首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human Th1 and Th2 lymphocytes: their role in the pathophysiology of atopy   总被引:9,自引:0,他引:9  
G. Del Prete 《Allergy》1992,47(5):450-455
In human beings, as in mice, two distinct patterns of cytokine secretion have been defined among CD4+ helper T-cell clones. Human type 1 helper (Th1), but not type 2 helper (Th2), cells produce interleukin-2 (IL-2), gamma-interferon (IFN-gamma), and tumor necrosis factor-beta, whereas Th2, but not Th1, cells secrete IL-4 and IL-5, but not IL-2 or IFN-gamma. Other cytokines, such as IL-3, IL-6, GM-CSF, or TNF-alpha, are produced by both Th1 and Th2 cells. Th0 cells, a third Th subset, show combined production of Th1- and Th2-type cytokines. The different cytokine patterns are associated with different functions. In general, Th2 cells provide an excellent helper function for B-cell antibody production, particularly of the IgE class. On the other hand, Th1 cells are responsible for delayed type hypersensitivity reactions and are cytolytic for autologous antigen-presenting cells, including B cells. Most allergen- or helminth-antigen-specific human CD4+ T-cell clones exhibit a Th2 phenotype, whereas most clones specific for bacterial antigens show a Th1 profile. Allergen-specific Th2 cells seem to play a crucial role in atopy. These cells induce IgE production via IL-4 and favor the proliferation, differentiation, and activation of eosinophils via IL-5. In addition, Th2-derived IL-3 and IL-4 are mast-cell growth factors that act in synergy, at least in vitro. Recent evidence indicates that allergen-specific Th2 cells are selectively enriched in tissues affected by allergic inflammation, such as the bronchial mucosa of subjects with allergic asthma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The study of mechanisms by which CD4+ T cells induce Ig synthesis has been greatly enhanced by the availability of CD4+ T cell clones with restricted cytokine profiles. We have demonstrated with in vitro and in vivo studies that both Th1 (T helper cell 1) and Th2 clones can provide MHC restricted help and induce primary as well as secondary antibody responses under cognate antigen driven conditions. In addition, we have shown that both types of clones, utilizing distinct cytokines, can effect B cell memory and affinity maturation of the Ig response, although the precise mechanisms by which this occurs are not yet clear. Using Th1 and Th2 clones, we have also shown that the pathways for IgG1 synthesis are redundant, in that induction of IgG1 synthesis in secondary responses in which B cells have already switched from IgM to 1gG1, can occur via several pathways, one involving IL-4 and IL-5, the other involving IL-2. In contrast, IgE and IgG2a synthesis require specific cytokines for synthesis in both primary and secondary B cells. Finally, the cytokines produced by Th1 and Th2 clones can 'neutralize' each other, when both types of clones are present during the induction of primary Ig responses. As an exception however, the induction of IgA synthesis is greatly augmented by the presence of both types of clones.  相似文献   

3.
Becker Y 《Virus genes》2004,28(1):5-18
The HIV-1 infection in humans induces an early cellular immune response to react to the viral proteins with a cytotoxic T cell (CTL) response that fails to inhibit virus replication and the spread of the virus. It became evident that the progression of the disease causes chronic changes to the immune system of which a gradual increase in IgE antibodies is one of its features. When the HIV-1 epidemic began, the relation between the gradual increase in IgE content and AIDS was not understood, but later it became a marker for disease prognosis. The advances in the knowledge on T helper 1 (Th1) and T helper 2 (Th2) cells revealed that Th1 cells produce cytokines that stimulate the proliferation of CTLs. Th2 cells produce cytokines that are responsible for the activation of the humoral immune response in healthy people. Studies on both Th1 and Th2 cytokine synthesis revealed an aberration in HIV-1 infected people. Clerici and Shearer presented a hypothesis (1993) whereby Th1 cell activity declines and Th2 activity increases (the Th1 --> Th2 switch hypothesis) in HIV-1 infected people. In fact, experiments concerning this hypothesis ultimately supported the premise that the switch involves a critical change in the cytokine balance, which leads to the contraction of AIDS. However, the research community must still discern why such a Th1 --> Th2 switch takes place in infected people and how it can be reversed. The present review points to the fact that a similar Th1 --> Th2 switch constitutes the response of allergic people to environmental allergens. HIV-1 patients and allergic people that are exposed to allergens respond with an increased synthesis of Th2 cytokines and IgE, together with a decrease in Th1 cytokines. The studies on allergen-induced Th2 cells revealed that the Th2 cytokine IL-4 induces B cells to synthesize IgE, and cytokine IL-5 is the inducer of eosinophilia, just as in HIV-1 infection. The difference between the HIV-1 infection and allergies is the ability of IL-4 to induce the synthesis in T cells of the HIV-1 coreceptor CXCR4 that selects from the replicating virus a syncytium-inducing (SI) virus, a variant virus that replicates rapidly. The present hypothesis implicates the viral proteins in the induction of Th2 cytokine synthesis. This suggests that in viral proteins, allergen-like domains may be responsible for the activation of Th2 cytokine synthesis. Based on the analogy of the responses of humans to allergens and HIV-1, the following hypotheses is suggested: (a) Removal of allergen-like domains from viral genes by genetic engineering may provide viral proteins for vaccine development. (b) Attempts to treat allergic patients with IL-4 receptor inhibitors suggests that the "Th2 --> Th1 Reversion" constitutes a possible approach to inhibiting the Th2 cytokines and inducing a revival of the anti-viral Th1 response.  相似文献   

4.
Helper CD4+ T-cell subsets have improved our understanding of adaptive immunity in humans and in animal models of disease. These include T helper type 1 (Th1), Th2 and the interleukin-17 (IL-17) -producing population ‘Th17’. Th2 cells have been described as orchestrating the immune response in allergic disease based on studies with patient samples and animal models. The cytokine IL-9 has largely been regarded as a Th2 cytokine that makes multifocal contributions to allergic disease. Recent data suggest that under certain conditions relevant to chronic disease (IL-4 and transforming growth factor-β), a distinct population of IL-9-producing ‘Th9’ helper T cells can exist. The contribution of Th9 cells in allergic disease is currently unknown, and this review will propose a model for how these cells may regulate chronic allergic inflammation.  相似文献   

5.
6.
BACKGROUND: The T helper type-2 (Th2)-dominated situation can be observed in allergic diseases such as asthma or atopic dermatitis. A reduced ability to produce IL-12, which is a key cytokine for the induction of Th1 responses, has been proposed to lead to aberrant Th2 development in these disease conditions. OBJECTIVE: This study was intended to examine how IL-12-producing ability might associate with allergic diseases as a function of age. METHODS: IL-12 production by monocytes at various ages was assessed in patients with bronchial asthma and/or atopic dermatitis (n = 100) in comparison with non-allergic control subjects (n = 144). Whole blood cells were stimulated with lipopolysaccharide (LPS) after priming with IFN-gamma, then intracellular cytokine expression of IL-12 and IL-8 as a control cytokine of CD14-positive cells was assessed by flow cytometric analysis. RESULTS: In the control subjects, the ability of monocytes to produce IL-12 was negligible at birth and gradually increased with advancing age, whereas IL-8 production was intense throughout the human life. At more than 7 years of age, IL-12 production of patients with allergic diseases was significantly lower compared with that of control subjects. The unexpected finding was that infants and children below 6 years of age with allergic diseases tended to produce more IL-12 compared with age-matched controls. In this young group, it was noted that enhanced IL-12 production by monocytes was especially observed in allergic patients with specific IgE antibodies against some food allergens. Significant inverse relationships between serum IgE levels and IL-12-producing ability were found in the teenage and adult groups, but not in the younger children. CONCLUSION: IL-12 appeared to play different roles in the pathogenesis of allergic diseases between younger and older ages.  相似文献   

7.
BACKGROUND: The clinical efficacy and safety of sublingual immunotherapy (SLIT) for aeroallergens has been demonstrated in several trials, whereas the immunological changes induced by this treatment, which may account for the clinical improvement, are still unclear. OBJECTIVE: To investigate the effects of a successful SLIT on the in vitro allergen-driven T cell response and cytokine secretion as well as on the serum levels of chemokines and of IgE, IgG1 and IgG4 antibodies (Abs). MATERIALS AND METHODS: Twenty-five Dermatophagoides pteronyssinus (Dp)-sensitive patients with perennial rhinitic and/or rhinitic and asthmatic symptoms were randomized into two groups (13 untreated (UT) and 12 SLIT-treated) for a 1 year and half study. The proliferative response of peripheral blood mononuclear cell (PBMC) to purified Der p1 allergen, their cytokines (IFN-gamma, IL-4, IL-10 and TGF-beta) production and serum levels of chemokines associated with T helper type 1 (Th1) (CXCL10) or T helper type 2 (Th2) (CCL22) responses and of Dp-specific IgE, IgG1 and IgG4 Abs were evaluated before and after 6 months of treatment. RESULTS: SLIT induced a significant reduction of symptom medication scores after 6, 12 and 18 months of treatment in comparison with UT patients. SLIT-treated patients showed a significant decrease in serum levels of DP-specific IgE Abs, whereas total IgE, and specific IgG1 and IgG4 Abs remained unchanged. The proliferative response of allergen-specific T cells to Der p1 in vitro after 6 months of treatment was reduced, while no effect was observed on T cell proliferation to recall antigen (streptokinase). Moreover, Der p1-driven IFN-gamma and IL-10 were significantly increased in culture supernatants of PBMC from 6 month-treated patients in comparison with those detected at the beginning of therapy. CONCLUSIONS: These data suggest that the allergen-driven enhancement of IL-10- and IFN-gamma-producing T cells precedes and associates with SLIT-induced down-regulation of specific IgE, thus providing a rationale to explain the clinical benefit of SLIT in allergic patients.  相似文献   

8.
Atopic/allergic diseases are characterized by T helper 2 (Th2)-dominated immune responses resulting in immunoglobulin E (IgE) production. DNA-based immunotherapies have been shown to shift the immune response towards Th1 in animal models. In further studies we showed that human dendritic cells (DC) transfected with allergen-DNA are able to stimulate autologous CD4(+) T cells from atopic individuals to produce Th1 instead of Th2 cytokines and to activate interferon-gamma (IFN-gamma)-producing CD8(+) T cells. The aim of this study was to analyse whether DC transfected with allergen-DNA are also able to influence immunoglobulin production of B cells from atopic donors. For this purpose, human monocyte-derived DC from grass-pollen allergic donors were transfected with an adenovirus encoding the allergen Phleum pratense 1 and cocultured with B cells, autologous CD4(+) T cells, and CD40 ligand-transfected L-cells. B cells receiving help from CD4(+) T cells stimulated with allergen-transfected dendritic cells produced more allergen-specific IgG4 compared to stimulation with allergen protein pulsed DC or medium, while total IgG4 production was not affected. In contrast, specific IgE production was not enhanced by stimulation with allergen-DNA transfected DC compared to medium and inhibited compared to allergen protein-pulsed DC with similar effects on total IgE production in vitro. Allergen-DNA transfected dendritic cells are able to direct the human allergic immune response from Th2-dominance towards Th1 and Tc1 also resulting in decreased IgE and increased IgG4 production.  相似文献   

9.
Kim TS  Kim KM  Shin BA  Hwang SY 《Immunology》2000,100(2):203-208
To determine whether the paracrine secretion of interleukin (IL)-12 can efficiently convert immune responses characterized by high levels of synthesis of IL-4 and immunoglobulin E (IgE) into T helper 1 (Th1)-dominated responses, 3T3 fibroblasts were stably transfected to secrete IL-12 (480 units/10(6) cells/48 hr). Their effects on the T helper cell-mediated immune response were investigated in ovalbumin (OVA)-primed mice. Free mouse recombinant IL-12 was included as a control group. IL-12-secreting fibroblasts (3T3/IL-12) were more effective than free recombinant IL-12 at increasing OVA-specific interferon-gamma (IFN-gamma) production and decreasing OVA-specific IL-4 production in CD4+ T cells. In addition, injection with 3T3/IL-12 cells significantly increased anti-OVA immunoglobulin G2a (IgG2a) levels and decreased anti-OVA IgE levels in OVA-primed mice. This work suggests that IL-12-secreting fibroblasts can efficiently induce an antigen-specific Th1 response and may be beneficial in the treatment of diseases caused by undesirable T helper 2 (Th2)-dominated responses, including allergic diseases.  相似文献   

10.
Biopsy specimens were obtained from the bronchial or the nasal mucosa of three patients with grass pollen-induced bronchial asthma or rhinitis 48 h after positive bronchial or nasal provocation test with grass pollen extract. T cell clones (TCC), derived from these and control specimens, were then assessed for their phenotype, allergen-specificity, profile of cytokine secretion and ability to provide B cell help for IgE synthesis. Out of 50 and 61 CD4+ TCC derived from the bronchial mucosa of the two patient with atopic asthma 11 (22%) and 19 (31%), respectively, showed both proliferation and cytokine production in response to grass pollen allergens under major histocompatibility complex-restricted conditions. Of these 21 (70%) exhibited a clear-cut type 2 T helper (Th2) profile and induced IgE synthesis in autologous peripheral blood B cells in the presence of grass allergens. All the other 9 grass-specific clones showed a Th0 pattern of cytokine secretion, but only 1 provided moderate help for IgE synthesis. In contrast, the majority of TCC, derived under the same experimental conditions from the bronchial mucosa of two nonatopic patients with toluene diisocyanate-induced asthma, were CD8+ and most of them produced interferon-γ or interferon-γ and interleukin-5, but not interleukin-4, in response to nonspecific stimulation. Of 22 CD4+ TCC 3 (14%) derived from the grass-stimulated mucosa of the patient with allergic rhinitis, but none of those derived from the unstimulated nostril of the same patient, exhibited proliferation and cytokine production in response to grass allergens. All had a clear-cut Th2 profile and provided help for IgE synthesis by autologous B cells. These data indicate that inhalation of the relevant allergen results in the activation of allergen-specific Th2 lymphocytes in the airway mucosa of patients with allergic respiratory disorders. These cells may play a central role in determining the nature of the inflammatory response in the airways of atopic patients.  相似文献   

11.
Y -L Lee  C -L Fu    B -L Chiang 《Immunology》1999,97(2):232-240
Interleukin-12 (IL-12) is a key cytokine, which promotes T helper type 1 (Th1) cell-mediated immunity and inhibits Th2-type responses. It has been previously shown that IL-12 administration during active immunization following a single allergen exposure can prevent antigen-induced increases in immunoglobulin E (IgE) formation, Th2 cytokine production and bronchoalveolar lavage (BAL) eosinophils in a murine model of allergic airway inflammation. Thus, these studies have now been extended and two IL-12 treatment protocols on this murine model were evaluated. Administration of IL-12 during the active immunization strikingly increased Der p I-specific serum IgG2a and transiently decreased the levels of IgG1 and IgE antibodies following multiple allergen challenges. Such early treatment of IL-12 down-regulated IL-5 production and modestly up-regulated interferon-gamma production but did not effect BAL eosinophilia. These results suggest that repeated exposure to antigen and IL-12 is necessary to maintain a persistent Th1-recall response. Furthermore, administration of IL-12 to actively immunized mice, in which Th2-associated responses were established, had a significant effect on IgG2a synthesis and a modest effect on IgE levels, also down-regulation of IL-5 production, and markedly increased interferon-gamma production and abolished recruitment of eosinophils. Therefore, these data indicate that IL-12 can inhibit antigen-induced eosinophil infiltration into airways, despite the existence of a Th2-associated response. Taken together, these studies suggest that IL-12 may be useful as an immunotherapeutic agent in the treatment of such pulmonary allergic disorders as bronchial asthma.  相似文献   

12.
13.
Fresh postnatal thymocyte cell suspensions were directly cloned under limiting dilution conditions with either phytohemagglutinin or toxic shock syndrome toxin-1 (TSST-1), a bacterial superantigen. Cultures contained allogenic irradiated feeder cells and interleukin (IL)-2, in the absence or presence of exogenous IL-4, interferon (IFN)-γ or IL-12. The resulting CD4+ T cell clones generated under these different experimental conditions were then analyzed for their ability to produce IL-2, IL-4, IL-5, IL-10, IFN-γ and tumor necrosis factor (TNF)-β in response to stimulation with phorbol 12-myristate 13-acetate (PMA)+anti-CD3 monoclonal antibody or PMA + ionomycin. Different from T cell clones generated from peripheral blood, virtually all CD4+ T cell clones generated from human thymocytes produced high concentrations of IL-2, IL-4 and IL-5, but no IFN-γ, TNF-β or IL-10. Moreover, after activation, these clones expressed on their surface membrane both CD30 and CD40 ligand, but not the product of lymphocyte activation gene (LAG)-3, and provided strong helper activity for IgE synthesis by allogeneic B cells. The Th2 cytokine pattern could not be modified by the addition of IFN-γ. However, upon addition of exogenous IL-12, the resulting CD4+ thymocyte clones produced TNF-β, IFN-γ, and IL-10 in addition to IL-4 and IL-5. These results suggest that CD4+ human thymocytes have the potential to develop into cells producing the Th2 cytokines IL-4 and IL-5, whereas the ability to produce both Th1 cytokines and IL-10 is acquired only after priming with IL-12.  相似文献   

14.
15.
Histamine, an important inflammatory mediator in allergic diseases and asthma, has been reported to have modulator effects on T cells, suggesting that the bronchial microenvironment may regulate the function of resident T cells. We examined the effect of histamine on the release of the Th2-associated cytokines IL-4 and IL-5 and the Th1-associated cytokine IFN-γ by 30 CD4+ T cell clones from peripheral blood or bronchial biopsy of one atopic subject. Based on the IL-4/IFN-γ ratio, the clones were ascribed to the Th2 (ratio >1), Th0 (ratio 0.1 and 1) or Th1 (ratio <0.1) phenotype. Histamine inhibited IFN-γ production by Th1-like cells (P<0.02, Kruskall–Wallis), especially from bronchial biopsy, but had no effect on IL-4 release. Regarding Th0 clones, histamine inhibited IL-4 production (P<0.02) in a dose-dependent manner and slightly inhibited IFN-γ production, but had no effect on Th2-like cells. Histamine had a heterogeneous and insignificant effect on IL-5 production. The H2-receptor antagonist ranitidine completely reversed the inhibition of IL-4 and IFN-γ production, whereas the agonist dimaprit mimicked this effect. In contrast, H1- and H3-receptor agonists and antagonists had no significant effect. These data demonstrate that histamine has different effects on IL-4 and IFN-γ release by T helper cells according to their phenotype via H2-receptors. This study extends the immunomodulatory effects of histamine which may contribute to the perpetuation of airway inflammation in asthma.  相似文献   

16.
Summary: Cytokine-mediated immunity plays a crucial role in the pathogenesis of various diseases including autoimmunity. Recently, interleukin-27 (IL-27) was identified, which, along with IL-12, IL-23, and IL-35, belongs to the IL-12 cytokine family. These family members play roles in the regulation of T helper (Th) cell differentiation. IL-27 is unique in that while it induces Th1 differentiation, the same cytokine suppresses immune responses. In the absence of IL-27-mediated immunosuppression, hyper-production of various pro-inflammatory cytokines concomitant with severe inflammation in affected organs was observed in IL-27 receptor α chain (WSX-1)-deficient mice infected with Trypanosoma cruzi. Experimental allergic or inflammatory responses were also enhanced in WSX-1-deficient mice. The immunosuppressive effects of IL-27 depend on inhibition of the development of Th17 cells (a newly identified inflammatory T-helper population) and induction of IL-10 production. Moreover, administration of IL-27 or augmentation of IL-27 signaling suppresses some diseases of autoimmune or allergic origin, demonstrating its potential in therapy of diseases mediated by inflammatory cytokines. In this review, we discuss recent studies on the role of IL-27 in immunity to parasitic and bacterial infections as well as in allergy and autoimmunity in view of its pro- and anti-inflammatory properties.  相似文献   

17.
BACKGROUND: Our previous study using allergen-sensitized murine splenocyte cultures has shown that Lactobacillus casei strain Shirota (LcS), a lactic acid bacterium widely used as a starter for fermented milk products, suppresses IgE production through promoting a dominant Th1-type response mediated by IL-12 induction. OBJECTIVE: We tried to evaluate the ability of LcS to suppress both IgE response and allergic reactions in vivo using a food allergy model with ovalbumin-specific T cell receptor transgenic (OVA-TCR-Tg) mice. METHODS: The ability of heat-killed LcS to induce IL-12 in serum was tested. OVA-TCR-Tg mice were fed a diet containing OVA for 4 weeks and injected with LcS intraperitoneally three times in the first week of this period. Cytokine and antibody secretion by splenocytes, and serum IgE and IgG1 responses were examined. The inhibitory effect of LcS on systemic anaphylaxis induced by intravenous challenge of OVA-fed OVA-TCR-Tg mice with OVA was also tested. RESULTS: Intraperitoneal injection of LcS induced an IL-12 response in the serum of OVA-TCR-Tg mice. In the food allergy model, LcS administration skewed the pattern of cytokine production by splenocytes toward Th1 dominance, and suppressed IgE and IgG1 secretion by splenocytes. The ability of LcS to modulate cytokine production was blocked by anti-IL-12 antibody treatment. LcS also inhibited serum OVA-specific IgE and IgG1 responses and diminished systemic anaphylaxis. CONCLUSION: LcS administration suppresses IgE and IgG1 responses and systemic allergic reactions in a food allergy model, suggesting a possible use of this lactic acid bacterium in preventing food allergy.  相似文献   

18.
T-cell cytokines play a crucial role in the pathogenesis and progression of rheumatoid arthritis (RA). Their detection in the joint, however, is impaired by the complex network present in the synovium. Although many synovial T cells show signs of previous activation, only a few express interleukin (IL)-2 receptor, marker of recent activation. The aim of this study was to analyse the cytokine production by in vivo activated (IL-2R +) T cells from RA at different stages of the disease. For this purpose, T cells were isolated from peripheral blood and synovial fluid of four patients with active RA, two at the onset of the disease, one in the early phase during treatment, one in long-lasting chronic phase. One patient was studied at the onset of the disease and 52 months later. Cells were initially expanded with a low dose of IL-2, cloned and analysed for cytokine production. The results showed a strong predominance of T helper (Th) 1 clones in the blood and a slight prevalence of Th0 clones in the joint of all the four patients. Interferon-gamma and IL-2 production was higher in the long-lasting RA, whereas IL-4 synthesis was prevalent in early RA. Enrichment in IL-10-producing clones was present only in the joint of the untreated patients. The longitudinal study confirmed the differences in cytokine production between early and late phases of disease. These data confirm that RA is mainly a Th1-driven condition. However, in vivo activated synovial T cells produce also Th2-type anti-inflammatory cytokines, such as IL-4 and IL-10. The synthesis of both cytokines is a feature of the very early phase of RA, although the selective recruitment of IL-10-producing T cells is quickly lost.  相似文献   

19.
20.
Murine interleukin-10 (IL-10) is produced by type 2 helper (Th2) cells and selectively inhibits cytokine synthesis by type 1 helper (Th1) cells, whereas human IL-10 is produced by and inhibits proliferation and cytokine synthesis by both Th1 and Th2 subsets. This study reports that bovine IL-10 mRNA is expressed by Th0, Th1, and Th2 clones of bovine T cells specific for either Babesia bovis or Fasciola hepatica but not by two CD8+ T-cell clones. The antigen-induced proliferative responses of all three subsets of CD4+ cells were inhibited by human IL-10, and low levels (10 U/ml) of exogenous human IL-2 restored the suppressed response. However, proliferation of one Th1 clone was never inhibited but was enhanced by IL-10. Human IL-10 also inhibited the expression of gamma interferon and IL-4 mRNA in Th0 clones. In the absence of accessory cells (AC), the responses of Th clones to concanavalin A or IL-2 were not inhibited by IL-10, whereas antigen-specific responses of Th1 and Th2 cells were reduced when IL-10-pretreated macrophages were used as AC. Together, our results with bovine T cells support the concept that IL-10 primarily affects AC function and does not directly inhibit CD4+ T cells and demonstrate that the immunoregulatory effects of IL-10 are not selectively directed at Th1 populations, as they are in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号