首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following striate cortex damage in monkeys and humans there can be residual function mediated by parallel visual pathways. In humans this can sometimes be associated with a “feeling” that something has happened, especially with rapid movement or abrupt onset. For less transient events, discriminative performance may still be well above chance even when the subject reports no conscious awareness of the stimulus. In a previous study we examined parameters that yield good residual visual performance in the “blind” hemifield of a subject with unilateral damage to the primary visual cortex. With appropriate parameters we demonstrated good discriminative performance, both with and without conscious awareness of a visual event. These observations raise the possibility of imaging the brain activity generated in the “aware” and the “unaware” modes, with matched levels of discrimination performance, and hence of revealing patterns of brain activation associated with visual awareness. The intact hemifield also allows a comparison with normal vision. Here we report the results of a functional magnetic resonance imaging study on the same subject carried out under aware and unaware stimulus conditions. The results point to a shift in the pattern of activity from neocortex in the aware mode, to subcortical structures in the unaware mode. In the aware mode prestriate and dorsolateral prefrontal cortices (area 46) are active. In the unaware mode the superior colliculus is active, together with medial and orbital prefrontal cortical sites.  相似文献   

2.
Recent studies show that neuronal mechanisms for learning and memory both dynamically modulate and permanently alter the representations of visual stimuli in the adult monkey cortex. Three commonly observed neuronal effects in memory-demanding tasks are repetition suppression, enhancement, and delay activity. In repetition suppression, repeated experience with the same visual stimulus leads to both short- and long-term suppression of neuronal responses in subpopulations of visual neurons. Enhancement works in an opposite fashion, in that neuronal responses are enhanced for objects with learned behavioral relevance. Delay activity is found in tasks in which animals are required to actively hold specific information “on-line” for short periods. Repetition suppression appears to be an intrinsic property of visual cortical areas such as inferior temporal cortex and is thought to be important for perceptual learning and priming. By contrast, enhancement and delay activity may depend on feedback to temporal cortex from prefrontal cortex and are thought to be important for working memory. All of these mnemonic effects on neuronal responses bias the competitive interactions that take place between stimulus representations in the cortex when there is more than one stimulus in the visual field. As a result, memory will often determine the winner of these competitions and, thus, will determine which stimulus is attended.  相似文献   

3.
Event-related brain potentials (ERPs) provide high-resolution measures of the time course of neuronal activity patterns associated with perceptual and cognitive processes. New techniques for ERP source analysis and comparisons with data from blood-flow neuroimaging studies enable improved localization of cortical activity during visual selective attention. ERP modulations during spatial attention point toward a mechanism of gain control over information flow in extrastriate visual cortical pathways, starting about 80 ms after stimulus onset. Paying attention to nonspatial features such as color, motion, or shape is manifested by qualitatively different ERP patterns in multiple cortical areas that begin with latencies of 100–150 ms. The processing of nonspatial features seems to be contingent upon the prior selection of location, consistent with early selection theories of attention and with the hypothesis that spatial attention is “special.”  相似文献   

4.
Blindsight is the rare and paradoxical ability of some human subjects with occipital lobe brain damage to discriminate unseen stimuli in their clinically blind field defects when forced-choice procedures are used, implying that lesions of striate cortex produce a sharp dissociation between visual performance and visual awareness. Skeptics have argued that this is no different from the behavior of normal subjects at the lower limits of conscious vision, at which such dissociations could arise trivially by using different response criteria during clinical and forced-choice tests. We tested this claim explicitly by measuring the sensitivity of a hemianopic patient independently of his response criterion in yes-no and forced-choice detection tasks with the same stimulus and found that, unlike normal controls, his sensitivity was significantly higher during the forced-choice task. Thus, the dissociation by which blindsight is defined is not simply due to a difference in the patients’ response bias between the two paradigms. This result implies that blindsight is unlike normal, near-threshold vision and that information about the stimulus is processed in blindsighted patients in an unusual way.  相似文献   

5.
A cardinal feature of neurons in the cerebral cortex is stimulus selectivity, and experience-dependent shifts in selectivity are a common correlate of memory formation. We have used a theoretical “learning rule,” devised to account for experience-dependent shifts in neuronal selectivity, to guide experiments on the elementary mechanisms of synaptic plasticity in hippocampus and neocortex. These experiments reveal that many synapses in hippocampus and neocortex are bidirectionally modifiable, that the modifications persist long enough to contribute to long-term memory storage, and that key variables governing the sign of synaptic plasticity are the amount of NMDA receptor activation and the recent history of cortical activity.  相似文献   

6.
This paper examines the available United States data on academic research and development (R&D) expenditures and the number of papers published and the number of citations to these papers as possible measures of “output” of this enterprise. We look at these numbers for science and engineering as a whole, for five selected major fields, and at the individual university field level. The published data in Science and Engineering Indicators imply sharply diminishing returns to academic R&D using published papers as an “output” measure. These data are quite problematic. Using a newer set of data on papers and citations, based on an “expanding” set of journals and the newly released Bureau of Economic Analysis R&D deflators, changes the picture drastically, eliminating the appearance of diminishing returns but raising the question of why the input prices of academic R&D are rising so much faster than either the gross domestic product deflator or the implicit R&D deflator in industry. A production function analysis of such data at the individual field level follows. It indicates significant diminishing returns to “own” R&D, with the R&D coefficients hovering around 0.5 for estimates with paper numbers as the dependent variable and around 0.6 if total citations are used as the dependent variable. When we substitute scientists and engineers in place of R&D as the right-hand side variables, the coefficient on papers rises from 0.5 to 0.8, and the coefficient on citations rises from 0.6 to 0.9, indicating systematic measurement problems with R&D as the sole input into the production of scientific output. But allowing for individual university field effects drives these numbers down significantly below unity. Because in the aggregate both paper numbers and citations are growing as fast or faster than R&D, this finding can be interpreted as leaving a major, yet unmeasured, role for the contribution of spillovers from other fields, other universities, and other countries.  相似文献   

7.
No previous research has tuned the temporal characteristics of light-emitting devices to enhance brightness perception in human vision, despite the potential for significant power savings. The role of stimulus duration on perceived contrast is unclear, due to contradiction between the models proposed by Bloch and by Broca and Sulzer over 100 years ago. We propose that the discrepancy is accounted for by the observer’s “inherent expertise bias,” a type of experimental bias in which the observer’s life-long experience with interpreting the sensory world overcomes perceptual ambiguities and biases experimental outcomes. By controlling for this and all other known biases, we show that perceived contrast peaks at durations of 50–100 ms, and we conclude that the Broca–Sulzer effect best describes human temporal vision. We also show that the plateau in perceived brightness with stimulus duration, described by Bloch’s law, is a previously uncharacterized type of temporal brightness constancy that, like classical constancy effects, serves to enhance object recognition across varied lighting conditions in natural vision—although this is a constancy effect that normalizes perception across temporal modulation conditions. A practical outcome of this study is that tuning light-emitting devices to match the temporal dynamics of the human visual system’s temporal response function will result in significant power savings.  相似文献   

8.
The “aperture problem” refers to the inherent ambiguity of the motion generated by an untextured contour moving within an aperture. The limited spatial extent of the receptive fields of neurons in cortical areas like V1 and MT render them susceptible to this problem. Most psychophysical experiments have probed how the visual system overcomes the aperture problem by presenting moving contours behind one or more simulated apertures. The assumption has been that the computational ambiguities that arise in resolving these displays are equivalent to the computational problems created by receptive fields that sample a small region of visual space. Evidence is presented here that challenges this view. We demonstrate that a fundamental computational difference in the interpretation of contour terminators arises in these two variants of the aperture problem. When the aperture is a receptive field, and a moving contour extends beyond its boundaries, the contour “terminators” delimit the boundaries of the receptive field, not the ends of the contour. In contrast, when a moving contour is viewed through a simulated aperture, the contour terminators are generated by the occluding edges of the aperture. In a series of experiments, we show that reciprocal interactions arise between computations of occlusion and those of motion direction and integration. Our results demonstrate that the visual system solves the aperture problem by decomposing moving contours into moving segments, and unpaired terminators that arise from the accretion and deletion of contours behind occluding edges, generating both coherent motion and illusory occluding surfaces.  相似文献   

9.
OspA (outer surface protein A) is an abundant immunogenic lipoprotein of the Lyme disease spirochete Borrelia burgdorferi. The crystal structure of a soluble recombinant form of OspA was solved in a complex with the Fab fragment of mouse monoclonal antibody 184.1 and refined to a resolution of 1.9 Å. OspA has a repetitive antiparallel β topology with an unusual nonglobular region of “freestanding” sheet connecting globular N- and C-terminal domains. Arrays of residues with alternating charges are a predominant feature of the folding pattern in the nonglobular region. The 184.1 epitope overlaps with a well conserved surface in the N-terminal domain, and a hydrophobic cavity buried in a positively charged cleft in the C-terminal domain is a potential binding site for an unknown ligand. An exposed variable region on the C-terminal domain of OspA is predicted to be an important factor in the worldwide effectiveness of OspA-based vaccines.  相似文献   

10.
The spread of bacteria resistant to antimicrobial agents calls for population-wide treatment strategies to delay or reverse the trend toward antibiotic resistance. Here we propose new criteria for the evaluation of the population-wide effects of treatment protocols for directly transmitted bacterial infections and discuss different usage patterns for single and multiple antibiotic therapy. A mathematical model suggests that the long-term benefit of single drug treatment from introduction of the antibiotic until a high frequency of resistance precludes its use is almost independent of the pattern of antibiotic use. When more than one antibiotic is employed, sequential use of different antibiotics in the population (“cycling”) is always inferior to treatment strategies where, at any given time, equal fractions of the population receive different antibiotics. However, treatment of all patients with a combination of antibiotics is in most cases the optimal treatment strategy.  相似文献   

11.
Cerebral plaques containing β-amyloid (βA4) represent an invariant pathological feature of Alzheimer disease (AD). βA4 is proteolytically generated from its parent molecule, amyloid precursor protein (APP). In nonneuronal cells βA4 has been shown to be secreted via a pH-sensitive and endocytosis-dependent pathway, and this process, when occurring in the brain, is considered to play an important role in AD. In neurons the mechanisms of βA4 production are not known. Here we have analyzed these mechanisms by expressing human APP and its mutant versions in hippocampal neurons using the Semliki forest virus system. We show that these cells initially generate two pools of βA4, an extracellular and an intracellular, and only the extracellular pool is produced via a pH-sensitive and endocytosis-dependent pathway. Thus, hippocampal neurons are able to utilize an alternate pathway to produce intracellular βA4. We also show that a common feature of two types of APP mutations (“Swedish” and “London”) implicated in early-onset AD is their increased production of C-terminally elongated βA4 (β42), both intra- and extracellularly. Since neurons are the only cells that produce substantial levels of intracellular βA4 and also the main victims in AD, these findings may provide an important link between βA4 and neurodegeneration.  相似文献   

12.
Memory fields of neurons in the primate prefrontal cortex   总被引:14,自引:0,他引:14       下载免费PDF全文
Many prefrontal (PF) neurons convey information about both an object’s identity (what) and its location (where). To explore how they represent conjunctions of what and where, we explored the receptive fields of their mnemonic activity (i.e., their “memory fields”) by requiring monkeys to remember both an object and its location at many positions throughout a wide portion of central vision. Many PF neurons conveyed object information and had highly localized memory fields that emphasized the contralateral, but not necessarily foveal, visual field. These results indicate that PF neurons can simultaneously convey precise location and object information and thus may play a role in constructing a unified representation of a visual scene.  相似文献   

13.
Human area V1 offers an excellent opportunity to study, using functional MRI, a range of properties in a specific cortical visual area, whose borders are defined objectively and convergently by retinotopic criteria. The retinotopy in V1 (also known as primary visual cortex, striate cortex, or Brodmann’s area 17) was defined in each subject by using both stationary and phase-encoded polar coordinate stimuli. Data from V1 and neighboring retinotopic areas were displayed on flattened cortical maps. In additional tests we revealed the paired cortical representations of the monocular “blind spot.” We also activated area V1 preferentially (relative to other extrastriate areas) by presenting radial gratings alternating between 6% and 100% contrast. Finally, we showed evidence for orientation selectivity in V1 by measuring transient functional MRI increases produced at the change in response to gratings of differing orientations. By systematically varying the orientations presented, we were able to measure the bandwidth of the orientation “transients” (45°).  相似文献   

14.
Component visual features of objects are registered by distributed patterns of activity among neurons comprising multiple pathways and visual areas. How these distributed patterns of activity give rise to unified representations of objects remains unresolved, although one recent, controversial view posits temporal coherence of neural activity as a binding agent. Motivated by the possible role of temporal coherence in feature binding, we devised a novel psychophysical task that requires the detection of temporal coherence among features comprising complex visual images. Results show that human observers can more easily detect synchronized patterns of temporal contrast modulation within hybrid visual images composed of two components when those components are drawn from the same original picture. Evidently, time-varying changes within spatially coherent features produce more salient neural signals.  相似文献   

15.
A fundamental shift to a total system approach for crop protection is urgently needed to resolve escalating economic and environmental consequences of combating agricultural pests. Pest management strategies have long been dominated by quests for “silver bullet” products to control pest outbreaks. However, managing undesired variables in ecosystems is similar to that for other systems, including the human body and social orders. Experience in these fields substantiates the fact that therapeutic interventions into any system are effective only for short term relief because these externalities are soon “neutralized” by countermoves within the system. Long term resolutions can be achieved only by restructuring and managing these systems in ways that maximize the array of “built-in” preventive strengths, with therapeutic tactics serving strictly as backups to these natural regulators. To date, we have failed to incorporate this basic principle into the mainstream of pest management science and continue to regress into a foot race with nature. In this report, we establish why a total system approach is essential as the guiding premise of pest management and provide arguments as to how earlier attempts for change and current mainstream initiatives generally fail to follow this principle. We then draw on emerging knowledge about multitrophic level interactions and other specific findings about management of ecosystems to propose a pivotal redirection of pest management strategies that would honor this principle and, thus, be sustainable. Finally, we discuss the potential immense benefits of such a central shift in pest management philosophy.  相似文献   

16.
At early stages in visual processing cells respond to local stimuli with specific features such as orientation and spatial frequency. Although the receptive fields of these cells have been thought to be local and independent, recent physiological and psychophysical evidence has accumulated, indicating that the cells participate in a rich network of local connections. Thus, these local processing units can integrate information over much larger parts of the visual field; the pattern of their response to a stimulus apparently depends on the context presented. To explore the pattern of lateral interactions in human visual cortex under different context conditions we used a novel chain lateral masking detection paradigm, in which human observers performed a detection task in the presence of different length chains of high-contrast-flanked Gabor signals. The results indicated a nonmonotonic relation of the detection threshold with the number of flankers. Remote flankers had a stronger effect on target detection when the space between them was filled with other flankers, indicating that the detection threshold is caused by dynamics of large neuronal populations in the neocortex, with a major interplay between excitation and inhibition. We considered a model of the primary visual cortex as a network consisting of excitatory and inhibitory cell populations, with both short- and long-range interactions. The model exhibited a behavior similar to the experimental results throughout a range of parameters. Experimental and modeling results indicated that long-range connections play an important role in visual perception, possibly mediating the effects of context.  相似文献   

17.
Contracting to provide technological information (TI) is a significant challenge. TI is an unusual commodity in five ways. (i) TI is difficult to count and value; conventional indicators, such as patents and citations, hardly indicate value. TI is often sold at different prices to different parties. (ii) To value TI, it may be necessary to “give away the secret.” This danger, despite nondisclosure agreements, inhibits efforts to market TI. (iii) To prove its value, TI is often bundled into complete products, such as a computer chip or pharmaceutical product. Efficient exchange, by contrast, would involve merely the raw information. (iv) Sellers’ superior knowledge about TI’s value make buyers wary of overpaying. (v) Inefficient contracts are often designed to secure rents from TI. For example, licensing agreements charge more than marginal cost. These contracting difficulties affect the way TI is produced, encouraging self-reliance. This should be an advantage to large firms. However, small research and development firms spend more per employee than large firms, and nonprofit universities are major producers. Networks of organizational relationships, particularly between universities and industry, are critical in transmitting TI. Implicit barter—money for guidance—is common. Property rights for TI are hard to establish. Patents, quite suitable for better mousetraps, are inadequate for an era when we design better mice. Much TI is not patented, and what is patented sets fuzzy demarcations. New organizational forms are a promising approach to contracting difficulties for TI. Webs of relationships, formal and informal, involving universities, start-up firms, corporate giants, and venture capitalists play a major role in facilitating the production and spread of TI.  相似文献   

18.
Recent experimental evidence has shown that application of certain neurotrophic factors (NTs) to the developing primary visual cortex prevents the development of ocular dominance (OD) columns. One interpretation of this result is that afferents from the lateral geniculate nucleus compete for postsynaptic trophic factor in an activity-dependent manner. Application of excess trophic factor eliminates this competition, thereby preventing OD column formation. We present a model of OD column development, incorporating Hebbian synaptic modification and activity-driven competition for NT, which accounts for both normal OD column development as well as the prevention of that development when competition is removed. In the “control” situation, when available NT is below a critical amount, OD columns form normally. These columns form without weight normalization procedures and in the presence of positive inter-eye correlations. In the “experimental” case, OD column development is prevented in a local neighborhood in which excess NT has been added. Our model proposes a biologically plausible mechanism for competition between neural populations that is motivated by several pieces of experimental data, thereby accounting for both normal and experimentally perturbed conditions.  相似文献   

19.
Specification of pattern is fundamental to the development of a multicellular organism. The Malpighian (renal) tubule of Drosophila melanogaster is a simple epithelium that proliferates under the direction of a single tip cell into three morphologically distinct domains. However, systematic analysis of a panel of over 700 P{GAL4} enhancer trap lines reveals unexpected richness for such an apparently simple tissue. Using numerical analysis, it was possible formally to reconcile apparently similar or complementary expression domains and thus to define at least five genetically defined domains and multiple cell types. Remarkably, the positions of domain boundaries and the numbers of both principal and secondary (“stellate”) cell types within each domain are reproducible to near single-cell precision between individual animals. Domains of physiological function were also mapped using transport or expression assays. Invariably, they respect the boundaries defined by enhancer activity. These genetic domains can also be visualized in vivo, both in transgenic and wild-type flies, providing an “identified cell” system for epithelial physiology. Building upon recent advances in Drosophila Malpighian tubule physiology, the present study confirms this tissue as a singular model for integrative physiology.  相似文献   

20.
The process by which translation is initiated has long been considered similar in Bacteria and Eukarya but accomplished by a different unrelated set of factors in the two cases. This not only implies separate evolutionary histories for the two but also implies that at the universal ancestor stage, a translation initiation mechanism either did not exist or was of a different nature than the extant processes. We demonstrate herein that (i) the “analogous” translation initiation factors IF-1 and eIF-1A are actually related in sequence, (ii) the “eukaryotic” translation factor SUI1 is universal in distribution, and (iii) the eukaryotic/archaeal translation factor eIF-5A is homologous to the bacterial translation factor EF-P. Thus, the rudiments of translation initiation would seem to have been present in the universal ancestor stage. However, significant development and refinement subsequently occurred independently on both the bacterial lineage and on the archaeal/eukaryotic line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号