首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
西藏绿萝花提取物对α-葡萄糖苷酶的抑制及抗氧化作用   总被引:4,自引:0,他引:4  
目的:研究西藏绿萝花提取物对α-葡萄糖苷酶的抑制及抗氧化作用.方法:将西藏绿萝花的70%乙醇提取物依次用石油醚、乙酸乙酯、正丁醇萃取,然后测定各部分对α-葡萄糖苷酶的抑制及抗氧化作用.结果:乙酸乙酯的萃取部分对α-葡萄糖苷酶的活性抑制较强,半数抑制浓度IC50为43.63 μg/mL,比阿卡波糖抑制α-葡萄糖苷酶的IC50值250 μg/mL低的多,抵制动力学表明为竞争性抑制,Ki值为21.49 μg/mL;乙酸乙酯及正丁醇萃取部分具有较强抗氧化作用,0.42 μg/mL的乙酸乙酯及正丁醇萃取部分对DPPH·自由基的清除率分别可达到88.5%、93.6%,与0.3 mg/mL的抗坏血酸对DPPH·自由基的清除率96.3%相当;乙酸乙酯萃取部分对氧自由基亦有一定的清除作用,IC50为0.27 mg/mL.结论:西藏绿萝花醇提取物的乙酸乙酯萃取部分有较强的α-葡萄糖苷酶抑制及抗氧化作用;正丁醇萃取部分有较强的抗氧化作用.  相似文献   

2.
目的:研究龙眼叶不同提取物对α-葡萄糖苷酶的抑制活性。方法:通过建立体外α-葡萄糖苷酶抑制模型,对龙眼叶提取物进行活性筛选,并对提取物浓度与抑制活性关系进行研究。结果:龙眼叶乙酸乙酯提取物(IC_50=0.105 2mg/mL)和正丁醇提取物(IC_50=0.1261mg/mL)均有较好的α-葡萄糖苷酶抑制作用,抑制活性大于阳性对照药阿卡波糖(IC_50=0.1960mg/mL),且抑制活性呈浓度依赖性。结论:龙眼叶乙酸乙酯和正丁醇提取物对α-葡萄糖苷酶活性有抑制作用,具有开发治疗糖尿病降血糖药物的价值。  相似文献   

3.
新疆昆仑雪菊5种提取物对α-葡萄糖苷酶活性的影响   总被引:4,自引:3,他引:1  
目的:研究昆仑雪菊(CTF)提取物对α-葡萄糖苷酶活性的影响。方法:用水提法和有机溶剂萃取法制备昆仑雪菊的提取物,得到雪菊乙酸乙酯提取物、雪菊正丁醇提取物、雪菊总黄酮、雪菊水提物和雪菊中性黄酮;用体外α-葡萄糖苷酶抑制模型,对5种雪菊提取物进行α-葡萄糖苷酶抑制活性筛选,并与阳性对照药阿卡波糖进行比较。结果:昆仑雪菊的5种提取物对α-葡萄糖苷酶的活性均有较强的抑制作用,有4个提取物的抑制率高于阿卡波糖,其中雪菊中性黄酮的活性最强,在0.05 g.L-1时,其酶抑制率高达87.26%。阿卡波糖及5种提取物对α-葡萄糖苷酶抑制作用的IC50分别为:阿卡波糖IC50858.0mg.L-1,雪菊乙酸乙酯提取物IC50 12.5 mg.L-1,雪菊正丁醇提取物IC50 139.5 mg.L-1,雪菊总黄酮IC50 163.5 mg.L-1,雪菊水提物IC50 367.6 mg.L-1,雪菊中性黄酮IC50 5.8 mg.L-1。结论:昆仑雪菊提取物能显著抑制α-葡萄糖苷酶活性。  相似文献   

4.
《中药药理与临床》2017,(2):102-106
目的:研究金荞麦根茎乙醇提取物不同极性部位的体外抗氧化活性和α-葡萄糖苷酶、α-淀粉酶的抑制活性。方法:采用系统溶剂法梯度萃取金荞麦乙醇提取液,以获取不同极性部位的金荞麦提取物;采用DPPH、羟自由基和ABTS自由基清除实验对金荞麦根茎乙醇提取物不同极性部位的抗氧化活性进行研究,并以α-葡萄糖苷酶和α-淀粉酶为药物靶点,4-硝基苯-α-D-吡喃葡萄糖苷和淀粉为底物,阿卡波糖为阳性对照,筛选对α-葡萄糖苷酶和α-淀粉酶具有抑制作用的金荞麦根茎乙醇提取物部位。结果:在0~0.2mg/ml浓度范围内,金荞麦根茎乙醇提取物的乙酸乙酯萃取部位对DPPH、羟自由基和ABTS自由基具有很强的清除作用,但略低于维生素C的清除作用。在25mg/ml相同浓度下,金荞麦根茎乙醇提取物中正丁醇萃取部位、乙酸乙酯萃取部位和氯仿萃取部位对α-葡萄糖苷酶的IC50值均低于阳性对照阿卡波糖的IC50值,且抑制率均大于阿卡波糖的抑制率,乙酸乙酯萃取部位对α-淀粉酶的抑制率大于阿卡波糖的抑制率。在25mg/ml相同浓度下,金荞麦根茎乙醇提取物的5个不同萃取部位中,乙酸乙酯萃取部位对α-葡萄糖苷酶和α-淀粉酶的抑制作用最强(抑制率分别为为87.32%、84.57%)。在0~50mg/ml浓度范围内,金荞麦根茎乙醇提取物的不同萃取部位对α-葡萄糖苷酶和α-淀粉酶的抑制作用均呈剂量依赖关系。结论:金荞麦根茎乙醇提取物的乙酸乙酯萃取部位具有很好的抗氧化作用和α-葡萄糖苷酶、α-淀粉酶的抑制作用。  相似文献   

5.
目的:研究西藏红缨合耳菊提取物对酪氨酸酶的抑制作用。方法:将红缨合耳菊的70%乙醇提取物依次用石油醚、乙酸乙酯、正丁醇萃取,然后测定各部分对酪氨酸酶的抑制作用,并进行酶抑制动力学研究。结果:乙酸乙酯、正丁醇的萃取部分对酪氨酸酶的活性抑制较强;对单酚酶抑制作用明显并有延迟作用,半数抑制浓度(IC50)分别为57.8、140μg/ml;对双酚酶的抑制作用显示浓度依赖关系,IC50分别为41.2、59.6μg/ml,相比熊果苷抑制双酚酶活性的IC50值1.44mg/ml,抑制效果分别是熊果苷的35、24倍;抑制类型:乙酸乙酯部分为竞争性抑制,Ki为19.7μg/ml,正丁醇部分为非竞争性抑制,Ki为60.7μg/ml。结论:西藏红缨合耳菊乙醇提取物的乙酸乙酯、正丁醇萃取部分对酪氨酸酶活性抑制较强。  相似文献   

6.
《中药药理与临床》2014,(3):107-111
目的:研究西藏绿萝花提取物对α-葡萄糖苷酶、α-淀粉酶的抑制作用,以及不同糖负荷下对正常及高血糖小鼠的降血糖作用。方法:提取正常大鼠小肠上段α-葡萄糖苷酶,建立微量酶促反应体系,通过IC50衡量不同提取物对酶的抑制作用;体内实验以ICR小鼠和四氧嘧啶高血糖小鼠为模型,在蔗糖、淀粉、葡萄糖不同负荷下,观察绿萝花提取成分对小鼠血糖的影响。结果:在绿萝花提取物三种萃取相中,石油醚萃取相(PF)对α-葡萄糖苷酶的抑制作用较强,IC50比阿卡波糖还低。正丁醇萃取相(nBF)对α-淀粉酶的抑制作用较弱,IC50为1.227mg/ml比阿卡波糖的IC50值0.3837 mg/ml高出3倍多。与体外实验结果一致,以250mg/kg石油醚萃取相(PF)灌胃可降低正常ICR小鼠和四氧嘧啶诱导的高血糖小鼠蔗糖负荷后各时间点的血糖值,其血糖曲线下面积与蔗糖组对比明显降低。以250mg/kg正丁醇萃取相(nBF)灌胃亦可降低正常ICR小鼠和四氧嘧啶诱导的高血糖小鼠的淀粉负荷后各时间点的血糖值及减少曲线下面积。以葡萄糖为负荷,分别采取250mg/kg PF、nBF灌胃,均不能降低正常及高血糖小鼠的餐后高血糖。结论:西藏绿萝花成分中石油醚萃取相(PF)对α-葡萄糖苷酶抑制作用较强,正丁醇萃取相(nBF)对α-淀粉酶影响较弱,均可降低以蔗糖、淀粉为负荷时正常及高血糖小鼠的餐后血糖,但不影响葡萄糖的吸收。  相似文献   

7.
山茱萸提取物对 α-葡萄糖苷酶的抑制作用   总被引:5,自引:4,他引:1  
目的:寻找山茱萸中具有抑制α-葡萄糖苷酶活性的成分。方法:用有机溶剂进行提取,在体外建立微量酶反应体系,以4-硝基苯-α-D-吡喃葡萄糖苷PNPG作为底物,阿卡波糖为阳性对照,检测山茱萸不同溶剂萃取物对α-葡萄糖苷酶抑制活性。结果:山茱萸石油醚萃取物[50%抑制浓度(IC50)=38.90 mg·L-1]、乙酸乙酯萃取物(IC50=2.40 mg·L-1)和正丁醇萃取物(IC50=4.26 mg·L-1),远低于阳性对照阿卡波糖(IC50=1 081.27 mg·L-1)。结论:山茱萸各萃取物均具有很好的α-葡萄糖苷酶抑制活性,且乙酸乙酯萃取物的抑制活性最好。  相似文献   

8.
目的 研究金花茶种子乙醇提取物及醇提物的乙酸乙酯部分、正丁醇部分及水溶部分三个极性部位对α-葡萄糖苷酶的抑制作用。方法 采用体外抑制α-葡萄糖苷酶活性模型测定活性并进行酶抑制动力学研究,通过Lineweave-Burk作图法确定抑制类型。结果 金花茶种子乙醇提取物、乙酸乙酯部分、正丁醇部分及水溶部分均有抑制α-葡萄糖苷酶作用,其IC_(50)分别为37.74、335.90、20.53、17.80μg/ml,活性均高于阳性对照药阿卡波糖(484.90μg/ml)。其中阿卡波糖为竞争性抑制剂,其余均为非竞争性抑制剂。结论 金花茶种子为首次报道对α-葡萄糖苷酶有抑制活性,而正丁醇部分与水层部分为其抑制α-葡萄糖苷酶的有效部位。  相似文献   

9.
《中成药》2016,(2)
目的研究地锦草(Euphorbia humifusa Willd.)提取物对α-葡萄糖苷酶的抑制活性及其体外抗氧化活性。方法从地锦草40%、70%、95%乙醇提取物对α-葡萄糖苷酶的体外抑制活性中选择最适乙醇体积分数,再对该提取物用乙醚、氯仿、水饱和正丁醇和水相进行萃取分离,比较对α-葡萄糖苷酶的抑制活性、自由基清除能力、铁离子还原能力、羟自由基清除能力、超氧阴离子清除能力。结果地锦草95%乙醇提取物的抑制活性较优,再经乙醚萃取获得萃取物对α-葡萄糖苷酶的抑制活性最强,IC_(50)值为78.8μg/m L,化学成分分析显示其含有较多的酚性成分。乙醚萃取物具有较好的抗氧化能力,其自由基清除能力EC_(50)值为132.9μg/m L,铁离子还原能力EC_(50)值为76.9μg/m L,羟自由基清除能力EC50值为182.7μg/m L,超氧阴离子清除能力EC_(50)值为31.3μg/m L。结论地锦草95%乙醇提取物的乙醚萃取物具有较强的α-葡萄糖苷酶抑制活性,同时具有一定的抗氧化活性。  相似文献   

10.
目的:研究琴叶榕根2种提取物对α-葡萄糖苷酶和α-淀粉酶活性的抑制作用。方法:采用超声辅助提取法制备琴叶榕根乙醇提取物,回流提取法制备琴叶榕根水提取物。以pNPG (对-硝基苯基-α-D-吡喃葡萄糖苷)和可溶性淀粉为底物分别测定琴叶榕根提取物对α-葡萄糖苷酶(酵母来源和小鼠小肠来源)和α-淀粉酶活性的影响。结果:琴叶榕根乙醇提取物和水提取物均具有较好的α-葡萄糖苷酶和α-淀粉酶抑制活性,其对酵母菌源α-葡萄糖苷酶的半数抑制浓度(IC50值)分别为:(128.13±3.28)、(1923.45±3.24)μg/mL;对小鼠小肠源α-葡萄糖苷酶的半数抑制浓度(IC50值)分别为:(531.04±5.72)、(2232.27±5.76)μg/mL;对α-淀粉酶的半数抑制浓度(IC50值)分别为:(714.25±4.37)、(1141.28±1.23)μg/mL。结论:琴叶榕根乙醇提取物抑制α-葡萄糖苷酶活性和α-淀粉酶均强于水提取物,有作为新型α-葡萄糖苷酶抑制剂开发价值。  相似文献   

11.
目的:研究琴叶榕根2种提取物对α-葡萄糖苷酶和α-淀粉酶活性的抑制作用。方法:采用超声辅助提取法制备琴叶榕根乙醇提取物,回流提取法制备琴叶榕根水提取物。以pNPG (对-硝基苯基-α-D-吡喃葡萄糖苷)和可溶性淀粉为底物分别测定琴叶榕根提取物对α-葡萄糖苷酶(酵母来源和小鼠小肠来源)和α-淀粉酶活性的影响。结果:琴叶榕根乙醇提取物和水提取物均具有较好的α-葡萄糖苷酶和α-淀粉酶抑制活性,其对酵母菌源α-葡萄糖苷酶的半数抑制浓度(IC50值)分别为:(128.13±3.28)、(1923.45±3.24)μg/mL;对小鼠小肠源α-葡萄糖苷酶的半数抑制浓度(IC50值)分别为:(531.04±5.72)、(2232.27±5.76)μg/mL;对α-淀粉酶的半数抑制浓度(IC50值)分别为:(714.25±4.37)、(1141.28±1.23)μg/mL。结论:琴叶榕根乙醇提取物抑制α-葡萄糖苷酶活性和α-淀粉酶均强于水提取物,有作为新型α-葡萄糖苷酶抑制剂开发价值。  相似文献   

12.
目的研究桑叶提取物抑制α-葡萄糖苷酶活性反应体系的条件优化及酶动力学。方法采用酶-抑制剂模型法,优化底物浓度、酶用量和反应时间,确定最佳反应体系,研究桑叶提取物对α-葡萄糖苷酶的抑制作用,并采用双倒数作图法研究桑叶提取物的酶抑制动力学特性。结果当蔗糖浓度为40 mg/mL,酶用量为0.2mL(约1.6 U/mL),反应时间为25 min时为最佳反应体系;酶抑制动力学实验表明,桑叶提取物的抑制类型为混合型竞争性抑制,阳性对照为非竞争性抑制。结论桑叶提取物对α-葡萄糖苷酶活性有抑制作用;桑叶提取物对α-葡萄糖苷酶抑制活性为混合性竞争性抑制,可以用于开发降糖药物。  相似文献   

13.
甘草中α-葡萄糖苷酶抑制剂的初步研究   总被引:11,自引:1,他引:11  
目的:从甘草中提取分离α-葡萄糖苷酶抑制剂.方法:将甘草水提取物依次用石油醚、乙酸乙酯、正丁醇萃取,然后测定各部分的酶抑制活性,对活性最强的部分进行酶抑制动力学研究.结果:石油醚部分、乙酸乙酯部分、正丁醇部分与剩余水提物部分的酶活性抑制率分别为68.93%、83.02%、32.17%和10.79%,与综合水提取物的酶活性抑制率69.77%相比,乙酸乙酯部分的活性最强,而且乙酸乙酯部分表现为一种快速的剂量依赖性的竞争性抑制类型,其Ki=34μg/ml.结论:乙酸乙酯部分存在较强的α-葡萄糖苷酶抑制活性成分,对其作进一步分离可望得到α-葡萄糖苷酶抑制单体成分.  相似文献   

14.
李知敏  孙彦敏  彭亮  刘瑶  杜贺 《中成药》2015,(4):879-882
目的研究中药灰兜巴石油醚、乙酸乙酯、正丁醇萃取部分、醇提萃取剩余部分和水提部分5部分对于α-葡萄糖苷酶活性的抑制作用。方法通过高效液相色谱法检测不同灰兜巴提取物单因素及相互配伍后对于α-葡萄糖苷酶活性的抑制作用。结果灰兜巴各部分提取物均表现出良好的α-葡萄糖苷酶抑制活性,不同比例提取物配伍后对于α-葡萄糖苷酶的抑制作用明显升高,通过DPS数据分析可得出,灰兜巴乙酸乙酯部分对于α-葡萄糖苷酶的抑制作用最强,配伍后最优化实验的抑制率可高达98.62%。结论证明灰兜巴具有良好的降糖疗效,且相互配伍有助于增强对于α-葡萄糖苷酶活性的抑制作用。  相似文献   

15.
目的筛选重楼中具有抑制α-葡萄糖苷酶活性的物质。方法采用水提醇沉,阳离子交换树脂法及系统有机溶剂萃取法对重楼进行提取分离,并通过活性抑制追踪法进行筛选。结果重楼中抑制α-葡萄糖苷酶活性最强的有效部分是其水提取物阳离子交换树脂50%乙醇(p H8)洗脱部分的正丁醇萃取物,其甲醇溶解物对α-葡萄糖苷酶的活性抑制率达61.47%。结论重楼可作为α-葡萄糖苷酶抑制剂进一步研究和开发,且其对α-葡萄糖苷酶的抑制作用填补了重楼药理作用的一项空白。  相似文献   

16.
目的:研究新疆金鸡菊五种提取物体外对α-葡萄糖苷酶活性的影响。方法:用醇提法并有机溶剂萃取法制备新疆金鸡菊5种提取物,用体外α-葡萄糖苷酶抑制模型对5种新疆金鸡菊提取物进行α-葡萄糖苷酶抑制活性筛选。结果:新疆金鸡菊的5种提取物体外对α-葡萄糖苷酶的活性均有抑制作用,其中提取物Ⅲ的IC50最低,活性最强。结论:在体外,新疆金鸡菊提取物在一定浓度下有抑制α-葡萄糖苷酶活性的作用。  相似文献   

17.
目的:通过观察明月草水提液对DPP-4、α-葡萄糖苷酶的抑制作用,为该药防治糖尿病提供实验依据。方法:以DPP-4酶、缓冲液、底物建立DPP-4抑制剂的体外筛选体系,对明月草水提液进行抑制实验,采用发色底物法测定吸光度(OD),计算DPP-4抑制率及IC50值。以蔗糖为底物建立α-葡萄糖苷酶活性抑制模型,采用葡萄糖氧化酶法测定明月草水提液对α-葡萄糖苷酶的抑制作用,计算其抑制率和IC50值。结果:明月草具有轻度DPP-4抑制作用,其IC50值为1199.97mg/L。明月草具有α-葡萄糖苷酶抑制作用,其IC50值为64.12mg/L。结论:明月草水提液可一定程度地抑制DPP-4及α-葡萄糖苷酶活性。  相似文献   

18.
目的:比较胡芦巴生品和酒制品对α-葡萄糖苷酶,α-淀粉酶抑制活性作用的差别,筛选抑制活性的有效部位,并研究其酶反应动力学。方法:利用萃取法获得胡芦巴生品和酒制品80%甲醇提取物的石油醚层、乙酸乙酯层、正丁醇层、水层4个不同极性部位,采用体外α-葡萄糖苷酶抑制模型和α-淀粉酶抑制模型,测定生胡芦巴和酒胡芦巴4个不同极性部位对α-葡萄糖苷酶,α-淀粉酶活性的抑制作用。通过酶促动力学与Lineweaver-Burk曲线推断各有效部位对α-葡萄糖苷酶及α-淀粉酶抑制类型。结果:生胡芦巴和酒胡芦巴只有水层对α-葡萄糖苷酶有抑制作用,酒制品对α-葡萄糖苷酶的抑制作用优于生品,生胡芦巴和酒胡芦巴水层萃取物对α-葡萄糖苷酶作用为非竞争可逆。生胡芦巴和酒胡芦巴的乙酸乙酯层和正丁醇层对α-淀粉酶有抑制作用,酒制品的抑制作用优于生品,且均为非竞争可逆。结论:胡芦巴经酒制后可在一定程度上增加对α-葡萄糖苷酶及α-淀粉酶活性的抑制作用,酒胡芦巴水层萃取物有开发成α-葡萄糖苷酶抑制剂的价值,酒胡芦巴的乙酸乙酯和正丁醇提取物具有开发成α-淀粉酶抑制剂的价值。  相似文献   

19.
尼泊尔酸模α-葡萄糖苷酶抑制活性及抗菌活性研究   总被引:2,自引:0,他引:2  
康文艺  刘瑜新  宋艳丽  张丽 《中成药》2010,32(7):1249-1251
目的:对尼泊尔酸模根和地上部分的不同溶剂提取物的α-葡萄糖苷酶抑制作用及抗菌活性进行研究.方法:采用索氏提取法提取尼泊尔酸模不同部位,以96微孔板法测定α-葡萄糖苷酶抑制作用,采用纸片扩散法测定其抑菌圈及MIC值.结果:尼泊尔酸模根和地上部分各提取物均有较好的α-葡萄糖苷酶抑制作用,各提取物的IC50值大小为:RNAE(2.13 μg/mL)、RNAM(2.13μg/mL)、RNRE(3.83 μg/mL)、RNRM(22.5 μg/mL)、RNRe(36.01 μg/mL)和RNAP(56.59μg/mL),远低于阳性对照Acarbose(1 081.27 μg/mL).抑制动力学实验表明,尼泊尔酸模地上部分乙酸乙酯提取物的抑制类型为非竞争性抑制,其甲醇提取物为混合型抑制.尼泊尔酸模根石油醚和乙酸乙酯部分有抑菌活性,尼泊尔酸模根石油醚部分对SA、MRSA、ESBLs的MIC分别为0.25、0.25、0.125 mg/disc;尼泊尔酸模根乙酸乙酯部分对SA、MRSA的MIC分别为0.25、0.25 mg/disc.结论:尼泊尔酸模各提取物对α-葡萄糖苷酶活性的抑制效果均很好,尼泊尔酸模根的抑菌活性较好.  相似文献   

20.
甘草中-葡α萄糖苷酶抑制剂的初步研究   总被引:1,自引:0,他引:1  
目的:从甘草中提取分离α-葡萄糖苷酶抑制剂。方法:将甘草水提取物依次用石油醚、乙酸乙酯、正丁醇萃取,然后测定各部分的酶抑制活性,对活性最强的部分进行酶抑制动力学研究。结果:石油醚部分、乙酸乙酯部分、正丁醇部分与剩余水提物部分的酶活性抑制率分别为68.93%、83.02%、32.17%和10.79%,与综合水提取物的酶活性抑制率69.77%相比,乙酸乙酯部分的活性最强,而且乙酸乙酯部分表现为一种快速的剂量依赖性的竞争性抑制类型,其Ki=34μg/ml。结论:乙酸乙酯部分存在较强的α-葡萄糖苷酶抑制活性成分,对其作进一步分离可望得到α-葡萄糖苷酶抑制单体成分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号