首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
α_(1D)-肾上腺素受体的稳定表达及其Ca~(2+)调控   总被引:2,自引:2,他引:0  
目的探讨人α_(1D)-肾上腺素受体(α_(1D)-adrcnerslcreceptor,α_(1D)-AR)触发细胞的Ca(2+)释放和Ca(2+)内流机制。方法:将编码人α_(1D)-ARcDNA转染到缺乏α1-AR的中国仓鼠卵巢(CHO)细胞,建立稳定表达纯一α_(1D)-AR的细胞系。采用Fura-2技术观察细胞胞浆Ca(2+)浓度变化。结果:肾上腺素激活α_(1D)-AR后既触发了CHO细胞的Ca(2+)释放又引起细胞外Ca(2+)内流。磷脂酶C(phospholipaseC,PLC)抑制剂U-73122抑制α_(1D)-AR激发Ca(2+)释放的同时也抑制了Ca(2+)内流。结论:人α_(1D)-AR与PLC激活途径相耦联释放细胞内储存Ca(2+)并通过“充电式Ca(2+)内流”机制触发细胞外Ca(2+)内流。  相似文献   

2.
The effect of gossypol, a compound found in cottonseed, on intracellular free Ca2+ levels ([Ca2+](i)) in Chang liver cells were evaluated using fura-2 as a fluorescent Ca2+ indicator. Gossypol (0.2-5microM) increased [Ca2+](i) in a concentration-dependent manner with an EC(50) value of 1.5microM. The [Ca2+](i) response was composed of an initial rise and a slow decay to a sustained phase within 5min after drug application. Removal of extracellular Ca2+ markedly reduced the [Ca2+](i) signals by 80+/-2%. Preincubation with 0.1mM La3+ or 10microM nimodipine abolished the Ca2+ influx. Gossypol (5microM)-induced release of intracellular Ca2+ was reduced by 75% by pretreatment with 1microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+. Conversely, pretreatment with gossypol abolished thapsigargin-induced Ca2+ release. After pretreatment with 5microM gossypol in Ca2+-free medium for several min, addition of 3mM Ca2+ induced a [Ca2+](i) increase of a magnitude nine-fold greater than control. Gossypol (5microM)-induced Ca2+ release was not affected by inhibiting phospholipase C with 2microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Together, this study shows that gossypol induced significant [Ca2+](i) increases in Chang liver cells by releasing Ca2+ from intracellular pools in a phospholipase C-dissociated fashion and by causing La3+- and nimodipine-sensitive Ca2+ influx.  相似文献   

3.
1 Capsaicin and resiniferatoxin (RTX) stimulate Ca2+ influx by activating vanilloid receptor 1 (VR1), a ligand-gated Ca2+ channel on sensory neurones. We investigated whether VR1 activation could also trigger Ca2+ mobilization from intracellular Ca2+ stores. 2 Human VR1-transfected HEK293 cells (hVR1-HEK293) were loaded with Fluo-3 or a mixture of Fluo-4 and Fura Red and imaged on a fluorometric imaging plate reader (FLIPR) and confocal microscope respectively. 3 In Ca2+ -free media, RTX caused a transient elevation in intracellular free Ca2+ concentration in hVR1-HEK293 cells (pEC(50) 6.45+/-0.05) but not in wild type cells. Capsaicin (100 microM) did not cause Ca2+ mobilization under these conditions. 4 RTX-mediated Ca2+ mobilization was inhibited by the VR1 receptor antagonist capsazepine (pIC(50) 5.84+/-0.04), the Ca2+ pump inhibitor thapsigargin (pIC(50) 7.77+/-0.04), the phospholipase C inhibitor U-73122 (pIC(50) 5.35+/-0.05) and by depletion of inositol 1,4,5-trisphosphate-sensitive Ca2+ stores by pretreatment with the acetylcholine-receptor agonist carbachol (20 microM, 2 min). These data suggest that RTX causes Ca2+ mobilization from inositol 1,4,5-trisphosphate-sensitive Ca2+ stores in hVR1-HEK293 cells. 5 In the presence of extracellular Ca2+, both capsaicin-mediated and RTX-mediated Ca2+ rises were attenuated by U-73122 (10 microM, 30 min) and thapsigargin (1 microM, 30 min). We conclude that VR1 is able to couple to Ca2+ mobilization by a Ca2+ dependent mechanism, mediated by capsaicin and RTX, and a Ca2+ independent mechanism mediated by RTX alone.  相似文献   

4.
We have recently identified hyperforin, a lipophilic constituent of the herb Hypericum perforatum (St. John's wort), as a dual inhibitor of the proinflammatory enzymes cyclooxygenase-1 and 5-lipoxygenase. The aim of the present study was to further elucidate antiinflammatory properties and respective targets of hyperforin. We found that hyperforin inhibited the generation of reactive oxygen species (ROS) as well as the release of leukocyte elastase (degranulation) in human isolated polymorphonuclear leukocytes (PMNL), challenged by the G protein-coupled receptor (GPCR) ligand N-formyl-methionyl-leucyl-phenylalanine (fMLP) with an IC 50 approximately equal 0.3 microM. When PMNL were stimulated with phorbol-12-myristate-13-acetate (PMA) or ionomycin, hyperforin (up to 10 microM) failed to inhibit ROS production and elastase release, respectively. Moreover, hyperforin blocked receptor-mediated Ca(2+) mobilization ( IC 50 approximately equal 0.4 and 4 microM, respectively) in PMNL and monocytic cells, and caused a rapid decline of the intracellular Ca(2+) concentration in resting cells. In contrast, the Ca(2+) influx induced by ionomycin or thapsigargin was not suppressed. Comparative studies with the specific phospholipase C inhibitor U-73122 and hyperforin revealed similarities between both compounds. Thus, U-73122 and hyperforin blocked fMLP- and PAF-induced Ca(2+) mobilization, ROS formation, and elastase release, but failed to suppress these responses when cells were stimulated by PMA or ionomycin. Also, both compounds rapidly decreased basal Ca(2+) levels in resting cells and led to a rapid decline of the Ca(2+) elevations evoked by fMLP or PAF. Our data suggest that hyperforin targets component(s) within G protein signaling cascades that regulate Ca(2+) homeostasis, coupled to proinflammatory leukocyte functions.  相似文献   

5.
The effect of capsaicin on apoptotic cell death was investigated in HepG2 human hepatoma cells. Capsaicin induced apoptosis in time- and dose-dependent manners. Capsaicin induced a rapid and sustained increase in intracellular Ca2+ concentration, and BAPTA, an intracellular Ca2+ chelator, significantly inhibited capsaicin-induced apoptosis. The capsaicin-induced increase in the intracellular Ca2+ and apoptosis were not significantly affected by the extracellular Ca2+ chelation with EGTA, whereas blockers of intracellular Ca2+ release (dantrolene) and phospholipase C inhibitors, U-73122 and manoalide, profoundly reduced the capsaicin effects. Interestingly, treatment with the vanilloid receptor antagonist, capsazepine, did not inhibit either the increased capsaicin-induced Ca2+ or apoptosis. Collectively, these results suggest that the capsaicin-induced apoptosis in the HepG2 cells may result from the activation of a PLC-dependent intracellular Ca2+ release pathway, and it is further suggested that capsaicin may be valuable for the therapeutic intervention of human hepatomas.  相似文献   

6.
U-73122 (1-[6-[[17-beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione) is a widely used antagonist of phosphoinositide-specific phospholipase C (PLC) and is frequently used to define a role of PLC in receptor-mediated elevation of intracellular calcium concentration ([Ca2+]i). In human polymorphonuclear leukocytes (PMNLs), U-73122 inhibited increases in [Ca2+]i induced by G protein-coupled receptor (GPCR) agonists (N-formyl-methionyl-leucyl-phenylalanine or platelet-activating factor; IC50 of approximately 2 to 4 microM), but it failed to suppress responses induced by ionomycin or thapsigargin. 5-Lipoxygenase (5-LO) is a Ca(2+)-regulated enzyme that can be activated in leukocytes by stimuli that elevate [Ca2+]i. Attempts to investigate the involvement of PLC in cellular 5-LO activation revealed that U-73122 suppresses 5-LO product synthesis regardless of the stimulus and independently of Ca2+. Thus, U-73122 blocked 5-LO product synthesis induced by cell stress, involving 5-LO phosphorylation pathways in the absence of Ca2+ with an IC50 of approximately 2 microM. Direct inhibition of 5-LO by U-73122 was evident in PMNL homogenates (IC50 of approximately 2.4 microM), and isolated human recombinant 5-LO enzyme was potently inhibited by U-73122 (IC50 of approximately 30 nM). Thiols (glutathione) strongly blunted the effect of U-73122 on isolated 5-LO. On the other hand, depletion of cellular thiols by N-ethylmaleimide strongly increased the efficacy of U-73122 to inhibit 5-LO in intact cells or corresponding homogenates, suggesting that U-73122 may interfere with sulfhydryl groups on 5-LO. Since 5-LO products induce increases in [Ca2+]i via GPCRs, caution should be used when interpreting data where U-73122 is used as tool to determine a direct role of PLC in receptor-mediated Ca2+ mobilization.  相似文献   

7.
目的:研究U-73122对细胞内钙离子浓度和电压依赖性钙通道的作用。方法 用Fua-2荧光测定胞浆钙浓度和用穿孔膜片箝记录全细胞钙电流。结果:U-73122呈剂量相关明显地降低RINm5F细胞与子宫平滑肌细胞的去极化诱导的钙电流,并抑制KCl诱导的与Bay-K-8644诱导的胞浆钙浓度的增加。U-73122的这种作用对子宫平滑肌细胞要比RINm5F细胞强,而一种非磷脂酶C抑制剂U-3122类似物U  相似文献   

8.
目的 了解酪氨酸蛋白激酶信号途径在不同α1肾上腺素受体亚型Ca2 +调控中的作用。方法 用Fura 2荧光探针双波长测定细胞胞浆游Ca2 +浓度 ([Ca2 +]i)的方法 ,在分别转染了α1A、α1B和α1D肾上腺素受体cDNA的HEK2 93细胞 ,观察酪氨酸蛋白激酶抑制剂Genistein和磷脂酶C抑制剂U7312 2 对激动不同α1肾上腺素受体亚型引起的 [Ca2 +]i 变化的影响。结果 预先用U7312 2 (0 1,10 ,5 0 μmol·L-1)与细胞共同孵育 10min ;用Genistein(10 ,10 0 ,2 0 0 μmol·L-1)与细胞共同孵育 1h。在分别转染了α1A、α1B和α1DcDNA的HEK2 93细胞 ,U73 12 2 和Genistein均能浓度依赖性地抑制肾上腺 (10 μmol·L-1)引起的双相 [Ca2 +]i 的升高。在上述细胞 ,U7312 2 (5 0 μmol·L-1)能完全抑制肾上腺素引起的[Ca2 +]i 升高 ;而用最大有效浓度 10 0 μmol·L-1的Genistein只能部分抑制肾上腺素升高 [Ca2 +]i 的作用。结论 在HEK 2 93细胞 ,不同α1肾上腺素受体亚型 (α1A α1B和α1D)激动均能部分通过酪氨酸蛋白激酶信号途径引起Ca2 +释放和Ca2 +内流。α1肾上腺素受体可能通过G蛋白和酪氨酸蛋白激酶两种途径激活磷脂酶C  相似文献   

9.
1. The increase in the cytosolic Ca(2+) concentration ([Ca(2+)](i)) following repetitive stimulation with ATP or sphingosylphosphorylcholine (SPC) in single porcine aortic smooth muscle cells was investigated using the Ca(2+) indicator, fura-2. 2. The ATP-induced [Ca(2+)](i) increase resulted from both Ca(2+) release and Ca(2+) influx. The former was stimulated by phospholipase C activation, while the latter occurred predominantly via the receptor-operated Ca(2+) channels (ROC), rather than the store-operated Ca(2+) channels (SOC) or the voltage-operated Ca(2+) channel (VOC). Furthermore, the P2X(5) receptor was shown to be responsible for the ATP-induced Ca(2+) influx. 3. A reproducible [Ca(2+)](i) increase was induced by repetitive ATP stimulation, but was abolished by removal of extracellular Ca(2+) or inhibition of intracellular Ca(2+) release using U-73122 or thapsigargin, and was restored by Ca(2+) readdition in the former case. 4. SPC only caused Ca(2+) release, and the amplitude of the repetitive SPC-induced [Ca(2+)](i) increases declined gradually. However, a reproducible [Ca(2+)](i) increase was seen in cells in which protein kinase C being inhibited, which increased the SPC-induced Ca(2+) influx, rather than IP(3) generation. 5. In conclusion, although the amplitude of the ATP-induced Ca(2+) release, measured when Ca(2+) influx was blocked, or of the Ca(2+) influx when Ca(2+) release was blocked, progressively decreased following repetitive stimulation, the overall [Ca(2+)](i) increase for each stimulation under physiological conditions remained the same, suggesting that the Ca(2+) stores were replenished by an influx of Ca(2+) during stimulation. The SPC-induced [Ca(2+)](i) increase resulted solely from Ca(2+) release and decreased gradually following repetitive stimulation, but the decrease could be prevented by stimulating Ca(2+) influx, further supporting involvement of the intracellular Ca(2+) stores in Ca(2+) signalling.  相似文献   

10.
1. The mechanisms underlying AVP-induced increase in [Ca(2+)](i) and glucagon release in clonal alpha-cells In-R1-G9 were investigated. 2. AVP increased [Ca(2+)](i) and glucagon release in a concentration-dependent manner. After the administration of AVP, glucagon was released within 30 s, quickly reached the maximum within 2 min, and maintained a steady-state concentration for at least 15 min. 3. In Ca(2+)-containing medium, AVP increased [Ca(2+)](i) in a biphasic pattern; a peak followed by a sustained plateau. In Ca(2+)-free medium, the Ca(2+) response to AVP became monophasic with lower amplitude and no plateau. Both the basal and AVP-induced glucagon releases were lower in the absence than in the presence of extracellular Ca(2+). When [Ca(2+)](i) was stringently deprived by BAPTA, a Ca(2+) chelator, AVP still significantly increased glucagon release. 4. Pretreatment with thapsigargin, a microsomal Ca(2+) ATPase inhibitor, abolished both the Ca(2+) peak and sustained plateau. 5.AVP increased intracellular concentration of IP(3). 6. U-73122 (8 microM), a phospholipase C inhibitor, abolished AVP-induced increases in [Ca(2+)](i), but only reduced AVP-induced glucagon release by 39%. 7. Pretreatment with nimodipine, an L-type Ca(2+) channel blocker failed to alter AVP-induced glucagon release or increase in [Ca(2+)](i). 8. The results suggest that AVP causes glucagon release through both Ca(2+)-dependent and -independent pathways. For the Ca(2+)-dependent pathway, the G(q) protein activates phospholipase C, which catalyzes the formation of IP(3). IP(3) induces Ca(2+) release from the endoplasmic reticulum, which, in turn, triggers Ca(2+) influx. Both Ca(2+) release and Ca(2+) influx may contribute to AVP-induced glucagon release.  相似文献   

11.
The effect of N-(4-hydroxyphenyl) arachidonoyl-ethanolamide (AM404), a drug commonly used to inhibit the anandamide transporter, on intracellular free Ca2+ levels ([Ca2+]i) and viability was studied in human MG63 osteosarcoma cells using the fluorescent dyes fura-2 and WST-1, respectively. AM404 at concentrations > or = 5 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 60 microM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. AM404 induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was sensitive to La3+, Ni2+, nifedipine and verapamil. In Ca2+-free medium, after pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), AM404-induced [Ca2+]i rise was abolished; and conversely, AM404 pretreatment totally inhibited thapsigargin-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not change AM404-induced [Ca2+]i rise. At concentrations between 10 and 200 microM, AM404 killed cells in a concentration-dependent manner presumably by inducing apoptotic cell death. The cytotoxic effect of 50 microM AM404 was partly reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Collectively, in MG63 cells, AM404 induced [Ca2+]i rise by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via L-type Ca2+ channels. AM404 caused cytotoxicity which was possibly mediated by apoptosis.  相似文献   

12.
The intracellular signalling pathway for alpha-adrenoceptor-mediated negative inotropy was studied pharmacologically in isolated adult mouse ventricle. The negative inotropy was inhibited by GF-109203X, a nonselective protein kinase C inhibitor. Phorbol 12-myristate 13-acetate also produced sustained negative inotropy, which was inhibited by KB-R7943, a Na(+)/Ca(2+) exchanger inhibitor. The alpha-adrenoceptor-mediated negative inotropy was augmented by RHC-80267, a diacylglycerol lipase inhibitor, but was inhibited either by C(2)-ceramide, a phospholipase D inhibitor, and high concentration of propranolol (50 micro M), which inhibits phosphatidate phosphohydrolase. The inotropy was not affected by U-73122, a phospholipase C inhibitor. Lavendustin-A, a tyrosine kinase inhibitor, also inhibited the negative inotropy. These findings suggest that alpha-adrenoceptor-mediated negative inotropy in adult mouse ventricle is mediated by activation of tyrosine kinase, the phospholipase D-phosphatidate phosphohydrolase pathway, and protein kinase C.  相似文献   

13.
The effect of the carcinogen safrole on intracellular Ca2+ movement has not been explored in osteoblast-like cells. This study examined whether safrole could alter Ca2+ handling and viability in MG63 human osteosarcoma cells. Cytosolic free Ca2+ levels ([Ca2+]i) in populations of cells were measured using fura-2 as a fluorescent Ca2+ probe. Safrole at concentrations above 130 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 450 microM. The Ca2+ signal was reduced by 30% by removing extracellular Ca2+. Addition of Ca2+ after safrole had depleted intracellular Ca2+ induced Ca2+ influx, suggesting that safrole caused Ca2+ entry. In Ca2+-free medium, after pretreatment with 650 microM safrole, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) failed to release more Ca2+; and pretreatment with thapsigargin inhibited most of the safrole-induced [Ca2+]i increases. Inhibition of phospholipase C with U73122 did not affect safrole-induced Ca2+ release; whereas activation of protein kinase C with phorbol ester enhanced safrole-induced [Ca2+]i increase. Trypan exclusion assays revealed that incubation with 65 microM safrole for 30 min did not kill cells, but incubation with 650 microM safrole for 10-30 min nearly killed all cells. Flow cytometry demonstrated that safrole evoked apoptosis in a concentration-dependent manner. Safrole-induced cytotoxicity was not reversed by chelation of Ca2+ with BAPTA. Collectively, the data suggest that in MG63 cells, safrole induced a [Ca2+]i increase by causing Ca2+ release mainly from the endoplasmic reticulum in a phospholipase C-independent manner. The safrole response involved Ca2+ influx and is modulated by protein kinase C. Furthermore, safrole can cause apoptosis in a Ca2+-independent manner.  相似文献   

14.
The current study was designed to probe Ca2+ shuttling between intracellular stores and the cytosol as a potential mechanism contributing to the prolongation of elevated Ca2+ transients in N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils. Cytosolic Ca2+ concentrations and transmembrane fluxes of the cation were measured using spectrofluorimetric and radiometric procedures, respectively, while inositol 1,4,5-triphosphate (IP3) was measured using a radioreceptor assay. The Ca2+-chelating agent, ethylene glycol-bis (beta-aminoethyl ether) N,N,N'N'-tetraacetic acid (EGTA; 10mM), was used to exclude store-operated influx of Ca2+ into neutrophils, while the IP3 receptor antagonist, 2-aminoethoxydiphenyl borate (2-APB, 100 microM), added to the cells 10s after FMLP (0.01 and 1 microM), at which time the increases in IP3 and cytosolic Ca2+ were maximal, was used to eliminate both sustained release from stores and influx of Ca2+. Addition of FMLP at 0.01 or 1 microM resulted in equivalent peak increases in cytosolic Ca2+, while the increase in IP3 was greater and the rate of clearance of Ca2+ from the cytosol slower, in cells activated with 1 microM FMLP. Treatment of the cells with either EGTA or 2-APB following addition of 1 microM FMLP, completely (EGTA) or almost completely (2-APB) abolished the influx of Ca2+ and accelerated the rate of clearance of the cation from the cytosol. Post-peak cytosolic Ca2+ concentrations were lower, and the Ca2+ content of the stores higher, in cells treated with 2-APB. The involvement of IP3 was confirmed by similar findings in cells treated with U-73122 (1 microM), a selective inhibitor of phospholipase C. Taken together, these observations are compatible with IP3-mediated Ca2+ shuttling in neutrophils activated with FMLP.  相似文献   

15.
Econazole is an antifungal drug with different in vitro effects. However, econazole's effect on osteoblast-like cells is unknown. In human MG63 osteosarcoma cells, the effect of econazole on intracellular Ca2+ concentrations ([Ca2+]i) was explored by using fura-2. At a concentration of 0.1 microM, econazole started to cause a rise in [Ca2+]i in a concentration-dependent manner. Econazole-induced [Ca2+]i rise was reduced by 74% by removal of extracellular Ca2+. The econazole-induced Ca2+ influx was mediated via a nimodipine-sensitive pathway. In Ca2+ -free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca+ -ATPase, caused a [Ca2+]i rise, after which the increasing effect of econazole on [Ca2+]i was abolished. Pretreatment of cells with econazole to deplete Ca2+ stores totally prevented thapsigargin from releasing Ca2+. U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca2+ mobilizer)-induced, but not econazole-induced, [Ca2+]i rise. Econazole inhibited 76% of thapsigargin-induced store-operated Ca2+ entry. These findings suggest that in MG63 osteosarcoma cells, econazole increases [Ca2+]i by stimulating Ca2+ influx and Ca2+ release from the endoplasmic reticulum via a phospholipase C-independent manner. In contrast, econazole acts as a potent blocker of store-operated Ca2+ entry.  相似文献   

16.
The mode of action of venom from the ectoparasitic wasp Nasonia vitripennis in eliciting cell death was examined using an in vitro approach with BTI-TN-5B1-4 cells, and the cell responses were compared to those evoked by the extensively studied wasp toxin mastoparan. Wasp venom increased plasma membrane permeability to Na+, resulting in cellular swelling and death due to oncosis. When ouabain was used to disable Na+, K+-ATPases, the effects of venom were enhanced. Measurements of intracellular calcium using fluo-4 AM revealed a rearrangement and an increase in cytosolic [Ca+2]i within 30 min after exposure of BTI-TN-5B1-4 cells to venom. This venom-mediated increase in Ca+2 was apparently due to mobilization of intracellular stores since the changes occurred in the absence of extracellular Ca+2. Phospholipase C (PLC) inhibitors, neomycin and U-73122, blocked the venom-induced death temporarily (<3h), but by 24h, all venom-treated cells swelled and lysed. Pre-treatment of cells with caffeine or theophylline but not ryanodine attenuated the induction of oncosis by wasp venom. Anti-inflammatory peptide 1 (antiflammin 1) but not bromophenacyl bromide, agents that block phospholipase A2 (PLA2) activity, abolished the responsiveness of BTI-TN-5B1-4 cells to venom. These results suggest that venom initiates cell death by inducing Ca+2 release from intracellular stores probably via phospholipase C and IP3. A possible mode of action for venom from N. vitripennis requiring dual activation of PLC and PLA2 is discussed and compared to the pathways known to be activated by mastoparan.  相似文献   

17.
The effect of histamine on intracellular free Ca2+ levels ([Ca2+](i)) in MG63 human osteosarcoma cells was explored using fura-2 as a Ca2+ dye. Histamine increased ([Ca2+](i)) in a concentration-dependent fashion with an EC(50) value of 0.5 microM. Extracellular Ca2+ removal inhibited the ([Ca2+](i)) signals. Histamine failed to increase ([Ca2+](i)) in Ca2+-free medium after cells were pretreated with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). Addition of Ca2+ induced concentration-dependent ([Ca2+](i)) increases after preincubation with histamine in Ca2+-free medium. Histamine-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). The ([Ca2+](i)) increase induced by histamine in Ca2+ medium was abolished by cimetidine, but was not altered by pyrilamine, nifedipine, verapamil, and La(3+). Together, this study shows that histamine increased in ([Ca2+](i)) in osteosarcoma cells by stimulating H2 histamine receptors. The Ca2+ signal was caused by Ca2+ release from the endoplasmic reticulum in a phospholipase C-dependent manner. The Ca2+ release was accompanied by Ca(2+) influx.  相似文献   

18.
Pretreatment of isolated rat serosal mast cells with U-73122, an aminosteroid inhibitor of phospholipase C, inhibited histamine secretion in response to neurotensin (NT). This inhibition reached a maximum after 1 h of pretreatment at 37 degrees C and was dependent upon the concentration of U-73122 (IC50 approximately 0.2 microM). The inactive analog, U-73343, had no effect on the secretory response to NT. Pretreatment of mast cells with U-73122 also blocked histamine secretion in response to substance P (SP), mastoparan (MP), compound 48/80, or amidated NT (NT-NH2). Stimulation of mast cells by NT was accompanied by a rise in the level of intracellular free calcium and a rapid (within seconds) increase in the level of inositol trisphosphate (IP3) which was inhibited by pretreatment of the cells with U-73122. Pretreatment of isolated mast cells with pertussis toxin (PTx) blocked histamine release in response to NT as well as to all peptides tested. PTx had no effect on histamine secretion elicited by anti-IgE stimulation of sensitized mast cells. Pretreatment of mast cells with SR 48692, a NT-receptor antagonist, had no effect on histamine release induced by MP. At a high concentration (100 nM) SR 48692 partially inhibited the response to NT-NH2. These results, together with our earlier findings with SR 48692, indicate that the signal transduction pathway in mast cells activated by NT requires a specific NT-receptor, the activation of phospholipase C, and the involvement of a PTx sensitive G protein. The peptides SP and MP, and compound 48/80, while also requiring the activation of PLC and a PTx sensitive G protein, are not inhibited by the NT-R antagonist, SR 48692, suggesting that they exert their actions either via a different mast cell receptor or via a receptor-independent mechanism.  相似文献   

19.
The effect of N-palmitoyl-L-serine phosphoric acid (L-NASPA), which has been used as an inhibitor of lysophosphatidic acid receptors, on intracellular Ca2+ concentration ([Ca2+]i) in human osteosarcoma MG63 cells was measured by using fura-2. L-NASPA (0.1-10 microM) caused a rapid and transient plateau [Ca2+]i rise in a concentration-dependent manner (EC50=0.5 microM). The L-NASPA-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+ but was not altered by L-type voltage-gated Ca2+ channel blockers. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, induced a [Ca2+]i rise, after which the increasing effect of L-NASPA on [Ca2+]i was completely inhibited; also, pretreatment with L-NASPA partly reduced thapsigargin-induced [Ca2+]i rise. U73122, an inhibitor of phospholipase C, abolished histamine (but not L-NASPA)-induced [Ca2+]i rise. Overnight incubation with 1 microM L-NASPA did not affect cell proliferation, but 10-20 microM L-NASPA exerted 4% and 15% inhibition, respectively. Collectively, L-NASPA rapidly increased [Ca2+]i in MG63 cells by evoking both extracellular Ca2+ influx and intracellular Ca2+ release, and is cytotoxic at higher concentrations.  相似文献   

20.
The effect of the antidepressant nortriptyline, on bone cells is unknown. In human osteosarcoma MG63 cells, the effect of nortriptyline on intracellular Ca2+ concentration ([Ca2+]i) and proliferation was measured by using fura-2 and tetrazolium, respectively. Nortriptyline (> or = 10 microM) caused a [Ca2+]i rise in a concentration-dependent manner (EC50 = 200 microM). Nortriptyline-induced [Ca2+]i rise was prevented by 60% by removal of extracellular Ca2+ but was not altered by voltage-gated Ca2+ channel blockers. In Ca2+ -free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ -ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of nortriptyline on [Ca2+]i was abolished; also, pretreatment with nortriptyline abolished thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, did not affect nortriptyline-induced [Ca2+]i rise; however, activation of protein kinase C decrease nortriptyline-induced [Ca2+]i rise by 32%. Overnight incubation with 50 and 100 microM nortriptyline killed 78% and 97% of cells, respectively; while 10 microM nortriptyline had no effect. These data suggest that nortriptyline rapidly increases [Ca2+]i in human osteosarcoma cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and is cytotoxic at high concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号