首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined 49 Legionella species, 26 L. pneumophila and 23 non-pneumophila Legionella spp., using partial 16S rRNA gene sequencing. This approach accurately identified all the L. pneumophila isolates, characterized all non-pneumophila Legionella isolates as such within this genus, and classified most (20/23; 87%) of the non-pneumophila Legionella isolates to the species level.  相似文献   

2.
Strains of Legionella spp. produce extracellular proteases than can be detected using synthetic chromogenic peptides. Chromogenic tri- and tetrapeptides show a high degree of sensitivity, specificity and reagent stability when linked to para-nitroaniline (pNA). For example, SucOMe-Arg-Pro-Tyr.pNa (S-2586) is specifically hydrolysed by proteases of Legionella pneumophila and some other Legionella species. A paper disc method to sample protease directly from agar plates has been used to evaluate chromogenic peptides as reagents for diagnostic purposes. Strains of Legionella spp., Pseudomonas spp. and Enterobacteriaceae were examined, together with a recombinant Escherichia coli strain containing the cloned 38 kDa zinc metalloprotease from L. pneumophila, S-2586 was hydrolysed by 282 out of 283 L. pneumophila strains, and by the recombinant E. coli. Two of the six strains representing other Legionella species, and 22 of the 50 strains from the Pseudomonas group were also positive. No reaction was seen with any of the Enterobacteriaceae strains. Although there was functional homology between proteases from several bacterial groups, the high prevalence of S 2586-hydrolysing proteases within L. pneumophila indicates a potential usefulness for phenotypic identification.  相似文献   

3.
Legionella spp. are pathogens that can cause Legionnaires' disease in humans through inhalation of contaminated aerosols. The principal reservoir for these microorganisms is water, but Legionella spp. have been isolated from composted vegetable and plant material, and from many potting mixes as well. In Australia, there have been several cases of Legionnaires' disease in which Legionella longbeachae has been isolated from potting soils. In Switzerland, the source of infection cannot always be identified as water or cooling towers: therefore, we have investigated 46 commercially available potting soils in Switzerland to determine the presence of Legionella spp. We were able to detect Legionella spp. in 45.7% (21/46) of the potting soil samples analysed by culture. Legionella pneumophila was present in 19.6% (9/46) of the samples and L. pneumophila serogroup  1 in 6.5% (3/46). Quantification by both culture and quantitative real-time PCR revealed high concentrations of legionellae in potting soils, ranging between 103 CFU/g and 105 CFU/g and 104 genomic units (GU)/g and 106 GU/g, respectively. Thus, potting soils may represent an alternative reservoir for Legionella spp. in Switzerland.  相似文献   

4.
While the majority of Legionnaire's disease has been attributed to Legionella pneumophila, Legionella micdadei can cause a similar infection in immunocompromised people. Consistent with its epidemiological profile, the growth of L. micdadei in cultured macrophages is less robust than that of L. pneumophila. To identify those features of the Legionella spp. which are correlated to efficient growth in macrophages, two approaches were taken. First, a phenotypic analysis compared four clinical isolates of L. micdadei to one well-characterized strain of L. pneumophila. Seven traits previously correlated with the virulence of L. pneumophila were evaluated: infection and replication in cultured macrophages, evasion of phagosome-lysosome fusion, contact-dependent cytotoxicity, sodium sensitivity, osmotic resistance, and conjugal DNA transfer. By nearly every measure, L. micdadei appeared less virulent than L. pneumophila. The surprising exception was L. micdadei 31B, which evaded lysosomes and replicated in macrophages as efficiently as L. pneumophila, despite lacking both contact-dependent cytopathicity and regulated sodium sensitivity. Second, in an attempt to identify virulence factors genetically, an L. pneumophila genomic library was screened for clones which conferred robust intracellular growth on L. micdadei. No such loci were isolated, consistent with the multiple phenotypic differences observed for the two species. Apparently, L. pneumophila and L. micdadei use distinct strategies to colonize alveolar macrophages, causing Legionnaire's disease.  相似文献   

5.
Simultaneous infections with different Legionella spp. have rarely been described in the literature. We now report on seven sporadic cases of legionellosis of which three were simultaneous infections caused by multiple Legionella pneumophila serogroups. Four different legionellae were involved. L. pneumophila serogroup 1, two different types of L. pneumophila serogroup 4, and L. pneumophila serogroup 10 have been identified simultaneously from a lung tissue specimen of one patient. Specimens from two other patients each revealed two different legionellae of serogroups 1 and 4. The existence of different L. pneumophila serogroups in simultaneous infections has not only been documented by identifying the incriminated Legionella spp. by classical methods. In addition, preliminary results of Legionella spp. identification with the novel physical procedure of Fourier transform infrared spectroscopy have been presented to evaluate its possible applicability for routine diagnostic procedures.  相似文献   

6.
A real-time PCR for the ABI Prism 7000 system targeting the 23S-5S spacer of Legionella spp. was developed. Simultaneous detection and differentiation of Legionella spp. and Legionella pneumophila within 90 min and without post-PCR melting-curve analysis was achieved using two TaqMan probes. In sputum samples from 23 controls and 17 patients with legionellosis, defined by positive culture, urinary antigen testing, or seroconversion, 94% sensitivity and 100% specificity were observed.  相似文献   

7.
8.
A multiplex real-time PCR assay for detection of Legionella pneumophila and Legionella spp. and including an internal control was designed. Legionella species, L. pneumophila, and the internal control were detected simultaneously by probes labeled with 6-carboxy-fluorescein, hexachlorofluorescein, and indodicarbocyanine, respectively. Therefore, no postamplification analysis was required in order to distinguish the targets. The sensitivity of both assays was 2.5 CFU/ml, and from analysis of 10 culture-positive and 74 culture-negative samples from patients investigated for legionellosis, 100% agreement was observed by both assays in comparison to culture. Four additional positives were found by the multiplex real-time PCR assay in the Legionella culture-negative samples.  相似文献   

9.
Legionella pneumophila adheres to the slime coat of Fischerella spp. This was shown by microscopic examination and by a decline in L. pneumophila CFU in samples removed from coincubation mixtures of both organisms. Binding of partially purified Fischerella slime by L. pneumophila was most efficient by young, less hydrophobic L. pneumophila cells than by older, more hydrophobic cells. Uptake of crystal violet and partitioning into hexadecane were used to measure hydrophobicity of L. pneumophila. Purified soluble Legionella antigen also bound to Fischerella slime, as shown by indirect immunofluorescence. Adherence was not specific for L. pneumophila, since a variety of gram-negative, gram-positive, and acid-fast bacteria also bound to Fischerella slime.  相似文献   

10.
Cross-reactivity between Legionella spp. and Capnocytophaga ochracea was noted by latex agglutination tests (Serobact Legionella; Disposable Products, Adelaide, Australia). Four of 11 (36%) C. ochracea isolates agglutinated with latex reagents designed to identify Legionella pneumophila serogroups. C. ochracea isolated on buffered charcoal yeast extract media may give false-positive results in this Legionella latex agglutination assay.  相似文献   

11.
We compared the growth of 28 Legionella spp. on four manufacturers' buffered charcoal-yeast extract (BCYE) agar media and selective BCYE media that contained polymyxin B, anisomycin, and vancomycin or cefamandole. With BCYE as a "gold standard," growth for Legionella pneumophila was significantly better than for the nonpneumophila species on all media tested. L. pneumophila and 24 other Legionella spp. grew on vancomycin-containing media, while L. santicrucis, L. rubrilucens, and L. erythra grew poorly. In contrast, 11 of 28 species (notably L. micdadei and L. bozemanii) did not grow on cefamandole-containing media and 8 of 28 species only grew marginally. We demonstrated that selective BCYE media that contain vancomycin or cefamandole may not support the growth of all Legionella spp. One commercial manufacturer's media were consistently suboptimal. Laboratories should not rely on a manufacturer's quality control testing in lieu of their own.  相似文献   

12.
Heating of Legionella pneumophila and other Legionella spp. was studied to determine whether this technique could be used as a selective technique with contaminated clinical specimens. Studies of 13 different strains of Legionella spp. showed heterogeneous heat survival; heating at 60 degrees C for 1 to 2 min did not affect the survival of the majority of strains. Heating of four Pseudomonas aeruginosa strains at 60 degrees C for 2 min reduced bacterial counts by 98% or greater. Enterococci were heat tolerant, with virtually no inhibition under the same conditions. No inoculum effect was noted for any of the organisms tested. Heating of eight contaminated clinical specimens before plating on buffered charcoal-yeast extract medium reduced the numbers of contaminants on most plates but increased by only one the number of specimens yielding L. pneumophila. Plating the same specimens on selective media with or without heat pretreatment yielded L. pneumophila in every case. Heating of clinical specimens at 60 degrees C for 1 to 2 min before plating may occasionally increase the recovery of L. pneumophila from contaminated specimens, but this technique should not be generally used.  相似文献   

13.
Monoclonal antibodies (MAbs) against the virulence-associated Mip protein of Legionella spp. were raised by immunizing BALB/c mice with (i) Legionella pneumophila, (ii) Legionella micdadei, and (iii) purified recombinant native Mip protein cloned from L. pneumophila Philadelphia 1. Following screening of seeded wells by immunoblot analysis with homologous antigens, eight Mip-specific MAbs were found. These MAbs were chosen to investigate the antigenic diversity of Mip proteins in the genus Legionella. Mip was detected in 82 Legionella strains representing all 34 species tested. One of these MAbs, obtained from immunization with L. micdadei, recognized an epitope common to all Legionella species tested by immunoblot analysis. Another MAb was discovered to be specific for the Mip protein of L. pneumophila. The remaining six MAbs recognized 18 to 79% of Legionella species included in this study. By making use of the MAbs introduced in this study, it could be shown that, based on Mip protein epitope expression, Legionella species can be divided into at least six antigenetically distinct groups. As demonstrated by 43 L. pneumophila strains representing all serogroups, no antigenic diversity of Mip proteins was found for this species. In addition, 18 non-Legionella species, including Chlamydia trachomatis, Neisseria meningitidis, Pseudomonas aeruginosa, and Saccharomyces cerevisiae, all of which are known to carry genes homologous to the Legionella mip genes, were reacted against all eight MAbs. No cross-reactivity was detectable in any of those strains.  相似文献   

14.
Legionella anisa is one of the most frequent species of Legionella other than Legionella pneumophila in the environment and may be hospital acquired in rare cases. We found that L. anisa may mask water contamination by L. pneumophila, suggesting that there is a risk of L. pneumophila infection in immunocompromised patients if water is found to be contaminated with Legionella species other than L. pneumophila.  相似文献   

15.
目的 建立单一和双重荧光定量PCR方法分别和同时进行军团菌属及嗜肺军团菌的检测.方法 利用军团菌属16 S rRNA基因和嗜肺军团菌mip基因设计引物和探针,两条基因探针分别标记FAM和HEX,并将相关反应体系和条件进行优化.分别应用单一基因探针(单一荧光定量PCR)和双重基因探针(双重荧光定量PCR)对嗜肺军团菌、非嗜肺军团菌及非军团菌进行检测,并验证两种方法的特异度、敏感度.应用双重荧光定量PCR检测空调水样滤膜样品和DNA提取样品,比较两者结果的一致性.结果 针对军团菌属及嗜肺军团菌,应用荧光定量PCR,16 S rRNA基因和mip基因均能较好的检出,16S rRNA和mip的最低检出限分别为8和10个拷贝.经优化得到了最佳反应体系.单一荧光定量PCR方法所检的8株嗜肺军用菌及4株非嗜肺军团菌16 S rRNA基因均为阳性,嗜肺军团菌mip基因阳性,非嗜肺军团菌mip基因阴性.双重荧光定量PCR方法所检的23株嗜肺军团菌中有2株为假阴性,9株非嗜肺军团菌和非军团菌属中有1株为假阳性.49份空调水样滤膜直接检测和提取DNA后检测的结果一致,其中26份水样军团菌阳性,20份为嗜肺军团菌,6份为非嗜肺军团菌;1份弗朗西斯菌检测HEX阳性(假阳性),占实际培养分离的1/26.结论 单一及双重荧光定量PCR法特异、快速、敏感,一次同时检测嗜肺与非嗜肺军团菌,满足对空调和环境水样军团菌监测的要求.  相似文献   

16.
目的 建立单一和双重荧光定量PCR方法分别和同时进行军团菌属及嗜肺军团菌的检测.方法 利用军团菌属16 S rRNA基因和嗜肺军团菌mip基因设计引物和探针,两条基因探针分别标记FAM和HEX,并将相关反应体系和条件进行优化.分别应用单一基因探针(单一荧光定量PCR)和双重基因探针(双重荧光定量PCR)对嗜肺军团菌、非嗜肺军团菌及非军团菌进行检测,并验证两种方法的特异度、敏感度.应用双重荧光定量PCR检测空调水样滤膜样品和DNA提取样品,比较两者结果的一致性.结果 针对军团菌属及嗜肺军团菌,应用荧光定量PCR,16 S rRNA基因和mip基因均能较好的检出,16S rRNA和mip的最低检出限分别为8和10个拷贝.经优化得到了最佳反应体系.单一荧光定量PCR方法所检的8株嗜肺军用菌及4株非嗜肺军团菌16 S rRNA基因均为阳性,嗜肺军团菌mip基因阳性,非嗜肺军团菌mip基因阴性.双重荧光定量PCR方法所检的23株嗜肺军团菌中有2株为假阴性,9株非嗜肺军团菌和非军团菌属中有1株为假阳性.49份空调水样滤膜直接检测和提取DNA后检测的结果一致,其中26份水样军团菌阳性,20份为嗜肺军团菌,6份为非嗜肺军团菌;1份弗朗西斯菌检测HEX阳性(假阳性),占实际培养分离的1/26.结论 单一及双重荧光定量PCR法特异、快速、敏感,一次同时检测嗜肺与非嗜肺军团菌,满足对空调和环境水样军团菌监测的要求.  相似文献   

17.
A reverse passive agglutination method was developed to detect soluble antigens of Legionella spp. By this method Legionella antigens were detected in urine specimens from 14 of 15 antigenuric patients with clinically diagnosed Legionnaires disease and in none of 263 urine samples from healthy subjects or patients with urinary tract infections. Intra-genus cross-reactivity was observed only between L. pneumophila serogroups 2, 3, and 6. The Legionella reverse passive agglutination method was also evaluated with reference to reagent concentrations, test conditions, and subjectivity of reading test results. The method is rapid and does not require special equipment.  相似文献   

18.
A model of intracellular growth for Legionella pneumophila in Acanthamoeba castellanii has been developed and provides a quantitative measure of survival and replication after entry. In this model, Acanthamoeba monolayers were incubated with bacteria in tissue culture plates under nutrient-limiting conditions. Gentamicin was used to kill extracellular bacteria following the period of incubation, and the number of intracellular bacteria was determined following lysis of amebae. Intracellular growth of virulent L. pneumophila and other wild-type Legionella species was observed when the assay was performed at 37 degrees C. At room temperature, none of the Legionella strains tested grew intracellularly, while an avirulent L. pneumophila strain was unable to replicate in this assay at either temperature. The effect of nutrient limitation on A. castellanii during the assay prevented multiplication of the amebae and increased the level of infection by Legionella spp. The level of infection of the amebae was directly proportional to the multiplicity of infection with bacteria; at an inoculum of 1.03 x 10(7) bacteria added to wells containing 1.10 x 10(5) amebae (multiplicity of infection of 100), approximately 4.4% of A. castellanii cells became infected. Cytochalasin D reduced the uptake of bacteria by the amebae primarily by causing amebae to lift off the culture dish, reducing the number of target hosts; methylamine also reduced the level of initial infection, yet neither inhibitor was able to prevent intracellular replication of Legionella spp. Consequently, once the bacteria entered the cell, only lowered temperature could restrict replication. This model of intracellular growth provides a one-step growth curve and should be useful to study the molecular basis of the host-parasite interaction.  相似文献   

19.
Electrophoretic analysis of lipopolysaccharide (LPS) extracts from 430 previously serotyped Legionella isolates and 28 American Type Culture Collection (ATCC) non-Legionella pneumophila Legionella reference strains representing different Legionella species and serogroups has been performed. LPS was prepared from Legionella suspensions by sonication and proteinase K digestion. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, LPS bands were either stained with silver nitrate or transferred onto a nitrocellulose membrane and detected with rabbit antibodies raised against L. pneumophila serogroup 5, which was known to cross-react with L. pneumophila serogroups 1 to 14. Silver staining revealed that each of the 28 ATCC non-L. pneumophila Legionella strains possessed an individual and characteristic LPS banding pattern. The LPS profile was defined by the molecular weight of the visualized bands and/or the individual ladder-like LPS pattern. It was demonstrated by immunoblotting that non-L. pneumophila Legionella strains did not react with the serogroup 5 antiserum, thus allowing for the differentiation between L. pneumophila and non-L. pneumophila species.  相似文献   

20.
Legionella pneumophila is a bacterial pathogen that resides and multiplies in macrophages as well as in its natural aquatic hosts, the protozoa. Different bacterial factors contribute to pathogenicity and accompanying eukaryotic intracellular events. Sequencing of mip flanking regions revealed a gene of 2610 bp, ligA, that has no significant similarity to any of the genes identified previously. Epidemiological studies indicate that this gene is present in Legionella pneumophila, the species most often associated with cases of the Legionnaires' disease, but not in Legionella species other than L. pneumophila. The isogenic ligA deletion mutant was resistant to NaCl, and showed decreased cytotoxicity to human monocytes and decreased hemolytic activity to red blood cells. However, the most prominent effect of the L. pneumophila ligA mutant strain LEPF1 was the nearly completely reduced replication within the natural host Acanthamoeba castellanii. Since this gene is L. pneumophila specific and regulates numerous bacterial properties we designated this gene ligA for Legionella pneumophila infectivity gene A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号