首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using monoiodinated peptide YY (PYY) and galanin as radioligands, and neuropeptide Y (NPY) fragments, the distribution of NPY binding sites and its subtypes Y1 and Y2, and of galanin binding sites, was investigated in rat and monkey lumbar (L) 4 and L5 dorsal root ganglia (DRG) and spinal cord before and after a unilateral sciatic nerve cut, ligation or crush. Receptor autoradiography revealed that [125I]PYY bound to some DRG neurons and a few nerve fibres in normal rat DRG, and most of these neurons were small. NPY binding sites were observed in laminae I–IV and X of the rat dorsal horn and in the lateral spinal nucleus, with the highest density in laminae 1–11. [125I]NPY binding was most strongly attenuated by NPY13–36, a Y2 agonist, and partially inhibited by [Leu31,Pro34]NPY, a Y1 agonist, in both rat DRG and the dorsal horn of the spinal cord. These findings suggest that Y2 receptors are the main NPY receptors in rat DRG and dorsal horn, but also that Y1 receptors exist. After sciatic nerve cut, PYY binding markedly increased in nerve fibres and neurons in DRG, especially in large neuron profiles, and in laminae III-IV of the dorsal horn, as well as in nerve fibres in dorsal roots and the sciatic nerve. Incubation with NPY13–36 completely abolished PYY binding, which was also reduced by [Leu,31 Pro34] NPY. However, the increase in PYY binding seen in laminae I–IV of the ipsilateral dorsal horn after axotomy was not observed after coincubation with [Leu31, Pro34] NPY. NPY binding sites were seen in a few neurons in monkey DRG and in laminae I-II, X and IX of the monkey spinal cord. The intensity of PYY binding in laminae I-II of the dorsal horn was decreased after axotomy. Galanin receptor binding sites were not observed in rat DRG, but were observed in the superficial dorsal horn of the spinal cord, mainly in laminae I-II. Axotomy had no effect on galanin binding in rat DRG and dorsal horn. However, galanin receptor binding was observed in many neurons in monkey L4 and L5 DRG and in laminae I–IV and X of monkey L4 and L5 spinal cord, with the highest intensity in laminae I-II. No marked effect of axotomy was observed on the distribution and intensity of galanin binding in monkey DRG or spinal cord. The present results indicate that after axotomy the synthesis of NPY receptors is increased in rat DRG neurons, especially in large neurons, and is transported to the laminae I–IV of the ipsilateral dorsal horn and into the sciatic nerve. No such up-regulation of the NPY receptor occurred in monkey DRG after axotomy. The Y2 receptor seems to be the main NPY receptor in DRG and the dorsal horn of the rat and monkey spinal cord, but Y1 receptors also exist. The increase in NPY binding sites in laminae I–IV of the dorsal horn after axotomy partly represents Y1 receptors. In contrast to the rat, galanin binding sites could be identified in monkey lumbar DRG. No effect of axotomy on the distribution of galanin binding sites in rat or monkey DRG and dorsal horn was detected, suggesting their presence on local dorsal horn neurons (or central afferents).  相似文献   

2.
With the immunofluorescence technique, nitric oxide synthase (NOS)-like immunoreactivity (LI) was found in a few medium-sized and small sensory neurons in lumbar (L) 4 and L5 dorsal root ganglia (DRG) of normal rat, and in most of these neurons, NOS-LI coexisted with calcitonin gene-related peptide and sometimes with substance P and galanin. NOS-immunoreactive nerve fibers, terminals and small neurons were also located in the dorsal horn of the segments 4 and 5 of the rat lumbar spinal cord with the highest density in inner lamina II. Many NOS-positive neurons and fibers were seen in the area around the central canal. A sparse network of NOS-immunoreactive nerve fibers was found in the ventral horn. After unilateral sciatic nerve cut in the rat, the number of NOS-positive neurons increased in the ipsilateral L4 and L5 DRGs, mainly in medium and small neurons, but also in some large neurons and very small neurons. NOS-LI could now also be seen in the ipsilateral dorsal roots, and in an increased number of fibers and terminals in both outer and inner lamina II of the ipsilateral dorsal horn. The number of NOS-immunoreactive neurons in lamina II of the ipsilateral dorsal horn was reduced. In the monkey L4 and L5 DRGs, many small neurons were NOS-immunoreactive, but only a few weakly stained nerve fibers and terminals were found in laminae I-IV of the dorsal horn at L4 and L5 lumbar levels. A few NOS-positive neurons were present in lamina X. The number of NOS-immunoreactive neurons was somewhat reduced in DRGs 14 days after peripheral axotomy, but no certain effect was seen in the dorsal horn. These results, together with earlier in situ hybridization studies, demonstrate that axotomy in rat induces a marked upregulation of NOS synthesis in primary sensory neurons, thus suggesting a role for NO in lesioned sensory neurons. In contrast, no such effect was recorded in monkey, perhaps indicating distinct species differences. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Using in situ hybridization, the expression of the mRNA for a neuropeptide Y (NPY) receptor, was studied in lumbar (L) 4 and 5 dorsal root ganglia (DRGs) of normal rats and at various intervals after unilateral sciatic nerve transection. Twenty percent of all normal DRG neurons were NPY receptor mRNA-positive, and the majority of these neurons were of the small type, with only a few labelled medium-sized and large neurons. In L5 normal ganglia NPY receptor mRNA colocalized with substance P, calcitonin gene-related peptide and galanin mRNAs in small neurons, but not in medium-sized or large neurons containing these peptides. NPY receptor mRNA was not observed in somatostatin or nitric oxide synthase mRNA-positive neurons. Sciatic nerve transection induced a marked decrease in NPY receptor mRNA levels. However, in parallel there was a transient increase in the number of NPY receptor mRNA-positive small neuron profiles, but the intensity of labelling was mostly very low, although a few strongly labelled, small neuron profiles were also encountered. In addition, axotomy caused a marked increase in the number of NPY receptor mRNA-positive large neuron profiles in the ipsilateral DRGs, and they constituted 15–20% of counted DRG neuron profiles and 45–65% of counted large neuron profiles, 7–28 days after axotomy. In L5 DRGs, ipsilateral to the axotomy, NPY receptor mRNA colocalized with NPY mRNA in many large and some medium-sized neuron profiles, with galanin mRNA in some small, medium-sized and large neuron profiles and with vasoactive intestinal polypeptide mRNA in some small and medium-sized neuron profiles and a few large profiles. Occasionally, NPY receptor mRNA was observed in nitric oxide synthase mRNA-positive small neurons. In the dorsal horn, NPY receptor mRNA-positive small neurons were concentrated in lamina II at L4 and L5 levels, and were scattered in deeper laminae. No marked changes were observed ipsilateral to the axotomy. No NPY receptor mRNA-positive cells were found in the normal rat gracile nucleus, or in this nucleus after axotomy. These results show that a NPY receptor may be a prejunctional receptor in primary afferent neurons and play a role in the modulation of somatosensatory information, both in normal and lesioned primary afferent DRG cells. However, axotomy induced a distinct shift in NPY receptor mRNA expression from small to large neurons, indicating that sensitivity to NPY is switched from one modality to another. Thus, not only several sensory neuropeptides, as shown in previous studies, but at least also one of the peptide receptors change their expression dramatically in response to axotomy, suggesting complex adaptive responses.  相似文献   

4.
Intracellular recording and extracellular field potential (FP) recordings were obtained from spinal cord dorsal horn neurons (laminae I-IV) in a rat transverse slice preparation with attached dorsal roots. To study changes in synaptic inputs after neuroma formation, the sciatic nerve was sectioned and ligated 3 weeks before in vitro electrophysiological analysis. Horseradish peroxidase labeling of dorsal root axons indicated that Abeta fibers sprouted into laminae I-II from deeper laminae after sciatic nerve section. FP recordings from dorsal horns of normal spinal cord slices revealed long-latency synaptic responses in lamina II and short-latency responses in lamina III. The latencies of synaptic FPs recorded in lamina II of the dorsal horn after sciatic nerve section were reduced. The majority of monosynaptic EPSPs recorded with intracellular microelectrodes from lamina II neurons in control slices were elicited by high-threshold nerve stimulation, whereas the majority of monosynaptic EPSPs recorded in lamina III were elicited by low-threshold nerve stimulation. After sciatic nerve section, 31 of 57 (54%) EPSPs recorded in lamina II were elicited by low-threshold stimulation. The majority of low-threshold EPSPs in lamina II neurons after axotomy displayed properties similar to low-threshold EPSPs in lamina III of control slices. These results indicate that reoccupation of lamina II synapses by sprouting Abeta fibers normally terminating in lamina III occurs after sciatic nerve neuroma formation. Furthermore, these observations indicate that the lamina II neurons receive inappropriate sensory information from low-threshold mechanoreceptor after sciatic nerve neuroma formation.  相似文献   

5.
Kim SY  Bae JC  Kim JY  Lee HL  Lee KM  Kim DS  Cho HJ 《Neuroreport》2002,13(18):2483-2486
The intrathecal administration of p38 MAP kinase (p38) inhibitor has been shown to reduce hyperalgesia. In the present study, we investigated the activation of p38 in the rat dorsal root ganglion (DRG) and spinal cord following peripheral tissue inflammation and nerve injury immunohistochemically. Peripheral inflammation and chronic constriction injury (CCI) of the sciatic nerve induced a significant increase in the percentage of phosphorylated (P-) p38-immunoreactive (IR) neurons, primarily small sized ones in bilateral DRGs. In contrast, following axotomy, a significant decrease in the percentage of IR neurons was observed in ipsilateral DRGs. In addition, a marked increase was observed in the number of P-p38-IR microglia in the ipsilateral laminae I-IV and IX of the spinal cord following peripheral inflammation, CCI or axotomy. These findings suggest that p38 may play an important role in hyperalgesia and the activation of the spinal microglia.  相似文献   

6.
Previous experiments have suggested that nitric oxide may play an important role in nociceptive transmission in the spinal cord. To assess the possible roles of neuronal nitric oxide synthase (nNOS) in spinal sensitization after nerve injury, we examined the distribution of nNOS immunoreactivity in dorsal root ganglia (DRGs) and dorsal horn of the corresponding spinal segments. NOS catalytic activity was also determined by monitoring the conversion of [3H]arginine to [3H]citrulline in the lumbar (L4-L6) spinal cord segments and DRGs in rats 21 days after unilateral loose ligation of the sciatic nerve. Behavioral signs of tactile and cold allodynia developed in the nerve-ligated rats within 1 week after surgery and lasted up to 21 days. Immunocytochemical staining revealed a significant increase (approximately 6.7-fold) of nNOS-immunoreactive neurons and fibers in the DRGs L4-L6. No significant changes were detected in the number of nNOS-positive neurons in laminae I-II of the spinal segments L4-L6 ipsilateral to nerve ligation. However, an increased number of large stellate or elongated somata in deep laminae III-V of the L5 segment expressed high nNOS immunoreactivity. The alterations of NOS catalytic activity in the spinal segments L4-L6 and corresponding DRGs closely correlated with nNOS distribution detected by immunocytochemistry. No such changes were detected in the contralateral DRGs or spinal cord of sham-operated rats. The results indicate that marked alterations of nNOS in the DRG cells and in the spinal cord may contribute to spinal sensory processing as well as to the development of neuronal plasticity phenomena in the dorsal horn.  相似文献   

7.
Dorsal root ganglion (DRG) neurons decrease their substance P (SP) synthesis after peripheral nerve lesions. Levels in the dorsal horn also decline but return to normal if regeneration is successful. In adults, when regeneration is prevented, recovery of SP in the dorsal horn is slow and incomplete, whereas in newborns, recovery is rapid and complete even though retrograde cell death of DRG neurons is greater than in adults. We have examined the mechanisms that might account for the rapid and complete recovery of SP and calcitonin-gene related peptide (CGRP) in the dorsal horn after peripheral nerve injury in newborns. Peptides were compared in the L4 and L5 DRG and spinal cord segments of normal rats and in rats surviving 6 days to 4 months after sciatic nerve section/ligation within 24 hours of birth. Sciatic nerve section/ligation produced 50% neuron death in L4 and L5 DRGs, but immunocytochemical methods showed that both SP-immunoreactivity (-IR) and CGRP-IR recovered completely in dorsal horn. Radioimmunoassay confirmed that recovery of SP was not an artefact due to shrinkage. β-Preprotachykinin (PPT)-mRNA hybridization and SP-IR were observed mostly in small neurons; α-CGRP-mRNA-hybridized and CGRP-IR neurons were more heterogeneous. The percentage of DRG neurons that contained SP (~ 25%) or CGRP (~ 50%) was the same in normal newborn and adult rats. Neither selective cell survival nor change in neuron phenotype was likely to contribute to the recovery seen in the dorsal horn, and DRG neurons ipsilateral to the lesion exhibited the same level of hybridized β-PPT-mRNA and α-CGRP-mRNA as intact DRG neurons. Because neither the constitutive level of expression of the genes nor peptide levels increased above those observed in intact DRG neurons, these mechanisms were also not responsible. Axotomized DRG neurons, however, contributed to recovery. Recovery was also due to sprouting by neurons in intact DRGs rostral and caudal to L4 and L5. © 1993 Wiley-Liss, Inc.  相似文献   

8.
This study examines the expression of pituitary adenylate cyclase activating polypeptide (PACAP) mRNA in the rat spinal cord during normal conditions and in response to sciatic nerve transection. Previously, PACAP immunoreactivity has been found in fibers in the spinal cord dorsal horn and around the central canal and in neurons in the intermediolateral column (IML). Furthermore, in the dorsal root ganglia, PACAP immunoreactivity and PACAP mRNA expression have been observed preferentially in nerve cell bodies of smaller diameter terminating in the superficial laminae of the dorsal horn. However, neuronal expression of PACAP mRNA in adult rat spinal cord appeared limited to neurons of the IML. By using a refined in situ hybridization protocol, we now detect PACAP mRNA expression in neurons primarily in laminae I and II, but also in deeper laminae of the spinal cord dorsal horn and around the central canal. In addition, PACAP mRNA expression is observed in a few neurons in the ventral horn. PACAP expression in the ventral horn is increased in a population of large neurons, most likely motor neurons, both after distal and proximal sciatic nerve transection. The proposed role of PACAP in nociception is strengthened by our findings of PACAP mRNA-expressing neurons in the superficial laminae of the dorsal horn. Furthermore, increased expression of PACAP in ventral horn neurons, in response to nerve transection, suggests a role for PACAP in repair/regeneration of motor neurons.  相似文献   

9.
The expression of tyrosine hydroxylase (TH) was studied in adult mouse dorsal root ganglia (DRGs) and spinal cord by means of immunohistochemistry and in situ hybridization. TH immunoreactivity and TH mRNA were present in 10-15% of lumbar DRG neurons, in most cases being small/medium-sized. Only very few of these neurons coexpressed calcitonin gene-related peptide (CGRP), and only around 6% bound isolectin B4 (IB4). Dopamine beta-hydroxylase-positive(+) or aromatic amino acid decarboxylase (AADC)+ DRG neurons were rare and did not colocalize TH. No evidence for dopamine transporter expression was obtained. Axotomy of the sciatic nerve only showed a tendency towards reduction in the number of TH+ neurons. In the dorsal horn of the spinal cord, moderately dense and widespread TH+ nerve terminals were observed, mainly in the gray matter and they did not show a typical primary afferent pattern. Also, dorsal rhizotomy or peripheral axotomy had no apparent effect on TH-LI in the dorsal horn. In the skin, along with an abundant TH+ innervation of blood vessels and sweat gland acini, a number of fibers was observed in close relation to the skin surface, some even penetrating into the epithelium. These results demonstrate presence, in normal adult mouse DRGs, of a subpopulation of TH+, essentially CGRP- and IB4-negative small/medium-sized neurons. No evidence for transport of TH into central afferents was obtained, but the enzyme may be present in some sensory fibers in the skin. The fact that neither AADC nor the dopamine transporter could be visualized suggests of non-dopaminergic transmitter phenotype, but the levels of these two dopaminergic markers may be too low to be detected with the present methodology. A further alternative is that L-DOPA after release is extracellularly converted to dopamine.  相似文献   

10.
Peripheral nerve transection in the rat alters the spinal cord dorsal horn central projections from both small and large DRG neurons. Injured neurons with C-fibers exhibit transganglionic degeneration of their terminations within lamina II of the spinal cord dorsal horn, while peripheral nerve injury of medium to large neurons induces collateral sprouting of myelinated A-fibers from lamina I and III/IV into lamina II in rats, cats, and primates. To date, it is not known what sequelae are responsible for the collateral sprouting of A-fibers after peripheral nerve injury, although target-derived factors are thought to play an important role. To determine whether target-derived factors are necessary for changes in A-fiber laminar terminations in rat spinal cord dorsal horn, we unilaterally transected the sciatic nerve and ensheathed the proximal nerve stump in a silicone cap. Three days before sacrifice of rat, the injured sciatic nerve was injected with cholera toxin beta-subunit conjugated to horseradish peroxidase (betaHRP) that effectively labels both peripheral and central A-fiber axons. The effect of the ligature, axotomy, and silicone cap treatment was evaluated by analyzing the extent of betaHRP-, Substance P-(SP-), and isolectin B4- (IB4-) immunoreactive (ir) fibers in the somatotopically appropriate spinal cord dorsal horn regions. In all animals, 2-5 weeks after nerve transection (treated or otherwise), IB4- and SP-ir is absent from lamina II. Animals without nerve cap treatment exhibited robust fiber sprouting into lamina II at 2 weeks. In sharp contrast, animals treated with silicone caps did not exhibit betaHRP-ir fibers in lamina II at 2 weeks. This observation was extended up to 5 weeks postinjury. These results suggest that axotomy-induced expansion of betaHRP-ir primary afferent central terminations in the spinal cord dorsal horn is dependent on factors produced in the injury site milieu. While our understanding of local repair mechanisms of injured peripheral nerves is incomplete, it is clear that the time-dependent production of growth factors in the nerve injury microenvironment favor nerve fiber outgrowth, both peripherally and centrally.  相似文献   

11.
Kashiba H  Senba E 《Neuroreport》1999,10(17):3561-3565
Anterograde transport of BDNF is enhanced by axotomy in the rat sciatic nerve. However, the changes in BDNF gene expression in dorsal root ganglion (DRG) neurons after axotomy are not known. We examined this issue using in situ hybridization histochemistry. BDNF mRNA was detected in 35-40% of DRG neurons (L5) of control rats. Most of these neurons are small. BDNF gene expression in these neurons was down-regulated after application of capsaicin to the sciatic nerve. Transection of the sciatic nerve induced the up-regulation of BDNF mRNA. The intensely labeled neurons were mainly large and immunoreactive for neuropeptide Y. These results suggest that up- and down-regulation of BDNF gene expression in distinct subgroups of rat DRG neurons are caused by damage to the peripheral nerve.  相似文献   

12.
Excitotoxicity due to excessive synaptic glutamate release is featured in many neurological conditions in which neuronal death occurs. Whether activation of primary sensory pathways can ever produce sufficient over-activity in secondary sensory neurons in the dorsal horn of the spinal cord to induce cell death, however, has not been determined. In this study, we asked whether activity in myelinated afferents (A fibers), which use glutamate as a transmitter, can induce cell death in the dorsal horn. Using stereological estimates of neuron numbers from electron microscopic sections, we found that stimulation of A-fibers in an intact sciatic nerve at 10 Hz, 20 Hz, and 50 Hz in 10-minute intervals at a stimulus strength that activates both Abeta and Adelta fibers resulted in the loss of 25% of neurons in lamina III, the major site of termination of large Abeta fibers, but not in lamina I, where Adelta fibers terminate. Furthermore, sciatic nerve lesions did not result in detectable neuron loss, but activation of A fibers in a previously sectioned sciatic nerve did cause substantial cell death not only in lamina III but also in laminae I and II. The expansion of the territory of A-fiber afferent-evoked cell death is likely to reflect the sprouting of the fibers into these laminae after peripheral nerve injury. The data show, therefore, that primary afferent A-fiber activity can cause neuronal cell death in the dorsal horn with an anatomical distribution that depends on whether intact or injured fibers are activated. Stimulation-induced cell death potentially may contribute to the development of persistent pain.  相似文献   

13.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a widely expressed neuropeptide that has been involved in nerve regeneration, neurone survival and nociception. In this study, the distribution of PACAP and PACAP-receptors were investigated in rat dorsal root ganglia (DRG), spinal cord and medulla oblongata at 3, 7 or 14 days following unilateral sciatic nerve transection using immunohistochemistry, 125I-PACAP-binding and in situ hybridisation. In control (contralateral side) DRG, about 30% of the nerve cell bodies (92% being small) were PACAP-immunoreactive (PACAP-IR). In the spinal cord, PACAP-IR fibres were seen in laminae I-II but not in the gracile nuclei. Following sciatic nerve transection, PACAP-IR fibres appeared in the gracile nuclei and occasionally in the deeper laminae of the dorsal horn consistent with the relative increase in larger PACAP-IR DRG neurones. However, the relative number of small PACAR-IR neurones was significantly lower on the transected side as compared to the control side suggesting a dual reaction for PACAP in the DRG following nerve injury. 125I-PACAP-binding was found in laminae I-II, around the central canal and in the gracile nuclei but not in the DRG. At 14 days after transection, 125I-PACAP-binding density was significantly reduced in the ipsilateral dorsal horn. PACAP-receptor (PAC(1)) mRNA was detected in neurones of the dorsal and ventral horn and in the gracile nuclei with no overt changes observed after transection. Very few DRG nerve cell bodies contained PAC(1) mRNA. The findings are consistent with a role for PACAP both in nociception and regeneration.  相似文献   

14.
The translocator protein (18 kDa; TSPO), formerly known as the peripheral benzodiazepine receptor, is an outer mitochondrial membrane protein that associates with the mitochondrial permeability transition pore to regulate both steroidogenesis and apoptosis. TSPO expression is induced in adult dorsal root ganglion (DRG) sensory neurons after peripheral nerve injury and a TSPO receptor ligand, Ro5-4864, enhances DRG neurite growth in vitro and axonal regeneration in vivo . We have now found that TSPO is induced in neonatal motor neurons after peripheral nerve injury and have evaluated its involvement in neonatal and adult sensory and motor neuron survival, and in adult motor neuron regeneration. The TSPO ligand Ro5-4864 rescued cultured neonatal DRG neurons from nerve growth factor withdrawal-induced apoptosis and protected neonatal spinal cord motor neurons from death due to sciatic nerve axotomy. However, Ro5-4864 had only a small neuroprotective effect on adult facial motor neurons after axotomy, did not delay onset or prolong survival in SOD1 mutant mice, and failed to protect adult DRG neurons from sciatic nerve injury-induced death. In contrast, Ro5-4864 substantially enhanced adult facial motor neuron nerve regeneration and restoration of function after facial nerve axotomy. These data indicate a selective sensitivity of neonatal sensory and motor neurons to survival in response to Ro5-4864, which highlights that survival in injured immature neurons cannot necessarily predict success in adults. Furthermore, although Ro5-4864 is only a very weak promoter of survival in adult neurons, it significantly enhances regeneration and functional recovery in adults.  相似文献   

15.
Sensory neurons of the rat sciatic nerve   总被引:8,自引:1,他引:7  
Experiments have been undertaken in this laboratory over recent years to accurately determine the numbers and sizes of somatic neurons which contribute to the normal sciatic nerve, at mid-thigh levels, of the adult, albino rat. This article is concerned with the dorsal root ganglion (DRG) neuron population of the sciatic nerve whose cell bodies were identified through retrograde labeling of cut branches of the sciatic with horseradish peroxidase (HRP) and/or its wheat germ conjugate (WGA-HRP). It is essential to understand the neuronal composition of the normal rat sciatic nerve if the consequences of aging, nerve injury, and surgical repair to improve functional regeneration are to be properly evaluated. Neuron counts were determined from camera-lucida paper drawings of all labeled profiles in DRGs L3-L6 at 100 x magnification. The profiles, obtained by labeling individual branches of the sciatic nerve (sural, lateral sural, tibial, peroneal, medial, and lateral gastrocnemius/soleus nerves) were traced from 40-microns-thick, serial, frozen sections. The sizes of the perikarya, areas and diameters, were determined by tracing the perimeters of the drawn profiles on a digitizing tablet. The tablet's output was inputted directly into a specially designed computer spreadsheet which contained a mathematical table for correcting the split-cell error inherent to the sectioning process. Afferents from any given branch of the sciatic normally occupied two to three adjacent ganglia. Sciatic DRG neurons were normally located in lumbar ganglia L3-L6. Nearly 98-99% of all sciatic DRG perikarya resided in the L4 and L5 DRGs. The L6 DRG, traditionally regarded as an important contributor to the rat sciatic, contained merely 0.4% of its afferent neurons while the L3 ganglion, frequently overlooked as a contributor, contained 1.2% of the mid-thigh sciatic afferents. The mean size of rat DRG neurons was about 29 microns (550-600 microns2). The corrected counts revealed that the normal sciatic nerve (at mid-thigh levels), in rats between 2 and 12 months of age, contained a mean, total DRG neuron population of about 10,500 neurons. This is probably an underestimate by 3-5% of the true number due to occasional unreliable labeling of some of the small DRG neurons. It is estimated that the normal, mean number of sciatic DRG neurons of young to middle-aged rats lies somewhere between 10,500 and 11,000 +/- 2000. The data suggest that nearly 20% of all DRG neurons in the sciatic nerve supply muscle afferents. The vast majority of the remaining neurons are involved with innervation of the skin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Direct injection of agents into the dorsal root ganglia (DRGs) offers the opportunity to manipulate sensory neuron function at a segmental level to explore pathophysiology of painful conditions. However, there is no described method that has been validated in detail for such injections in adult rats. We have found that 2 μl of dye injected through a pulled glass pipette directly into the distal DRG, exposed by a minimal foraminotomy, produces complete filling of the DRG with limited extension into the spinal roots. Injection into the spinal nerve required 3 μl to achieve comparable DRG filling, produced preferential spread into the ventral root, and was accompanied by substantial leakage of injected solution from the injection site. Injections into the sciatic nerve of volumes up to 10 μl did not reach the DRG. Transient hypersensitivity to mechanical stimulation at threshold (von Frey) and noxious levels (pin) developed after 2 μl saline injection directly into the DRG that was in part attributable to the surgical exposure procedure alone. Only minimal astrocyte activation in the spinal dorsal horn was evident after DRG saline injections. Injection of adeno-associated virus (AAV) vector conveying green fluorescent protein (GFP) transgene resulted in expression as soon as 1 day after injection into the DRG, including fibers in the spinal dorsal horn and columns. AAV injection into the DRG produced additional thermal hypersensitivity and withdrawal from the stroke of a brush and compromised motor performance. These findings demonstrate a method for selective injection of agents into single DRGs for anatomically restricted actions.  相似文献   

17.
目的观察大鼠坐骨神经在非冻结性低温作用后,腰段脊髓L4-L6背根神经节(dorsal root ganglion,DRG)凋亡神经元的数量以及形态学改变,探讨周围神经非冻结性冷损伤致DRG神经元凋亡的情况。方法雄性Wistar大鼠33只,随机分为1周组、2周组、3周组,每组11只。每只大鼠取任意一侧坐骨神经为实验侧,给予冷损伤(4℃,2h),对照侧坐骨神经同样方法暴露,不给予低温处理。根据坐骨神经和DRG的病理变化,分别取两侧的L4、L5、L6背根神经节于低温结束后1周、2周、3周采用流式细胞仪(Annexin/PI法)和Tunel法对DRG神经元凋亡进行定量和定性检测。结果流式细胞仪(Annexin/PI法)定量测定结果显示,实验侧凋亡率明显高于对照侧。Tunel法检测发现受冷侧的DRG出现典型的Tunel染色阳性的早期凋亡细胞,半定量测定显示实验侧DRG神经元凋亡率明显高于对照侧。两种方法均显示受冷后1周开始凋亡细胞增多,2周时到达高峰,3周时略下降。结论非冻结性低温可以造成坐骨神经对应的L4、L5、L6DRG神经元出现凋亡,凋亡的高峰出现在冷损伤后2周,以早期凋亡为主。凋亡可能是坐骨神经冷损伤的机制之一。  相似文献   

18.
The effect of lumbar spinal nerve (SN) transection on estimates of neuron number was investigated in the dorsal root ganglia (DRGs) of juvenile bullfrogs (Rana catesbeiana). SN8 and SN10 were transected on one side, and SN9 was left intact. Two weeks after nerve injury, estimates of neuron number in DRG8 and DRG10 on both the operated and unoperated sides were more than twice the estimates obtained from control animals. Neuron number in the uninjured DRG9 was also elevated relative to that of control animals. Eight weeks after axotomy, differences in neuron number were less apparent. The mean cross-sectional area of DRG neurons was reduced 2 weeks after nerve injury in all DRGs. The decrease in mean area was the result of the addition of neurons to the smallest size classes. These data are discussed in the context of previous results showing that neurons are added as juvenile frogs grow to adult size (St. Wecker and Farel [1994] J. Comp. Neurol. 342:430-438). This addition results from the maturation of a population of incompletely differentiated neurons (Meeker and Farel [1997] J. Comp. Neurol. 389:569-576). The present results suggest that axotomy precipitates differentiation of these incompletely differentiated neurons, perhaps as a compensatory response to nerve injury.  相似文献   

19.
Transection of the rat sciatic nerve induces retrograde changes in the dorsal root ganglia (DRG) neurons and in the motoneurons in the ventral grey matter of the lumbar L4-L6 spinal cord segments. In the ipsilateral dorsal grey matter and in the ipsilateral nucleus gracilis, transganglionic changes occur in the terminal fields of the centrally projecting axons of injured DRG neurons. As revealed by immunocytochemistry, the neuronal reactions were associated with a rapid proliferation and activation of microglial cells in the lumbar spinal cord as well as in the nucleus gracilis. Reactive microglial cells were detected as early as 24 h after sciatic axotomy. The microglial reaction had a maximum around day 7 postlesion and disappeared around 6 weeks after axotomy. In addition to light microscopy, activated, perineuronal microglia were identified by immuno-electron microscopy in the ventral grey matter. In the DRG, satellite cells constitutively expressed major histocompatibility complex (MHC) class II antigens. Sciatic axotomy led to a proliferation of satellite cells and an increased expression of MHC class II molecules in particular. This satellite cell reaction started 24 h after axotomy and continued to increase gradually until about 6 weeks after the lesion. Resident macrophages, detected in the DRG interstitial tissue by their expression of monocyte/macrophage markers, also reacted to sciatic axotomy. Our data suggest that (1) sciatic axotomy leads to a rapid microglial reaction in both the ventral and dorsal grey matter of the lumbar spinal cord and in the ipsilateral nucleus gracilis; (2) the immunophenotype of activated microglia following sciatic axotomy is comparable with that observed after axotomy of cranial nerves, e.g. the facial nerve; (3) satellite cells in DRG constitutively express MHC class II molecules; and (4) sciatic axotomy leads to a rapid activation of satellite cells and interstitial macrophages in the axotomized DRG.  相似文献   

20.
Several studies have used the transganglionic tracers cholera toxin subunit B (CTb) and either Bandeiraea simplicifolia isolectin B4 (IB4) or wheat-germ agglutinin (WGA) to label myelinated and unmyelinated afferent fibres respectively. In this study, we aim to determine whether co-injection of CTb and either IB4 or WGA into the sciatic nerve of rat will selectively label myelinated and unmyelinated simultaneously. A double immunofluorescence approach was used to detect these tracers in dorsal root ganglia (DRGs) and afferent fibre terminals in the spinal cord. CTb- and IB4-labelled neurons were seen mainly in L4 and L5 DRGs, with CTb labelling detected primarily in large sized neurons and IB4 staining seen mainly in smaller cells. Only a minority of CTb labelled DRG neuron profiles (5.1%) were also labelled with IB4. In the spinal cord, IB4-labelling was largely confined to lamina II of spinal segments L3-L5, whereas CTb-labelled terminals were seen in all laminae but sparse in lamina II. Confocal microscopy showed no evidence for colocalisation of CTb and IB4 labelling in any terminals in laminae I-III. Although the central distribution of CTb labelling in laminae I and II inner-IV had the same rostro-caudal and medio-lateral coverage as IB4 labelling in spinal segments L3-L5, CTb labelling in ventral laminae (of putative proprioceptor afferents) extended between T12 and S1. Similar patterns of central labelling were found when CTb and WGA were injected together. We therefore concluded that this co-injection approach provides a reliable method to identify both myelinated and unmyelinated somatic primary afferents simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号