首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Sunitinib malate (Sutent, SU11248) is a small‐molecule multitargeted tyrosine kinase inhibitor (TKI) used for the treatment of renal cell carcinoma and imatinib‐resistant gastrointestinal stromal tumors. Some TKIs can overcome multidrug resistance conferred by ATP‐binding cassette transporter, P‐glycoprotein (P‐gp)/ABCB1, multidrug resistance‐associated protein 1 (MRP1)/ABCC1, and breast cancer resistance protein (BCRP)/ABCG2. Here, we analyzed the effects of sunitinib on P‐gp and on wild‐type and germ‐line mutant BCRPs. Sunitinib remarkably reversed BCRP‐mediated and partially reversed P‐gp‐mediated drug resistance in the respective transfectants. The in vitro vesicle transport assay indicated that sunitinib competitively inhibited BCRP‐mediated estrone 3‐sulfate transport and P‐gp‐mediated vincristine transport. These inhibitory effects of sunitinib were further analyzed in Q141K‐, R482G‐, R482S‐, and F431L‐variant BCRPs. Intriguingly, the F431L‐variant BCRP, which is expressed by a germ‐line mutant allele 1291T>C, was almost insensitive to both sunitinib‐ and fumitremorgin C (FTC)‐mediated inhibition in a cell proliferation assay. Sunitinib and FTC did not inhibit 125I‐iodoarylazidoprazosin‐binding to F431L‐BCRP. Thus, residue Phe‐431 of BCRP is important for the pharmacological interaction with sunitinib and FTC. Collectively, this is the first report showing a differential effect of a germ‐line variation of the BCRP/ABCG2 gene on the pharmacological interaction between small‐molecule TKIs and BCRP. These findings would be useful for improving our understanding of the pharmaceutical effects of sunitinib in personalized chemotherapy. (Cancer Sci 2010; 00: 000–000)  相似文献   

2.
BACKGROUND: Human cancer cell lines grown in the presence of the cytotoxic agent mitoxantrone frequently develop resistance associated with a reduction in intracellular drug accumulation without increased expression of the known drug resistance transporters P-glycoprotein and multidrug resistance protein (also known as multidrug resistance-associated protein). Breast cancer resistance protein (BCRP) is a recently described adenosine triphosphate-binding cassette transporter associated with resistance to mitoxantrone and anthracyclines. This study was undertaken to test the prevalence of BCRP overexpression in cell lines selected for growth in the presence of mitoxantrone. METHODS: Total cellular RNA or poly A+ RNA and genomic DNA were isolated from parental and drug-selected cell lines. Expression of BCRP messenger RNA (mRNA) and amplification of the BCRP gene were analyzed by northern and Southern blot hybridization, respectively. RESULTS: A variety of drug-resistant human cancer cell lines derived by selection with mitoxantrone markedly overexpressed BCRP mRNA; these cell lines included sublines of human breast carcinoma (MCF-7), colon carcinoma (S1 and HT29), gastric carcinoma (EPG85-257), fibrosarcoma (EPF86-079), and myeloma (8226) origins. Analysis of genomic DNA from BCRP-overexpressing MCF-7/MX cells demonstrated that the BCRP gene was also amplified in these cells. CONCLUSIONS: Overexpression of BCRP mRNA is frequently observed in multidrug-resistant cell lines selected with mitoxantrone, suggesting that BCRP is likely to be a major cellular defense mechanism elicited in response to exposure to this drug. It is likely that BCRP is the putative "mitoxantrone transporter" hypothesized to be present in these cell lines.  相似文献   

3.
卵巢癌细胞拓扑替康耐药机制的探讨   总被引:6,自引:1,他引:5  
Jia P  Wu SB  Li F  Xu Q  Wu MF  Liao GN  Lu YP  Ma D 《中华肿瘤杂志》2004,26(3):139-142
目的 探讨人卵巢癌细胞对拓扑替康 (TPT)的耐药机制。方法 流式细胞仪检测卵巢癌TPT耐药细胞与亲本细胞的胞内罗丹明 (Rh12 3)荧光强度 ,RT PCR法检测各膜转运蛋白 (P gp、MRP、BCRP)的基因表达。将包含BCRPmRNA翻译起始位点的反义寡核苷酸 (ASODN)片段转染进耐药细胞 ,分别检测耐药细胞经体外转染后 ,BCRP的基因表达及胞内Rh12 3荧光强度的改变。结果 耐药株的胞内Rh12 3荧光强度是亲本细胞的 31.19% (P <0 .0 1)。耐药株中无P 糖蛋白 (P gp)的基因表达 ;多药耐药相关蛋白 (MRP)基因有极微弱表达 ,相对表达值为 0 .0 5 7;而BCRP基因在耐药株中高表达 ,相对表达值为 0 .6 6 ,亲本细胞不表达BCRP基因。将ASODN转染进耐药细胞后 ,BCRP的基因表达显著下降了 5 9.4 2 % (P <0 .0 5 ) ,胞内Rh12 3荧光强度由 5 .4 2增加到 16 .6 3(P <0 .0 5 )。结论 BCRP的高表达致胞内化疗药物浓度减少 ,是卵巢癌细胞对TPT耐药的主要原因。  相似文献   

4.
Tumor cells may display a multidrug resistant phenotype by overexpression of ATP-binding cassette transporters such as multidrug resistance (MDRI) P-glycoprotein, multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP). The presence of BCRP has thus far been reported solely using mRNA data. In this study, we describe a BCRP-specific monoclonal antibody, BXP-34, obtained from mice, immunized with mitoxantrone-resistant, BCRP mRNA-positive MCF-7 MR human breast cancer cells. BCRP was detected in BCRP-transfected cells and in several mitoxantrone- and topotecan-selected tumor cell sublines. Pronounced staining of the cell membranes showed that the transporter is mainly present at the plasma membrane. In a panel of human tumors, including primary tumors as well as drug-treated breast cancer and acute myeloid leukemia samples, BCRP was low or undetectable. Extended studies will be required to analyze the possible contribution of BCRP to clinical multidrug resistance.  相似文献   

5.
Doyle L  Ross DD 《Oncogene》2003,22(47):7340-7358
Observations of functional adenosine triphosphate (ATP)-dependent drug efflux in certain multidrug-resistant cancer cell lines without overexpression of P-glycoprotein or multidrug resistance protein (MRP) family members suggested the existence of another ATP-binding cassette (ABC) transporter capable of causing cancer drug resistance. In one such cell line (MCF-7/AdrVp), the overexpression of a novel member of the G subfamily of ABC transporters was found. The new transporter was termed the breast cancer resistance protein (BCRP), because of its identification in MCF-7 human breast carcinoma cells. BCRP is a 655 amino-acid polypeptide, formally designated as ABCG2. Like all members of the ABC G (white) subfamily, BCRP is a half transporter. Transfection and enforced overexpression of BCRP in drug-sensitive MCF-7 or MDA-MB-231 cells recapitulates the drug-resistance phenotype of MCF-7/AdrVp cells, consistent with current evidence suggesting that functional BCRP is a homodimer. BCRP maps to chromosome 4q22, downstream from a TATA-less promoter. The spectrum of anticancer drugs effluxed by BCRP includes mitoxantrone, camptothecin-derived and indolocarbazole topoisomerase I inhibitors, methotrexate, flavopiridol, and quinazoline ErbB1 inhibitors. Transport of anthracyclines is variable and appears to depend on the presence of a BCRP mutation at codon 482. Potent and specific inhibitors of BCRP are now being developed, opening the door to clinical applications of BCRP inhibition. Owing to tissue localization in the placenta, bile canaliculi, colon, small bowel, and brain microvessel endothelium, BCRP may play a role in protecting the organism from potentially harmful xenobiotics. BCRP expression has also been demonstrated in pluripotential "side population" stem cells, responsible for the characteristic ability of these cells to exclude Hoechst 33342 dye, and possibly for the maintenance of the stem cell phenotype. Studies are emerging on the role of BCRP expression in drug resistance in clinical cancers. More prospective studies are needed, preferably combining BCRP protein or mRNA quantification with functional assays, in order to determine the contribution of BCRP to drug resistance in human cancers.  相似文献   

6.
Mouse fibroblast cell lines lacking functional Mdr1a, Mdr1b, and Mrp1 genes were selected for resistance to topotecan, mitoxantrone, or doxorubicin. Each of the resulting drug-resistant lines showed marked gene amplification of Bcrp1, the mouse homologue of the human ATP-binding cassette transporter gene BCRP/MXR/ABCP, and greatly elevated expression of Bcrp1 mRNA. All three of the resistant cell lines were highly cross-resistant to topotecan and mitoxantrone and, to a variable extent, doxorubicin. All showed greatly reduced cellular accumulation and greatly increased efflux of mitoxantrone that was dependent on cellular ATP and efficiently reversed by the compound GF120918. The mouse Bcrp1 cDNA encodes a 657-amino-acid protein with 81% identity (86% similarity) to the human breast cancer resistance protein (BCRP) and a virtually superimposable hydrophobicity profile. Our data argue strongly that mouse Bcrp1 is functionally comparable with human BCRP, conferring multidrug resistance to topotecan, mitoxantrone, doxorubicin, and related compounds. Mouse models and cell lines should, therefore, be highly informative in understanding the clinical, pharmacological, and physiological roles of BCRP.  相似文献   

7.
8.
乳腺癌耐药蛋白--肿瘤多药耐药研究新进展   总被引:11,自引:0,他引:11  
Wu DL  Huang F  Lu HZ 《癌症》2003,22(4):441-444
乳腺癌耐药蛋白(breast cancer resistance protein,BCRP)是近年发现的与肿瘤多药耐药有关的新的药物排出泵。BCRP是含655个氨基酸残基的跨膜蛋白,属于ABC转运蛋白超家族的成员,BCRP仅有6个跨膜区和1个ATP的结合位点,故被称为不完整转运分子,推测BCRP通过组成同二聚体或异二聚体构成跨膜通道而发挥功能,过表达BCRP的肿瘤细胞株对米托蒽醌,阿霉素,柔红霉素,鬼臼乙叉甙,拓扑替康,CPT-11等产生交叉耐药,而对长春新碱,紫杉醇无交叉耐药,GF120918和Fumitremorgin C能有效逆转过表达BCRP的肿瘤细胞株的耐药性,并与细胞内药物蓄积量呈正相关,人体正常组织中胎盘合体滋养层细胞,小肠和结肠粘膜上皮细胞,胆小管膜,乳腺小叶及血管内皮细胞和干细胞均能检测到BCRP的表达,推测BCRP具有抑制消化道吸收某些外源性物质(包括抗癌药和有毒物质),参与形成胎盘屏障等生理功能,BCRP与急性髓性白血病,非小细胞肺癌,乳腺癌等多种肿瘤的临床化疗敏感性有关。  相似文献   

9.
Novel mechanisms of drug resistance in leukemia.   总被引:33,自引:0,他引:33  
D D Ross 《Leukemia》2000,14(3):467-473
A key issue in the treatment of acute leukemia is the development of resistance to chemotherapeutic drugs. Several mechanisms may account for this phenomenon, including failure of the cell to undergo apoptosis in response to chemotherapy, or failure of the drug to reach and/or affect its intracellular target. This review focuses on the latter mechanism, and on intracellular drug transport resistance mechanisms in particular. Expression of the ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) has generally been reported to correlate with prognosis in acute myeloid leukemia (AML). Additionally, but more controversial, expression of the ABC transporter multidrug resistance protein (MRP) and the vault-transporter lung resistance protein (LRP) have been correlated with outcome in AML. Despite these findings, functional efflux assays indicate the presence of non-Pgp, non-MRP transporters in AML. Recently, a novel ABC transporter, breast cancer resistance protein (BCRP) was cloned and sequenced in our laboratory. Transfection and overexpression of BCRP in drug-sensitive cells confers drug-resistance to the cells. BCRP is a half-transporter, and may homodimerize or form heterodimers (with a yet unknown half-transporter) to produce an active transport complex. Relatively high expression of BCRP mRNA is observed in approximately 30% of AML cases, suggesting a potential role for this new transporter in drug resistance in leukemia.  相似文献   

10.
Volk EL  Farley KM  Wu Y  Li F  Robey RW  Schneider E 《Cancer research》2002,62(17):5035-5040
Previously, we have reported that a multidrug-resistant, mitoxantrone (MX)-selected cell line, MCF7/MX, is highly cross-resistant to the antifolate methotrexate (MTX), because of enhanced ATP-dependent drug efflux (E. L. Volk et al., Cancer Res., 60: 3514-3521, 2000). These cells overexpress the breast cancer resistance protein (BCRP), and resistance to MTX as well as to MX was reversible by the BCRP inhibitor, GF120918. These data indicated that BCRP causes the multidrug-resistance phenotype. To further examine the role of this transporter in MTX resistance, and in particular the role of amino acid 482, we analyzed a number of BCRP-overexpressing cell lines. MTX resistance correlated with BCRP expression in all of the cell lines expressing the wild-type transporter, which contains an Arg at position 482. In contrast, little or no cross-resistance was found in the MCF7/AdVp1000 and S1-M1-3.2 and S1-M1-80 cell lines, which contain acquired mutations at this position, R482T and R482G, respectively. Concomitantly, the greatest reduction in MTX accumulation was observed in the MCF7/MX cells (BCRP(Arg)) as compared with cells expressing the Thr and Gly BCRP variants. Furthermore, the reduction in drug accumulation was sensitive to BCRP inhibition by GF120918. In conclusion, we have demonstrated a novel role for BCRP as a mediator of MTX resistance and have provided further evidence for the importance of amino acid 482 in substrate specificity.  相似文献   

11.
Expression of the multidrug resistance proteins P-glycoprotein, encoded by the MDR1 gene, multidrug resistance-associated protein (MRP1) and the lung resistance-related protein or major vault protein (LRP/MVP) is associated with clinical resistance to chemotherapy in acute myeloid leukemia (AML). Recently, the breast cancer-resistant protein (BCRP), the equivalent of mitoxantrone-resistant protein (MXR) or placental ABC transporter (ABCP), was described in AML. We investigated MDR1, MRP1, LRP/MVP and BCRP mRNA expression simultaneously in 20 paired clinical AML samples from diagnosis and relapse or refractory disease, using quantitative Taqman analysis. In addition, standard assays for P-glycoprotein expression and function were performed. BCRP was the only resistance protein that was expressed at a significantly higher RNA level (median 1.7-fold, P = 0.04) at relapsed/refractory state as compared to diagnosis. In contrast, LRP/MVP mRNA expression decreased as disease evolved (P = 0.02), whereas MDR1 and MRP1 mRNA levels were not different at relapse as compared to diagnosis. Also, at the protein level no difference of MDR1 between diagnosis and relapse was found. A significant co-expression of BCRP and MDR1 was found at diagnosis (r = 0.47, P = 0.04). The present results suggest that BCRP, but not MDR1, MRP1 or LRP/MVP is associated with clinical resistant disease in AML.  相似文献   

12.
Multidrug resistance, cross-resistance to structurally and functionally unrelated drugs, is an important cause of treatment failure in acute leukemia. Multidrug resistance can result from the overexpression of ATP-dependent efflux pumps, such as P-glycoprotein and members of the multidrug resistance associated protein (MRP) family. Recently a novel transporter has been identified, which is called breast cancer resistance protein (BCRP), ABCG2 or mitoxantrone resistance protein. BCRP confers resistance to chemotherapeutic agents, such as mitoxantrone, doxorubicin and daunorubicin. This review describes BCRP detection techniques and the normal physiology of BCRP. The role of BCRP in the physiology of hematopoietic stem cells is addressed as well as the involvement of BCRP in multidrug resistance in acute leukemia. In AML and ALL, several studies showed that BCRP is expressed and functionally active at low, but variable levels. However, further studies are warranted to investigate its effect on clinical outcome, and explore whether patients could benefit from the combination of BCRP inhibitors and chemotherapy.  相似文献   

13.
14.
Infants with acute lymphoblastic leukemia (ALL) are more resistant to chemotherapeutic drugs than older children with ALL, except for Ara-C. Drug resistance mechanisms in infant ALL, however, remain unknown. Possibly, multidrug resistance (MDR) proteins like P-glycoprotein, MDR-associated protein (MRP1), lung resistance-related protein (LRP/MVP) and the breast cancer resistance protein (BCRP) play a role. Accordingly, we measured the mRNA levels of these proteins in infants (n=13) and non-infants (n=13) with ALL, using quantitative RT-PCR. Infants expressed 2.4-fold less BCRP mRNA (P=0.009) than non-infants with ALL. MDR1, MRP1 and LRP/MVP expression did not differ between both groups. MDR gene expression levels did not correlate to prednisolone, vincristine, daunorubicin or Ara-C cytotoxicity, except for BCRP expression, which correlated with resistance to Ara-C (Rs=0.53, P=0.012), suggesting that Ara-C might be a BCRP substrate. However, culturing patients ALL cells in the presence of the BCRP inhibitor Ko143 had no effect on Ara-C sensitivity. Inhibiting Bcrp1 in the Mdr1a-, Mdr1b- and Mrp1-deficient and Bcrp1-overexpressing mouse cell line Mef3.8/T6400, also did not modulate Ara-C cytotoxicity. Therefore, we conclude that Ara-C is not a substrate for BCRP and that MDR proteins do not play a significant role in drug resistance in infant ALL.  相似文献   

15.
ABCG2/BCRP expression modulates D-Luciferin based bioluminescence imaging   总被引:4,自引:0,他引:4  
Bioluminescence imaging (BLI) is becoming indispensable to the study of transgene expression during development and, in many in vivo models of disease such as cancer, for high throughput drug screening in vitro. Because reaction of d-luciferin with firefly luciferase (fLuc) produces photons of sufficiently long wavelength to permit imaging in intact animals, use of this substrate and enzyme pair has become the method of choice for performing BLI in vivo. We now show that expression of the ATP-binding cassette (ABC) family transporter ABCG2/BCRP affects BLI signal output from the substrate d-luciferin. In vitro studies show that d-luciferin is a substrate for ABCG2/BCRP but not for the MDR1 P-glycoprotein (ABCB1/Pgp), multidrug resistance protein 1 (MRP1/ABCC1), or multidrug resistance protein 2 (MRP2/ABCC2). d-Luciferin uptake within cells is shown to be modulated by ABC transporter inhibitors, including the potent and selective ABCG2/BCRP inhibitor fumitremorgin C. Images of xenografts engineered to express transgenic ABCG2/BCRP, as well as xenografts derived from the human prostate cancer cell line 22Rv1 that naturally express ABCG2/BCRP, show that ABCG2/BCRP expression and function within regions of interest substantially influence d-luciferin-dependent bioluminescent output in vivo. These findings highlight the need to consider ABCG2/BCRP effects during d-luciferin-based BLI and suggest novel high throughput methods for identifying new ABCG2/BCRP inhibitors.  相似文献   

16.
We sought to characterize the interactions of flavopiridol with members of the ATP-binding cassette (ABC) transporter family. Cells overexpressing multidrug resistance-1 (MDR-1) and multidrug resistance-associated protein (MRP) did not exhibit appreciable flavopiridol resistance, whereas cell lines overexpressing the ABC half-transporter, ABCG2 (MXR/BCRP/ABCP1), were found to be resistant to flavopiridol. Flavopiridol at a concentration of 10 microM was able to prevent MRP-mediated calcein efflux, whereas Pgp-mediated transport of rhodamine 123 was unaffected at flavopiridol concentrations of up to 100 microM. To determine putative mechanisms of resistance to flavopiridol, we exposed the human breast cancer cell line MCF-7 to incrementally increasing concentrations of flavopiridol. The resulting resistant subline, MCF-7 FLV1000, is maintained in 1,000 nM flavopiridol and was found to be 24-fold resistant to flavopiridol, as well as highly cross-resistant to mitoxantrone (675-fold), topotecan (423-fold), and SN-38 (950-fold), the active metabolite of irinotecan. Because this cross-resistance pattern is consistent with that reported for ABCG2-overexpressing cells, cytotoxicity studies were repeated in the presence of 5 microM of the ABCG2 inhibitor fumitremorgin C (FTC), and sensitivity of MCF-7 FLV1000 cells to flavopiridol, mitoxantrone, SN-38, and topotecan was restored. Mitoxantrone efflux studies were performed, and high levels of FTC-reversible mitoxantrone efflux were found. Northern blot and PCR analysis revealed overexpression of the ABCG2 gene. Western blot confirmed overexpression of ABCG2; neither P-glycoprotein nor MRP overexpression was detected. These results suggest that ABCG2 plays a role in resistance to flavopiridol.  相似文献   

17.
Cyclosporin A is a broad-spectrum multidrug resistance modulator.   总被引:10,自引:0,他引:10  
PURPOSE: Overexpression of the multidrug resistance proteins P-glycoprotein (Pgp), multidrug resistance protein (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) is associated with treatment failure in acute myeloid leukemia (AML) and other malignancies. The Pgp modulator cyclosporin A has shown clinical efficacy in AML, whereas its analogue PSC-833 has not. Cyclosporin A is known to also modulate MRP-1, and we hypothesized that broad-spectrum multidrug resistance modulation might contribute to its clinical efficacy. EXPERIMENTAL DESIGN: We studied the effects of cyclosporin A and PSC-833 on in vitro drug retention and cytotoxicity in resistant cell lines overexpressing Pgp, MRP-1, and BCRP and on nuclear-cytoplasmic drug distribution and cytotoxicity in cells overexpressing LRP. Cellular drug content was assessed by flow cytometry and nuclear-cytoplasmic drug distribution by confocal microscopy. RESULTS: Cyclosporin A enhanced retention of the substrate drug mitoxantrone in cells overexpressing Pgp (HL60/VCR), MRP-1 (HL60/ADR), and BCRP (8226/MR20, HEK-293 482R) and increased cytotoxicity 6-, 4-, 4-, and 3-fold, respectively. Moreover, cyclosporin A enhanced nuclear distribution of doxorubicin in 8226/MR20 cells, which also express LRP, and increased doxorubicin cytotoxicity 12-fold without an effect on cellular doxorubicin content, consistent with expression of wild-type BCRP, which does not efflux doxorubicin. Cyclosporin A also enhanced nuclear doxorubicin distribution in a second cell line with LRP overexpression, HT1080/DR4. PSC-833 enhanced mitoxantrone retention and cytotoxicity in cells overexpressing Pgp, but had no effect in cells overexpressing MRP-1, BCRP, or LRP. CONCLUSIONS: Cyclosporin A modulates Pgp, MRP-1, BCRP, and LRP, and this broad-spectrum activity may contribute to its clinical efficacy.  相似文献   

18.
The impact of the ABC transporters breast cancer resistance protein/mitoxantrone resistance associated transporter (BCRP/MXR), multidrug resistance-associated protein 1 (MRP1) and multidrug resistance gene-1/P-glycoprotein (MDR1/PGP) on the multidrug resistance (MDR) phenotype in chemoresistance and thermoresistance was investigated in the parental human gastric carcinoma cell line EPG85-257P, the atypical MDR subline EPG85-257RNOV, the classical MDR subline EPG85-257RDB and their thermoresistant counterparts EPG85-257P-TR, EPG85-257RNOV-TR and EPG85-257RDB-TR. Within the atypical MDR subline EPG85-257RNOV expression of BCRP/MXR and of MRP1 were clearly enhanced (vs. parental and classical MDR lines). MDR1/PGP expression was distinctly elevated in the classical MDR subline EPG85-257RDB (vs. parental and atypical MDR sublines). In all thermoresistant counterparts basal expression of BCRP/MXR, MRP1 and MDR1/PGP was increased relative to thermosensitive sublines. Although it could be shown that the overexpressed ABC transporters were functionally active, however, no decreased drug accumulations of doxorubicin, mitoxantrone and rhodamine 123 were observed. Thus, expression of BCRP/MXR, MRP1 and MDR1/PGP was found to be dependent on the appropriate type of chemoresistance; correlating with a classical or atypical MDR phenotype. Within the thermoresistant variants, however, the increase in ABC transporter expression did obviously not influence the MDR phenotype.  相似文献   

19.
Breast cancer resistance protein (BCRP) is a half-molecule ATP-binding cassette transporter that forms a functional homodimer and pumps out various anticancer agents, such as 7-ethyl-10-hydroxycamptothecin, topotecan, mitoxantrone and flavopiridol, from cells. Estrogens, such as estrone and 17beta-estradiol, have been found to restore drug sensitivity levels in BCRP-transduced cells by increasing the cellular accumulation of such agents. Furthermore, synthetic estrogens, tamoxifen derivatives and phytoestrogens/flavonoids have now been identified that can effectively circumvent BCRP-mediated drug resistance. Transcellular transport experiments have shown that BCRP transports sulfated estrogens and various sulfated steroidal compounds, but not free estrogens. The kinase inhibitor gefitinib inhibited the transporter function of BCRP and reversed BCRP-mediated drug resistance both in vitro and in vivo. BCRP-transduced human epidermoid carcinoma A431 (A431/BCRP) and BCRP-transduced human non-small cell lung cancer PC-9 (PC-9/BCRP) cells showed gefitinib resistance. Physiological concentrations of estrogens (10-100 pM) reduced BCRP protein expression without affecting its mRNA levels. Two functional polymorphisms of the BCRP gene have been identified. The C376T (Q126Stop) polymorphism has a dramatic phenotype as active BCRP protein cannot be expressed from a C376T allele. The C421A (Q141K) polymorphism is also significant as Q141K-BCRP-transfected cells show markedly low protein expression levels and low-level drug resistance. Hence, individuals with C376T or C421A polymorphisms may express low levels of BCRP or none at all, resulting in hypersensitivity of normal cells to BCRP-substrate anticancer agents. In summary, both modulators of BCRP and functional single nucleotide polymorphisms within the BCRP gene affect the transporter function of the protein and thus can modulate drug sensitivity and substrate pharmacokinetics and pharmacodynamics in affected cells and individuals.  相似文献   

20.
We selected a mitoxantrone-resistant HT29 colon carcinoma cell line (HT29/MIT) that exhibited a very high degree of resistance to the selecting agent and marked resistance to topotecan and SN38, but limited resistance to doxorubicin. The development of drug resistance was independent of expression of P-glycoprotein or multidrug resistance-associated protein but was associated with high up-regulation of the breast carcinoma resistance protein (BCRP) as shown by Western blot analysis. BCRP overexpression was associated with a reduced intracellular accumulation of topotecan, a known substrate for BCRP. Conversely, a lipophilic 7-modified camptothecin analogue (ST1481) displayed a complete lack of cross-resistance in HT29/MIT cells, suggesting that the drug was not a substrate for BCRP because no defects in intracellular accumulation were found. This conclusion is consistent with the antitumor efficacy of ST1481 against a BCRP-expressing tumor. These results may have therapeutic implications because the antitumor efficacy of ST1481 is in part related to a good bioavailability after oral administration, and the drug is currently under Phase I clinical evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号