首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malaria sporozoites invade the mosquito salivary glands and wait in the salivary duct until the next blood feeding. The mechanisms of the process and molecules involved in the salivary gland invasion remain largely unknown. To establish a robust salivary gland-specific transgene expression in Anopheles stephensi, we obtained a salivary gland-specific promoter for a gene encoding anopheline antiplatelet protein (AAPP). The aapp promoter is a female salivary gland-specific and blood meal-inducible strong promoter. Using this promoter, we generated a transgenic An. stephensi expressing abundant Discosoma sp. red fluorescent protein (DsRed) in the distal-lateral lobes of the glands, where the sporozoites invade preferentially. These results open up the possibilities of elucidating salivary gland-parasite interactions and generating transgenic mosquitoes refractory to parasites.  相似文献   

2.
3.
Four genes expressed in the Anopheles gambiae adult female salivary glands and similar in sequence to the Aedes aegypti D7 gene were identified. The genes, called D7-related (D7r), are included in a single cluster encompassing approximately six kilobases on chromosome arm 3R. The deduced proteins contain secretory signals and they are probably injected by the mosquito into the host with the saliva during blood feeding. The region of similarity to D7 encompasses the carboxy-terminal part of the Ae. aegypti protein and the different An. gambiae D7r show a degree of similarity to each other, varying from 53% to 73%. The weak but significant similarity to members of a wide family of insect proteins, including odourant- and pheromone-binding proteins, raises the possibility that the D7r-encoded proteins may bind and/or carry small hydrophobic ligands.  相似文献   

4.
5.
Tango is a transposon of the Tc1 family and was originally discovered in the African malaria mosquito, Anopheles gambiae. Here we report a systematic analysis of the genome sequence of the yellow fever mosquito, Aedes aegypti, which uncovered three distinct Tango transposons. We name the only An. gambiae Tango transposon AgTango1 and the three Ae. aegypti Tango elements AeTango1-3. Like AgTango1, AeTango1 and AeTango2 elements both have members that retain characteristics of autonomous elements such as intact open reading frames and terminal inverted repeats (TIRs). AeTango3 is a degenerate transposon with no full-length members. All full-length Tango transposons contain subterminal direct repeats within their TIRs. AgTango1 and AeTango1-3 form a single clade among other Tc1 transposons. Within this clade, AgTango1 and AeTango1 are closely related and share approximately 80% identity at the amino acid level, which exceeds the level of similarity of the majority of host genes in the two species. A survey of Tango in other mosquito species was carried out using degenerate PCR. Tango was isolated and sequenced in all members of the An. gambiae species complex, Aedes albopictus and Ochlerotatus atropalpus. Oc. atropalpus contains a rich diversity of Tango elements, while Tango elements in Ae. albopictus and the An. gambiae species complex all belong to Tango1. No Tango was detected in Culex pipiens quinquefasciatus, Anopheles stephensi, Anopheles dirus, Anopheles farauti or Anopheles albimanus using degenerate PCR. Bioinformatic searches of the Cx. p. quinquefasciatus (~10 x coverage) and An. stephensi (0.33 x coverage) databases also failed to uncover any Tango elements. Although other evolutionary scenarios cannot be ruled out, there are indications that Tango1 underwent horizontal transfer among divergent mosquito species.  相似文献   

6.
There is evidence for introgression between the malaria vectors Anopheles gambiae and Anopheles arabiensis, which belong to the Anopheles gambiae complex. Here we consider their relationship to another member of the complex, Anopheles bwambae. Species identifications were made using rDNA-PCR and revealed one An. bwambae/gambiae hybrid among 459 wild-caught mosquitoes. A 237-nucleotide region of the mitochondrial ND5 gene was sequenced in sixty-nine individuals. The results suggest that there is an An. bwambae specific group of haplotypes. However, two An. bwambae individuals carried haplotypes typical of An. gambiae and An. arabiensis. This is the first evidence for introgression between An. bwambae and other species of the An. gambiae complex and suggests that introgression may be more widespread, also occurring between other members of the complex.  相似文献   

7.
We have previously developed a robust salivary gland‐specific expression system in transgenic Anopheles stephensi mosquitoes. To establish transgenic mosquito lines refractory to Plasmodium falciparum using this system, we generated a transgenic mosquito harbouring the gene encoding an anti‐P. falciparum circumsporozoite protein (PfCSP) single‐chain antibody (scFv) fused to DsRed in a secretory form (mDsRed‐2A10 scFv). Fluorescence microscopy showed that the mDsRed‐2A10 scFv was localized in the secretory cavities and ducts of the salivary glands in a secreted form. To evaluate P. falciparum transmission‐blocking in a rodent malaria model, a transgenic Plasmodium berghei line expressing PfCSP in place of PbCSP (PfCSP/Pb) was constructed. The PfCSP/Pb parasites were able to bind to the mDsRed‐2A10 scFv in the salivary glands of the transgenic mosquitoes. Importantly, the infectivity of the transgenic mosquitoes to mice was strongly impaired, indicating that the parasites had been inactivated. These results suggest that salivary gland‐specific expression of antisporozoite molecules could be a promising strategy for blocking malaria transmission to humans.  相似文献   

8.
9.
The D7 family of salivary proteins in blood sucking diptera   总被引:4,自引:0,他引:4  
The D7 subfamily of salivary proteins is widespread in blood sucking Diptera and belongs to the superfamily of pheromone/odourant binding proteins. Although D7 proteins are among the most abundant salivary proteins in adult female mosquitoes and sand flies, their role in blood feeding remains elusive. In the present work we report the sequence of seventeen novel D7 proteins, and propose an evolutionary scenario for the appearance of the several forms of this protein, based on a total of twenty-one sequences from Culex quinquefasciatus, Aedes aegypti, Anopheles gambiae, An. arabiensis, An. stephensi, An. darlingi mosquitoes and Lutzomyia longipalpis and Phlebotomus papatasi sand flies.  相似文献   

10.
A knowledge gap in mosquito functional genetic analysis is the dearth of characterized regulatory regions that can target tissue specific transgene expression. To broaden the tools available, a promoter region of the Anopheles gambiaeα-tubulin1b gene has been assayed following fusion to the green fluorescent protein (GFP) reporter gene and stable transformation of An. gambiae. In eight transgenic lines, the Angtub α1b regulatory region directed a core profile of tissue specific expression in the head, chordotonal organs, ventral nerve cord and testes. This profile overlaps those seen for α2-tubulin expression in Drosophila melanogaster and Bombyx mori. In addition, widespread position dependant expression was observed in other specific tissues that were unique to each line. For example, in different lines, expression was observed in larval and adult muscles, fatbody, cuticle and midgut secretory cells. The majority of genomic transgene insertions were mapped to within 10 kb of a gene, suggesting that the Angtub α1b basal promoter is particularly sensitive to enhancers and may be suitable to form the basis of a sensitive enhancer trapping construct, in combination with a binary expression system such as Gal4-UAS.  相似文献   

11.
12.
13.
A cytoskeletal actin gene in the mosquito Anopheles gambiae   总被引:2,自引:0,他引:2  
Five actin genes have been identified in the mosquito Anopheles gambiae , and a constitutively expressed actin gene has been chosen for detailed analysis. We have physically mapped and sequenced this gene and six associated cDNAs, including translated coding regions, as well as the 5 and 3 flanking sequences. Analysis of stage-specific RNA shows this gene to be present in all stages of mosquito development and in an established A. gambiae cell line, thus indicating a cytoskeietal actin. In the sequence of the translated coding region and in pattern of expression, this gene is very similar to the cytoskeietal actin genes of Droso-phila melanogaster , and in sequence, equally similar to the Artemia cytoskeietal actin gene 403 (99.2% identity among the three amino acid sequences). Sequencing of this A. gambiae actin gene (designated actWior its location in chromosome division 1D) and selected cDNAs shows that it possesses three alternative leader sequences; thus the gene appears to have three alternative promoters. These promoters should ultimately prove useful in the production of transgenic constructs for constitutive expression.  相似文献   

14.
Germline transformation of the major African malaria vector, Anopheles gambiae, was achieved using the piggyBac transposable element marked with the enhanced green fluorescent protein (EGFP) injected into mosquito embryos. Two G1 generation male mosquitoes expressing EGFP were identified among 34 143 larvae screened. Genomic Southern data and sequencing of the piggyBac insertion boundaries showed that these two males arose from one piggyBac insertion event in the injected G0 embryos. Genetic cross data suggest that the insertion site of the element either resulted in, or is tightly linked to, a recessive lethal. This was demonstrated by a deficiency in the number of EGFP-expressing offspring from inbred crosses but expected ratios in outcrosses to non-transformed individuals and failure to establish a pure-breeding line. The insertion was weakly linked to the collarless locus on chromosome 2 and was shown by in situ hybridization to be located in division 28D of that chromosome. Particularly high levels of expression were observed uniformly in salivary glands and, in most individuals, in the anterior stomach. An improvement in the injection technique at the end of the studies resulted in increased G0 hatching, transient expression and EGFP-expression rates among G1 progeny.  相似文献   

15.
Salivary glands of female mosquitoes produce proteins, not completely described yet, that participate in carbohydrate and blood feeding. Here, we report an acidic glycoprotein of 35 kDa (GP35 ANOAL) secreted in the saliva of the malaria vector mosquito Anopheles albimanus. GP35 ANOAL is produced exclusively in the distal lateral lobes of adult female salivary glands, it has a pI of 4.45 and is negatively stained by regular silver stain. An 888 bp cDNA clone encoding a predicted product of 240 amino acids has a signal peptide, potential post-translational modification sites, and a disintegrin signature RGD. The GP35 ANOAL sequence depicts high similarities with the 30 kDa saliva allergen of Aedes aegypti, 30 kDa allergen-like hypothetical proteins, and GE-rich proteins present in several Anopheles species, as well as in Ae. albopictus and Culex pipiens quinquefasciatus. The function of this protein family is still unknown.  相似文献   

16.
Parasites of the genus Plasmodium are transmitted to mammalian hosts by anopheline mosquitoes. Within the insect vector, parasite growth and development are potentially limited by antimicrobial defence molecules. Here, we describe the isolation of cDNA and genomic clones encoding a cecropin antibacterial peptide from the malaria vector mosquito Anopheles gambiae. The locus was mapped to polytene division 1C of the X chromosome. Cecropin RNA was induced by infection with bacteria and Plasmodium. RNA levels varied in different body parts of the adult mosquito. During development, cecropin expression was limited to the early pupal stage. The peptide was purified from both adult mosquitoes and cell culture supernatants. Anopheles gambiae synthetic cecropins displayed activity against Gram-negative and Gram-positive bacteria, filamentous fungi and yeasts.  相似文献   

17.
The development of the bipartite Gal4-UAS system in Anopheles gambiae would improve the functional characterization of genes in this important malaria vector. Towards this aim, we used Gal4 driver plasmids to successfully activate expression of the reporter gene, luciferase, from UAS responder plasmids when cotransfected into an An. gambiae cell line. To optimize Gal4-regulated gene expression in mosquitoes, we compared the efficiency of a series of alternative Gal4 transactivators to drive reporter gene expression from responder plasmids incorporating different numbers of tandemly arrayed Gal4 binding sites or upstream activation sequences (UAS). The results indicated that the native Gal4 is only weakly active in these cells. Modified forms of Gal4, including those carrying minimal VP16 activation domains, as well as a deleted form of Gal4, give up to 20-fold greater activity than the native protein, when used in conjunction with a responder plasmid having 14 UAS repeats. The identification of Gal4-UAS vectors that are efficiently expressed in a mosquito cell line should facilitate the transfer of this versatile expression system to An. gambiae, and potentially to other insects of medical importance.  相似文献   

18.
Full-length cDNA clones encoding D7 (AnsD7) and D7-related (AnsD7r1) secreted salivary gland proteins were isolated from Anopheles stephensi. Corresponding proteins were separated by SDS-PAGE and analysed by N-terminal sequencing, which also identified a second D7-related protein (AnsD7r2). AnsD7 encodes a protein of 37 kDa, AnsD7r1 of 18 kDa, and AnsD7r2 of 16 kDa. Polyclonal antibodies against recombinant AnsD7 showed immunological cross-reactivity with the D7-related proteins, and alignment demonstrated sequence similarity between the C-terminal region of AnsD7 and the D7-related proteins. AnsD7, AnsD7r1 and AnsD7r2 were major female-specific salivary gland proteins, and Western blotting, immunohistochemistry and immunogold labelling demonstrated expression was predominantly in the secretory cavities of the distal-lateral and median lobes. Expression and localization of D7 and D7-related proteins was similar in Plasmodium berghei-infected and uninfected mosquitoes.  相似文献   

19.
Larvae of the mosquito vector of human malaria, Anopheles gambiae , were inoculated wlth bacteria and extracts were biochemically fractionated by reverse-phase HPLC. Multiple induced polypeptides and antibacterial activities were observed following bacterial infection, including a member of the Insect defensin family of antibacterial proteins. A cDNA encoding An. gambiae preprodefensin was isolated using PCR primers based on phyiogeneticaiiy conserved sequences. The mature peptide is highly conserved, but the signal and propeptide segments are not, relative to corresponding defensin sequences of other insects. Defensin expression is Induced in response to bacterial infection, in both adult and larval stages. in contrast, pupae express defensin mRNA constitutively. Defensin expression may prove a valuable molecular marker to monitor the An. gambiae host response to infection by parasitic protozoa of medical importance.  相似文献   

20.
The chironomid midges are the only insects that harbour true haemoglobin in their haemolymph. Here we report the identification of haemoglobin genes in two other nematoceran species. Two paralogous haemoglobin genes (glob1 and glob2) from the malaria mosquito Anopheles gambiae were cloned and sequenced. Furthermore, we identified two orthologous haemoglobin genes in the yellow fever mosquito Aedes aegypti. All four haemoglobins were predicted to be intracellular proteins, with the amino acids required for heme- and oxygen-binding being conserved. In situ-hybridization studies showed that glob1 and glob2 expression in An. gambiae is mainly associated with the tracheal system. This pattern resembles that of other insect intracellular globins. We also observed expression of glob2 in visceral muscles. Phylogenetic analyses showed that the globins of the mosquitoes and the Chironomidae are not orthologous. The chironomid haemoglobins share a recent common origin with the brachyceran glob1 proteins. The mosquito glob1 and glob2 proteins, which separated by gene duplication around 170 million years ago, form a distinct clade of more ancient evolutionary origin within the insects. The glob1 genes have introns in the ancestral globin positions B12.2 and G7.0. An additional intron was observed in Ae. aegypti glob1 helix position E18.0, providing evidence for a recent intron gain event. Both mosquito glob2 genes have lost the B12.2 intron. This pattern must be interpreted in terms of dynamic intron gain and loss events in the globin gene lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号