首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background The mechanisms underlying exacerbation of asthma induced by respiratory syncytial virus (RSV) infection have been extensively studied in human and animal models. However, most of these studies focused on acute inflammation and little is known of its long-term consequences on remodelling of the airway tissue.
Objective The aim of the study was to use a murine model of prolonged allergen-induced airway inflammation to investigate the effect of RSV infection on allergic airway inflammation and tissue remodelling.
Methods We subjected mice to RSV infection before or during the chronic phase of airway challenges with OVA and compared parameters of airway inflammation and remodelling at the end-point of the prolonged allergen-induced airway inflammation protocol.
Results RSV infection did not affect the severity of airway inflammation in any of the groups studied. However, RSV infection provoked airway remodelling in non-sensitized, allergen-challenged mice that did not otherwise develop any of the features of allergic airways disease. Increased collagen synthesis in the lung and thickening of the bronchial basal membrane was observed in non-sensitized allergen-challenged mice only after prior RSV infection. In addition, fibroblast growth factor (FGF)-2 but not TGF-β1 was increased in this group following RSV infection.
Conclusion Our data show for the first time that RSV infection can prime the lung of mice that are not previously systemically sensitized, to develop airway remodelling in response to allergen upon sole exposure via the airways. Moreover, our results implicate RSV-induced FGF-2 in the remodelling process in vivo .  相似文献   

2.
BACKGROUND: Co-vaccination with cellular pertussis vaccine down-regulates allergic sensitization to diphtheria and tetanus antigens. Using a murine model, we investigated whether vaccination with diphtheria/tetanus toxoids, administered separately or simultaneously with the whole cell vaccine of Bordetella pertussis, inhibits subsequent allergen-induced immune and inflammatory responses. METHODS: BALB/c-mice were vaccinated intracutaneously with a combination of diphtheria and tetanus toxoids or a combination of diphtheria and tetanus toxoids with a whole cell vaccine of B. pertussis (three times, days -21 to -7) prior to systemic sensitization (days 1-14) and repeated airway challenges (days 28-30) with ovalbumin. RESULTS: Compared with negative controls, systemic sensitization and airway allergen challenges induced high serum levels of allergen-specific IgE, predominant Th2-type cytokine production, airway inflammation and development of in vivo airway hyperreactivity. Vaccination with diphtheria and tetanus toxoids prior to sensitization suppressed IgE formation and development of eosinophilic airway inflammation. Co-vaccination with a whole cell pertussis vaccine inhibited allergen sensitization, airway inflammation and development of in vivo airway hyperreactivity. Prevention was due to an allergen-specific and general shift from a predominant Th2 towards a predominant Th1 immune response. CONCLUSION: Vaccination with diphtheria and tetanus toxoids alone or in combination with whole cell pertussis vaccine prior to allergen sensitization prevented allergen-induced Th2 immune responses. Vaccine antigens may down-regulate allergic responses to a range of common allergens.  相似文献   

3.
BACKGROUND: Respiratory viral infections in early childhood may interact with the immune system and modify allergen sensitization and/or allergic manifestations. In mice, respiratory syncytial virus (RSV) infection during allergic provocation aggravates the allergic T helper (Th) 2 immune response, characterized by the production of IL-4, IL-5, and IL-13, and inflammatory infiltrates. However, it is unclear whether the RSV-enhanced respiratory allergic response is a result of non-specific virus-induced damage of the lung, or virus-specific immune responses. OBJECTIVE: In the present study we investigated whether RSV, pneumonia virus of mice (PVM) and influenza A virus similarly affect the allergic response. METHODS: BALB/c mice were sensitized and challenged with ovalbumin (OVA), and inoculated with virus during the challenge period. Pulmonary inflammation, lung cytokine mRNA responses, and IgE production in serum were assessed after the last OVA-challenge. RESULTS: Like RSV, PVM enhanced the OVA-induced pulmonary IL-4, IL-5, and IL-13 mRNA expression, which was associated with enhanced perivascular inflammation. In addition, PVM increased the influx of eosinophils in lung tissue. In contrast, influenza virus decreased the Th2 cytokine mRNA expression in the lungs. However, like PVM, influenza virus enhanced the pulmonary eosinophilic infiltration in OVA-allergic mice. CONCLUSION: The Paramyxoviruses RSV and PVM both are able to enhance the allergic Th2 cytokine response and perivascular inflammation in BALB/c mice, while the Orthomyxovirus influenza A is not.  相似文献   

4.
Neonatal cotton rats were treated with cyclophosphamide parenterally for three weeks before intranasal inoculation of live respiratory syncytial virus (RSV). Immunosuppressive therapy resulted in severe depletion of lymphocytes from the peripheral circulation, the spleen, and the thymus. In contrast to normal rats, immunosuppressed animals developed severe pulmonary pathology with marked infiltration of foamy macrophages. Persistent degeneration and regeneration of bronchial epithelial cells were also observed, in which RSV antigens could be demonstrated by the immunoperoxidase technique. In addition, large quantities of live virus were recovered from the respiratory tract of these animals for as long as six weeks after infection. Systematic dissemination of RSV, which has never been documented in immunocompetent control rats, was found in four of the cyclophosphamide-treated animals. These results support clinical observations that cellular immunity may be very important in the pathogenesis of RSV infection in the human host.  相似文献   

5.
Respiratory syncytial virus infection in mice   总被引:18,自引:0,他引:18       下载免费PDF全文
The A2 strain of human respiratory syncytial virus replicated in the nose and lung of BALB/c mice, with virus growing to higher titers in older animals than in younger animals. Virus was recovered from the nose between days 2 and 7 with peak titers on days 3 and 4, and from the lungs between days 2 and 9, with peak titers on days 4 through 6. Serum antibody developed 2 weeks after infection. Viral antigen was demonstrated in the alveolar cells of the lung by immunofluorescence. Histopathological changes included infiltration by mononuclear cells of the peribronchiolar and perivascular tissue, some interstitial thickening, and formation of multinucleated giant cells. Virus could not be recovered from the respiratory tract of mice inoculated with bovine strains of respiratory syncytial virus. Growth of the A2 strain of human respiratory syncytial virus in different cell lines affected its infectivity for mice. Infection of BALB/c mice with respiratory syncytial virus provides a highly reproducible model for the study of the pathogenesis of and mechanisms of immunity to this virus.  相似文献   

6.
Severe respiratory syncytial virus (RSV)-induced disease is associated with childhood asthma and atopy. We combined murine models of allergen-sensitization and RSV infection to explore the interaction of allergic and virus-induced airway inflammation and its impact on airway hyperresponsiveness (AHR). We found that RSV infection during ova-sensitization (OVA/RSV) increased and prolonged AHR compared to mice only RSV-infected (RSV) or ova-sensitized (OVA). AHR is known to be associated with an increase in Type 2 cytokines (IL-4, IL-5, and IL-13) in allergen-sensitized mice. Therefore, we hypothesized that RSV-induced enhancement of AHR was a result of potentiating the Type 2 cytokine profile promoted by ova-sensitization. Surprisingly, we found that Type 2 cytokines induced by ova-sensitization were not increased by RSV infection despite the increase in AHR, and in some cases were diminished. RNAse protection assay revealed no difference in IL-4 and IL-5 mRNA levels between the OVA and OVA/RSV groups, and IL-13 mRNA was significantly decreased in the OVA/RSV mice compared to the OVA group. Flow cytometric analysis of Type 2 cytokines demonstrated the same frequency of IL-4 and IL-5 production in lung-derived T lymphocytes from the OVA/RSV and OVA groups. Direct cytokine ELISA measurements of lung supernatant showed the level of IL-13 was significantly decreased in the OVA/RSV group compared to OVA mice, while there was no difference in either IL-4 or IL-5 between these two groups. These data indicate that the enhanced and prolonged AHR caused by the interaction of allergic airway inflammation and virus-induced immune responses is a complex process that can not be explained simply by augmented production of Type 2 cytokines.  相似文献   

7.
Differences in the severity of respiratory syncytial virus (RSV)-induced lower respiratory disease in infants have been attributed to multiple environmental and genetic factors. To identify the genetic factor(s) influencing RSV susceptibility, we examined RSV infection in eight inbred mouse strains. Lung RSV titers differed significantly between mouse strains: the RSV titers were 15-fold higher in AKR/J (permissive) mice compared with C57BL/6J (resistant) mice at 4 days after inoculation. This strain-specific difference in RSV titers suggested that susceptibility to RSV infection was attributable to genetic differences between strains. To examine the mode of inheritance of RSV susceptibility, F1 and backcross (F1 x AKR/J) progeny were infected and RSV titers determined. RSV titers in the F1 progeny were similar to those found in the resistant (C57BL/6J) parent, suggesting resistance was inherited as a dominant trait. The distribution of RSV titers in backcross progeny were discordant with that predicted for a single gene effect, suggesting susceptibility was influenced by more than one gene. These data suggest that RSV susceptibility is a multigenic trait that should be amenable to resolution by genomic analysis.  相似文献   

8.
In mice, respiratory syncytial virus (RSV) infection during allergic provocation aggravates the allergic Th2 immune response, characterised by production of interleukin (IL)-4, IL-5, and IL-13, and eosinophilic inflammation. This enhancement of the Th2 response occurs simultaneously with a strong RSV-induced Th1 cytokine response (IL-12 and IFN-gamma). The present study investigated whether IFN-gamma and IL-12 are critically involved in this RSV-enhanced OVA allergy. Therefore, IFN-gammaR- and IL-12-deficient mice (both on a 129/Sv/Ev background) were sensitised and challenged with ovalbumin (OVA) and infected with RSV during the OVA challenge period. Neither gene deletion affected the development of ovalbumin-induced allergic inflammation in mice. However, when OVA-allergic IFN-gammaR deficient mice were infected with RSV, an increased pulmonary eosinophilic infiltrate and increased IL-4 and IL-13 mRNA expression in lung tissue were observed compared with identically treated wild-type mice. In contrast, deficiency of IL-12 did not aggravate the Th2 immune and inflammatory response in OVA/RSV-treated mice, compared with wild-type. In conclusion, the virus-induced IFN-gamma response diminishes the Th2 inflammatory response during OVA allergy but fails to prevent totally the enhancement of the OVA allergy by RSV. In contrast, IL-12 is not involved in inhibiting nor increasing the RSV-enhanced allergy in 129/Sv/Ev mice.  相似文献   

9.
Respiratory syncytial virus (RSV) pulmonary infection was produced in BALB/c mice fed protein-deficient diets in an effort to understand the severity of viral pneumonia in infants in developing countries. As in previously published experiments with Sendai virus, animals on the deficient diet became clinically malnourished, and certain aspects of their cell-mediated immunity were altered. The course of RSV infection in protein-deprived mice was essentially identical to that in normally nourished animals. The titer of virus recovered from lung homogenates over time, as well as the histologic picture of bronchiolitis, were identical under all experimental conditions. This model, unlike that of Sendai virus infection, fails to demonstrate an effect of protein malnutrition on RSV infection.  相似文献   

10.
Respiratory syncytial virus infection in inbred mice.   总被引:10,自引:1,他引:9       下载免费PDF全文
Respiratory syncytial virus infected the nose and lungs of each of 20 strains of inbred mice, with viral titers varying 100-fold from least permissive to most permissive strains. Viral titers appeared to be under genetic control, but did not correlate with the H-2 haplotype.  相似文献   

11.
BACKGROUND: Th2 lymphocyte responses are associated with inflammation and disease during allergic responses. Exposure to particular environmental factors during the expression of allergy could result in more pronounced Th2-like immune responses and more severe disease. One factor might be a respiratory virus infection. OBJECTIVE: The aim of our study was to investigate the influence of respiratory syncytial virus (RSV) infection on the expression of ovalbumin (OVA)-induced allergy in BALB/c mice. METHODS: We determined OVA-specific IgE in serum, cytokine profiles and histopathological lesions in lungs of OVA-allergic mice after RSV infection. RESULTS: OVA sensitization and challenge induced OVA-specific IgE in serum, Th2 cytokine mRNA expression, and mononuclear and eosinophilic inflammation in the lungs. RSV inoculation during the challenge period enhanced OVA-induced IL-4 and IL-5 mRNA expression in lung tissue. RSV further enhanced the OVA-induced hypertrophy of mucous cells and eosinophilic infiltration in lung tissue. Surprisingly, RSV infection decreased Th2 cytokine secretion and eosinophilic influx in bronchoalveolar lavage of OVA-allergic mice. Because inactivated RSV did not influence these responses, replication of RSV appeared essential for the modification of OVA-induced Th2 cytokine expression. RSV did not change OVA-specific IgE levels in serum. Furthermore, the RSV-induced IL-12 mRNA expression in lung tissue of OVA-allergic mice was diminished, but IFN-gamma mRNA expression was not affected. CONCLUSION: RSV infection enhanced particular OVA-induced Th2 cytokine mRNA responses and pulmonary lesions in allergic mice and thus aggravated allergic respiratory disease.  相似文献   

12.
Respiratory syncytial virus (RSV) is an important risk factor of asthma development and is responsible for severe respiratory tract infections. However, the influence of RSV infection on barrier function of bronchial epithelial cells in vitro and in vivo is still unclear. The aim of this study was to analyse the role of RSV in tight junction (TJ) regulation and to compare epithelial integrity between asthmatic and healthy individuals upon RSV infection. Healthy and asthmatic human bronchial epithelial cells (HBECs) were differentiated at air–liquid interface (ALI) and infected with RSV and ultraviolet (UV)‐irradiated RSV. TJ expression and their integrity were analysed by quantitative polymerase chain reaction (qPCR), transepithelial resistance (TER) and paracellular flux. To determine the effect in vivo, BALB/c mice were infected intranasally with RSV or UV‐irradiated RSV A2. Bronchoalveolar lavage and TJ integrity were analysed on days 1, 2, 4 and 6 post‐infection by qPCR, bioplex and confocal microscopy. RSV increased barrier integrity in ALI cultures of HBEC from healthy subjects, but no effect was found in HBECs from asthmatics. This was not associated with an increase in TJ mRNA expression. In vivo, RSV induced lung inflammation in mice and down‐regulated claudin‐1 and occludin mRNA expression in whole lungs. Surprisingly, RSV infection was not observed in bronchial epithelial cells, but was found in the lung parenchyma. Decreased expression of occludin upon RSV infection was visible in mouse bronchial epithelial cells in confocal microscopy. However, there was no regulation of claudin‐1 and claudin‐7 at protein level.  相似文献   

13.
BACKGROUND: Infection with influenza virus has been associated with seemingly opposing effects on the development of asthma. However, there are no data about the effects of mucosal vaccination with inactivated influenza on the inception of allergic asthma. OBJECTIVE: To assess the immunological effects of inhaled inactivated influenza vaccine, using two different types of flu vaccines, on the inception of allergic sensitization and allergen-mediated airway disease in a mouse model. METHODS: BALB/c mice were intranasally or intratracheally vaccinated with whole or split influenza virus vaccine (days -1 or -1, 27) before systemic sensitization with ovalbumin (OVA) (days 1, 14) and repeated airway allergen challenges (days 28-30). Allergen sensitization (IgE serum levels), airway inflammation (differential cells in bronchoalveolar lavage fluid) and airway hyper-reactivity (AHR) (in vivo lung function) were analysed. RESULTS: The intranasal instillation of whole influenza vaccine before allergen sensitization significantly reduced the serum levels of total and OVA-specific IgE as well as allergen-induced AHR. Prevention was due to an allergen-specific shift from a predominant T helper (Th)2- towards a Th1-immune response. Application of split influenza vaccine did not show the same preventive effect. CONCLUSION: Intranasal administration of inactivated whole influenza vaccine reduced subsequent allergen sensitization and prevented allergen-induced AHR. Our results show that the composition of the influenza vaccine has a major influence on subsequent development of allergen-induced sensitization and AHR, and suggest that mucosal inactivated whole influenza vaccination may represent a step towards the development of a preventive strategy for atopic asthma.  相似文献   

14.
Primary respiratory syncytial virus infection in mice   总被引:22,自引:0,他引:22  
A mouse model of respiratory syncytial virus (RSV) infection is described. A high-titered, large-volume inoculum results in replication of RSV to a high titer in lungs of BALB/c mice. Mice older than 15 weeks of age are more susceptible to RSV infection. Titers up to 10(6.9) plaque-forming units (pfu)/gram lung can be attained in 32-week-old mice. Older mice experience a clinical illness manifested by ruffled fur, reduced activity, and weight loss. Lung histology of older mice infected with RSV shows bronchiolitis and increased number of lymphocytes and macrophages in alveolar spaces compared with that of mice less than 8 weeks old. This model will serve as the basis for investigating immunodeterminants of recovery and protection from RSV infection.  相似文献   

15.
16.

Background

Airway hyperresponsiveness (AHR) is a feature of asthma in which airways are hyperreactive to stimuli causing extensive airway narrowing. Methacholine provocations assess AHR in asthma patients mainly by direct stimulation of smooth muscle cells. Using in vivo mouse models, mast cells have been implicated in AHR, but the mechanism behind has remained unknown.

Methods

Cpa3Cre/+mice, which lack mast cells, were used to assess the role of mast cells in house dust mite (HDM)-induced experimental asthma. Effects of methacholine in presence or absence of ketanserin were assessed on lung function and in lung mast cells in vitro. Airway inflammation, mast cell accumulation and activation, smooth muscle proliferation, and HDM-induced bronchoconstriction were evaluated.

Results

Repeated intranasal HDM sensitization induced allergic airway inflammation associated with accumulation and activation of lung mast cells. Lack of mast cells, absence of activating Fc-receptors, or antagonizing serotonin (5-HT)2A receptors abolished HDM-induced trachea contractions. HDM-sensitized mice lacking mast cells had diminished lung-associated 5-HT levels, reduced AHR and methacholine-induced airway contraction, while blocking 5-HT2A receptors in wild types eliminated AHR, implying that mast cells contribute to AHR by releasing 5-HT. Primary mouse and human lung mast cells express muscarinic M3 receptors. Mouse lung mast cells store 5-HT intracellularly, and methacholine induces release of 5-HT from lung-derived mouse mast cells and Ca2+ flux in human LAD-2 mast cells.

Conclusions

Methacholine activates mast cells to release 5-HT, which by acting on 5-HT2A receptors enhances bronchoconstriction and AHR. Thus, M3-directed asthma treatments like tiotropium may also act by targeting mast cells.
  相似文献   

17.
18.
Respiratory syncytial virus infection in adults   总被引:8,自引:0,他引:8  
Respiratory syncytial virus (RSV) is now recognized as a significant problem in certain adult populations. These include the elderly, persons with cardiopulmonary diseases, and immunocompromised hosts. Epidemiological evidence indicates that the impact of RSV in older adults may be similar to that of nonpandemic influenza. In addition, RSV has been found to cause 2 to 5% of adult community-acquired pneumonias. Attack rates in nursing homes are approximately 5 to 10% per year, with significant rates of pneumonia (10 to 20%) and death (2 to 5%). Clinical features may be difficult to distinguish from those of influenza but include nasal congestion, cough, wheezing, and low-grade fever. Bone marrow transplant patients prior to marrow engraftment are at highest risk for pneumonia and death. Diagnosis of RSV infection in adults is difficult because viral culture and antigen detection are insensitive, presumably due to low viral titers in nasal secretions, but early bronchoscopy is valuable in immunosuppressed patients. Treatment of RSV in the elderly is largely supportive, whereas early therapy with ribavirin and intravenous gamma globulin is associated with improved survival in immunocompromised persons. An effective RSV vaccine has not yet been developed, and thus prevention of RSV infection is limited to standard infection control practices such as hand washing and the use of gowns and gloves.  相似文献   

19.
Serum antibody decay following RSV infection in adults was examined to evaluate the durability of the immune response. Twenty subjects with RSV infection and 10 subjects who remained RSV uninfected had blood samples obtained over 16-25 months analyzed by microneutralization assay and enzyme immunoassay. The mean titers of infected subjects rose approximately eightfold post-infection. The mean rate of antibody decline was -0.20 log 2 titer per month which led to a > or =fourfold drop in titer in 75% of subjects at 1 year. In contrast, titers of uninfected subjects were relatively stable. The partial immunity resulting from a boost in serum antibody following natural RSV infection in adults appears to be short lived.  相似文献   

20.
目的探讨加巴喷丁对呼吸道合胞病毒(respiratory syncytial virus,RSV)的抗病毒作用。方法体外实验通过MTS、TCID50、q RT-PCR方法检测不同浓度加巴喷丁对RSV感染的抑制作用,包括细胞活力、病毒复制及细胞因子的变化。体内实验选取4~6周龄C57BL/6小鼠,随机分为空白对照组、RSV感染组、低剂量及高剂量加巴喷丁处理组,连续腹腔注射给药,每日观察体质量变化,HE染色观察小鼠肺部的病理变化,q RT-PCR方法检测肺部病毒载量。结果 1、2、5、10 mmol/L不同浓度加巴喷丁显著增加RSV感染A549细胞的活力;5、10 mmol/L浓度的加巴喷丁可显著降低RSV感染A549细胞的病毒载量,10 mmol/L的加巴喷丁可显著抑制病毒的复制,减少CCL3、CCL5、CXCL2及TNF-α、IL-6、IL-8等趋化因子和炎性因子表达,促进干扰素IFN-α、IFN-β表达;动物实验表明90μg、180μg的加巴喷丁处理组可减轻RSV感染小鼠的体质量变化、改善肺部病理损伤和降低病毒载量。结论加巴喷丁可通过抑制病毒复制,调节趋化因子及炎性因子释放,促进干扰素分泌的方式发挥体内抗病毒作用,对RSV感染的C57BL/6小鼠有一定的治疗作用,可改善肺部病理,为进一步临床应用提供实验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号