranes at a concentration 100 times lower than did the beta 2-selective antagonist erythro-dl-1-(7-methylindan-4-yloxy)-3-isopropylaminobuta n-2-ol. These data indicate that typical adrenergic agonists stimulate IBAT adenylate cyclase via beta 1 receptors. (R*,R*)-4-[2-[2 [9 3-chlorophenyl)-2-hydroxyethyl]amino)propyl) phenyl]phenoxyacetic acid (BRL 37344), an atypical agonist with activity at the beta 3 receptor, stimulated adenylate cyclase in control membranes with an activation constant of approximately 700 nM. Membranes of cold-exposed rats exhibited a high affinity response to BRL 37344 similar to that seen in control membranes and, in addition, a low affinity response. BRL 37344 stimulation of adenylate cyclase was unaffected by 1-(2-cyanophenoxy)-3-beta-(3-phenylureido)ethyl-amino-2-prop anol, whereas stimulation by NE or epinephrine was potently blocked.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ventricular arrhythmia in chronic heart failure (CHF) is considered to be associated with stimulation of β-adrenergic receptors (β-ARs). Three classes of β-ARs have been identified; importantly, distinct from β1 and β2 subtypes, β3-AR could inhibit arrhythmia. Intracellular Ca2+ is considered as a predominant effecter of arrhythmia during heart failure. However, the exact role of β3-AR in arrhythmia and Ca2+ regulation in CHF is not clear yet. Therefore, we studied the effect of BRL37344, a specific β3-AR activator, on CHF-related ventricular arrhythmia and cellular Ca2+ transport. Rabbits with CHF induced by combined aortic insufficiency and aortic constriction were treated with BRL37344 in the presence or absence of β1-AR and β2-AR stimulation. We then evaluated the current produced by sodium calcium exchanger (INCX), an electrical marker of abnormal Ca2+ removal through ion transporter protein sodium calcium exchanger (NCX), Ca2+ transient, a sign of Ca2+ entering the cell, concentration of Ca2+ in sarcoplasmic reticulum (SR) (SR Ca2+ load) and its abnormal release (SR Ca2+ leak). After treatment with BRL37344, the incidence of ventricular arrhythmias induced by infusion of a β1-AR or β2-AR activator decreased significantly. Similarly, β3-AR stimulation remarkably inhibited increase of INCX, Ca2+ transient, SR Ca2+ load and leak induced by activation of β1-AR or β2-AR. SR59230A, a specific β3-AR blocker, abolished the inhibitory effects of BRL37344. These results suggest that β3-AR activation could inhibit ventricular arrhythmia through regulating intracellular Ca2+. Thus, β3-AR is a feasible therapeutic target that holds promise in the treatment of ventricular arrhythmias in CHF.  相似文献   

11.
We evaluated the pharmacological characteristics of (R)-2-(2-aminothiazol-4-yl)-4'-{2-[(2-hydroxy-2-phenylethyl)amino]-ethyl} acetanilide (YM178). YM178 increased cyclic AMP accumulation in Chinese hamster ovary (CHO) cells expressing human beta3-adrenoceptor (AR). The half-maximal effective concentration (EC50) value was 22.4 nM. EC50 values of YM178 for human beta1- and beta2-ARs were 10,000 nM or more, respectively. The ratio of intrinsic activities of YM178 versus maximal response induced by isoproterenol (nonselective beta-AR agonist) was 0.8 for human beta3-ARs, 0.1 for human beta1-ARs, and 0.1 for human beta2-ARs. The relaxant effects of YM178 were evaluated in rats and humans bladder strips precontracted with carbachol (CCh) and compared with those of isoproterenol and 4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one hydrochloride (CGP-12177A) (beta3-AR agonist). EC50 values of YM178 and isoproterenol in rat bladder strips precontracted with 10(-6) M CCh were 5.1 and 1.4 microM, respectively, whereas those in human bladder strips precontracted with 10(-7) M CCh were 0.78 and 0.28 microM, respectively. In in vivo study, YM178 at a dose of 3 mg/kg i.v. decreased the frequency of rhythmic bladder contraction induced by intravesical filling with saline without suppressing its amplitude in anesthetized rats. These findings suggest the suitability of YM178 as a therapeutic drug for the treatment of symptoms of overactive bladder such as urinary frequency, urgency, and urge incontinence.  相似文献   

12.
The objective of this study was to compare the effects of a beta(3)-adrenoceptor (beta(3)-AR) agonist on bladder function and cardiovascular parameters in rats with those of several drugs that act on smooth muscle. CL316,243 (beta(3)-AR agonist), isoproterenol (nonselective beta-AR agonist), procaterol (beta(2)-AR agonist), verapamil (Ca(2+) antagonist), and papaverine (antispastic drug) each evoked a concentration-dependent relaxation of the detrusor in vitro. They also reduced bladder pressure in anesthetized rats, the beta-AR agonists apparently being more potent than the other drugs. Atropine (muscarinic antagonist) neither relaxed detrusor strips nor reduced bladder pressure. In anesthetized rats, CL316,243 and atropine each had only a slight influence on blood pressure and heart rate, but isoproterenol, procaterol, verapamil, and papaverine significantly affected cardiovascular function at the same dose range as that required to reduce bladder pressure. In cystometry experiments, CL316,243 (10 microg/kg i.v.), verapamil (1 mg/kg i.v.), and papaverine (1 mg/kg i.v.) all significantly prolonged micturition interval and increased bladder capacity, but did not change the residual urine volume after a micturition contraction. Procaterol (100 microg/kg i.v.) prolonged the micturition interval and increased both bladder capacity and residual urine volume (all significantly). Atropine (100 microg/kg i.v.) reduced micturition pressure and increased residual urine volume (both significantly). Because the human detrusor, like the rat detrusor, relaxes on beta(3)-AR stimulation, we conclude that this beta(3)-AR agonist may have potential in pollakiuria (frequent urination) as a therapeutic agent without cardiovascular side effects.  相似文献   

13.
Summary— The β-adrenergic effects of catecholamines are potentiated by thyroid hormones in adipose tissue. Amiodarone (AM) is structurally similar to thyroid hormones and was used to explore the mechanism of the triiodothyronine (T3) effect on β-adrenergic receptors (β-ARs) in adipose tissue. AM decreases the expression of some T3 sensitive genes in various tissues and antagonizes the effect of T3 on its nuclear receptors. In this study, the T3, AM and AM + T3 effects on the β1- and β3-AR density were assessed on rat white adipocytes by radioligand binding using [3H]CGP 12177 after characterization of these subtypes by displacement of [3H]CGP 12177 binding by isoproterenol, BRL 37344 and noradrenaline. BRL 37344 was used to study β3-AR lipolysis. White adipocytes from hyperthyroid rats had increased responsiveness (Emax × 2) and sensitivity (+ 38%) to BRL 37344, while those given AM alone had decreased values. Moreover, AM antagonized the T3 effect on lipolysis. The β1-binding characteristics (receptor density [Bmax]: 45 ± 4 fmol/mg of proteins; dissociation factor [Kd]: 0.96 ± 0.10 nM) were not modified by either compound. Finally, T3 significantly increased β3-AR density (587 ± 69 versus 363 ± 25 fmol/mg of proteins) and Kd (38 ± 2 versus 23 ± 3 nM), while AM alone had no effect and did not antagonize the T3 effect on β3-AR number. In conclusion, the hyperthyroid state in the rat potentiated the lipolytic response of white adipocytes to a specific β3-agonist and increased the β3-AR density without changing in β1-AR number and affinity. Furthermore, the lack of antagonism between AM and T3 on β3-AR expression suggests that T3 does not work directly on the β3-AR gene. Moreover, AM induced a functional tissular hypothyroid-like effect and its antilipolytic effect probably occurred at a postreceptor level.  相似文献   

14.
Mitochondrial dysfunction is a common mediator of disease and organ injury. Although recent studies show that inducing mitochondrial biogenesis (MB) stimulates cell repair and regeneration, only a limited number of chemicals are known to induce MB. To examine the impact of the β-adrenoceptor (β-AR) signaling pathway on MB, primary renal proximal tubule cells (RPTC) and adult feline cardiomyocytes were exposed for 24 h to multiple β-AR agonists: isoproterenol (nonselective β-AR agonist), (±)-(R*,R*)-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy] acetic acid sodium hydrate (BRL 37344) (selective β(3)-AR agonist), and formoterol (selective β(2)-AR agonist). The Seahorse Biosciences (North Billerica, MA) extracellular flux analyzer was used to quantify carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP)-uncoupled oxygen consumption rate (OCR), a marker of maximal electron transport chain activity. Isoproterenol and BRL 37244 did not alter mitochondrial respiration at any of the concentrations examined. Formoterol exposure resulted in increases in both FCCP-uncoupled OCR and mitochondrial DNA (mtDNA) copy number. The effect of formoterol on OCR in RPTC was inhibited by the β-AR antagonist propranolol and the β(2)-AR inverse agonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol hydrochloride (ICI-118,551). Mice exposed to formoterol for 24 or 72 h exhibited increases in kidney and heart mtDNA copy number, peroxisome proliferator-activated receptor γ coactivator 1α, and multiple genes involved in the mitochondrial electron transport chain (F0 subunit 6 of transmembrane F-type ATP synthase, NADH dehydrogenase subunit 1, NADH dehydrogenase subunit 6, and NADH dehydrogenase [ubiquinone] 1β subcomplex subunit 8). Cheminformatic modeling, virtual chemical library screening, and experimental validation identified nisoxetine from the Sigma Library of Pharmacologically Active Compounds and two compounds from the ChemBridge DIVERSet that increased mitochondrial respiratory capacity. These data provide compelling evidence for the use and development of β(2)-AR ligands for therapeutic MB.  相似文献   

15.
We recently reported that alpha(2A)-adrenoceptor (AR) desensitization and down-regulation occurs after 24-h treatment with epinephrine (EPI) (0.3 microM) in BE(2)-C cells that express both alpha(2)- and beta(2)-ARs. The same concentration of norepinephrine (NE) has no effect. The effect of EPI is prevented by beta(2)-AR blockade and is associated with an increase in G protein-coupled receptor kinase 3 (GRK3) expression. Because differences in agonist-induced down-regulation of the alpha(2A)-versus alpha(2B)-ARs have been reported, the present study examines the effects of simultaneous activation of alpha(2B)- and beta(2)-ARs on alpha(2B)-AR number and signaling. We studied NG108 cells that naturally express alpha(2B)-ARs, and BN17 cells, NG108 cells transfected to express the human beta(2)-AR. In NG108 cells, alpha(2B)-AR desensitization and down-regulation require treatment with 20 microM EPI or NE; GRK expression was not changed. In BN17 cells expressing beta(2)-ARs, the threshold EPI concentration for alpha(2B)-AR desensitization and down-regulation was reduced to 0.3 microM; 10 microM NE was required for the same effect. Furthermore, 24-h EPI or NE treatments that produced desensitization also resulted in a selective 2-fold up-regulation of GRK3; GRK2 was unchanged. The beta-AR antagonist alprenolol (1 microM) and GRK3 antisense (but not sense) DNA blocked 0.3 microM EPI- and 10 microM NE-induced desensitization and down-regulation of the alpha(2B)-AR as well as GRK3 up-regulation. In conclusion, simultaneous activation of alpha(2B)- and beta(2)-ARs results in a 67-fold decrease in the threshold concentration of EPI required for alpha(2B)-AR down-regulation. This lower threshold for down-regulation is associated with alpha(2B)- and beta(2)-AR dependent up-regulation of GRK3 expression.  相似文献   

16.
(-)-Isoproterenol [4-[1-hydroxy-2-[(1-methylethyl)amino]ethyl]-1,2-benzene diol hydrochloride] relaxes murine detrusor through beta-adrenoceptors (ARs); however, the beta-AR subtypes involved are unknown. beta(2)-ARs have been associated with caveolae, plasma-lemmal scaffolding domains that are absent in caveolin-1 (cav-1) knockout (KO) mice. Here, we studied detrusor responses in the absence and presence of beta-AR subtype-selective antagonists in wild-type (WT) and cav-1 KO mice. To inquire whether the murine detrusor model is relevant to man, beta-AR subtypes that mediate (-)-isoproterenol-evoked human detrusor relaxation were investigated. In WT mice, (-)-isoproterenol concentration-dependently relaxed the KCl (40 mM)-precontracted detrusor (-logEC(50)M = 8.04, E(max) = 62%). The effects of (-)-isoproterenol were surmountably antagonized by the beta(2)-AR-selective antagonist ICI 118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol] (pK(B) = 9.28) but not affected by the beta(1)-AR-selective antagonist CGP 20712 [1-[2-((3-carbamoyl-4-hydroxy)phenoxy)ethylamino]-3-[4-(1-methyl-4-trifluoromethyl-2-imidazolyl)phenoxy]-2-propanol] and beta(3)-AR-selective L-748,337 [(S)-M-[4-[2-[3-[3-[acetamidomethyl)phenoxy)-2-hydroxypropyl]-amino]-ethyl]-phenylbenzsulfonamide)], suggesting involvement of beta(2)-AR only. The cav-1 KO detrusor displayed significant contractile dysfunction. (-)-Isoproterenol was less potent and efficient in relaxing detrusor from cav-1 KO (-logEC(50)M, 7.76; E(max) = 44%), but ICI 118,551 caused similar antagonism (pK(B) = 9.15), suggesting that beta(2)-AR function persisted in cav-1 KO. The beta(3)-AR-selective antagonist L-748,337 in the presence of ICI 118,551 and CGP 20712 caused additional blockade of (-)-isoproterenol effects in cav-1 KO, consistent with a beta(3)-AR involvement during relaxation and suppression of this effect in WT. (-)-Isoproterenol relaxed human detrusor muscle precontracted with carbachol (-logEC(50)M = 6.39, E(max) = 52%). However, the effects of (-)-isoproterenol in human detrusor were not blocked by CGP 20712 or ICI 118,551 but antagonized by L-748,337 (pK(B) = 7.65). We conclude that murine detrusor relaxation occurs via beta(2)-AR, and loss of caveolae does not perturb beta(2)-AR function but unmasks an additional activation of beta(3)-AR. In contrast, detrusor relaxation in man is mediated exclusively via beta(3)-AR.  相似文献   

17.
18.
The purpose of the present study was to ascertain the role of adenylate (AC) versus guanylate cyclase (GC) signaling pathways in the internal anal sphincter (IAS) smooth muscle relaxation by beta(1)-, beta(2)-, and beta(3)-adrenoceptor (AR) activation by xamoterol, procaterol, and disodium 5-[(2R)-2-(3-chlorophenyl)-2-hydroxy-ethyl]amino)propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL 316243), respectively. The above-mentioned agonists produced concentration-dependent relaxation of the smooth muscle strips. Both the selective G(i/o)alpha and G(s)alpha antagonists 8,8'-(carbonylbis(imino-3,1-phenylene))bis-(1,3,5-naphthalene trisulfonic acid) (NF 023) and 4,4',4",4"'-(carbonylbis(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakis-benzene-1,3-disulfonic acid (NF 449), respectively, inhibited the relaxation induced by procaterol. However, only NF 023 inhibited the relaxation induced by xamoterol and CL 316243. 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one, a soluble GC inhibitor, significantly inhibited the relaxation induced by different agonists. In contrast, the selective AC inhibitor [9-(tetrahydro-2'-furyl)adenine] (SQ 22536) inhibited only the relaxation induced by procaterol. (9R,10S,12S)-2,3,9,10,11,12-Hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg: 3',2',1'-kl]pyrrolo[3,4-l][1,6]benzodiazocine-10-carboxylic acid, hexyl ester (KT 5720), a cAMP-dependent protein kinase inhibitor, attenuated the relaxation by procaterol, whereas (9S,10R,12R)-2,3,9,10,11,12, hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9.12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-I][1,6]benzodiazocine-10-carboxylic acid methyl ester (KT 5823), a selective cGMP-dependent protein kinase (PKG) inhibitor, attenuated the relaxation induced by xamoterol and CL 316243. Xamoterol produced significant increase in cGMP levels, whereas only procaterol enhanced the cAMP levels. Western blot analysis confirmed the presence of beta(1), beta(2), and beta(3)-AR subtypes in the IAS. In summary, beta(2)-AR activates both G(s)alpha and G(i/o)alpha-protein subunits and induces relaxation in the rat IAS via both cAMP/cGMP pathways. In contrast, the beta(1)/beta(3)-ARs activation causes the smooth muscle relaxation via G(i/o)alpha-protein subunit/GC/GMP/PKG pathway. These studies are important for the understanding of intracellular mechanisms underlying IAS smooth muscle relaxation and in turn the pathophysiology of certain anorectal motility disorders.  相似文献   

19.
Pharmacological responses to aryloxypropanolamines were examined in cells expressing rat or human beta(1)-adrenergic receptors (ARs) using adenylyl cyclase assays. The aryloxypropanolamines CGP 12177 and LY 362884, originally developed as beta(3)-AR agonists, were found to stimulate the beta(1)-AR. Interestingly, both CGP 12177 and LY 362884 exhibited an anomalous biphasic effect on beta(1)-AR. Low concentrations of either CGP 12177 or LY 362884 potently blocked isoproterenol-induced stimulation of beta(1)-AR, whereas higher concentrations of these compounds stimulated the beta(1)-AR. The unusual interaction of these aryloxypropanolamine ligands with the beta(1)-AR was further characterized using beta-AR antagonists. Activation of beta(1)-AR by CGP 12177 or LY 362884 was observed to be significantly more resistant to blockade by beta-AR antagonists compared with activation by catecholamines. These results suggest that catecholamines and aryloxypropanolamines interact with distinct active conformations of the beta(1)-AR: a state that is responsive to catecholamines and is blocked with high affinity by CGP 12177 and LY 362884, and a novel state that is activated by aryloxypropanolamines but is resistant to blockade by standard beta-AR antagonists. Moreover, dependence of antagonist affinity on agonist structure is unprecedented, and its implications on the use of beta-AR agonists such as CGP 12177 in receptor classification are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号