首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the basal and insulin-stimulated glucose metabolism, substrate utilization, and protein turnover in eight patients maintained on continuous ambulatory peritoneal dialysis (CAPD) (mean age 39+/-5 yr, body mass index [BMI] 108+/-6) and 14 control subjects (mean age 33+/-4 yr, BMI 103+/-3). Euglycemic insulin clamp studies (180 min) were performed in combination with continuous indirect calorimetry and 1-14C leucine infusion (study I). Postabsorptive glucose oxidation was higher (1.75+/-0.18 versus 1.42+/-0.14 mg/kg per min) and lipid oxidation was lower (0.43+/-0.09 versus 0.61+/-0.12 mg/kg per min) in CAPD patients than in control subjects (P<0.05 versus control subjects). During the last 60 min of euglycemic hyperinsulinemia, the total rate of glucose metabolism was similar in CAPD and control subjects (6.33+/-0.51 versus 6.54+/-0.62 mg/kg per min). Both insulin-stimulated glucose oxidation (2.53+/-0.27 versus 2.64+/-0.37 mg/kg per min) and glucose storage (3.70+/-0.48 versus 3.90+/-0.58 mg/kg per min) were similar in CAPD and control subjects. Basal leucine flux (an index of endogenous proteolysis) was significantly lower in CAPD patients than in control subjects (1.21+/-0.15 versus 1.65+/-0.07 micromol/kg per min). Leucine oxidation (0.13+/-0.02 versus 0.26+/-0.02 micromol/kg per min) and nonoxidative leucine disposal (an index of protein synthesis) (1.09+/-0.16 versus 1.35+/-0.05 micromol/kg per min) were also reduced in CAPD compared with control subjects (P<0.01 versus control subjects). In response to insulin (study I), endogenous leucine flux decreased to 0.83+/-0.08 and 1.05+/-0.05 micromol/kg per min in CAPD and control subjects, respectively (all P<0.01 versus basal). Leucine oxidation declined to 0.06+/-0.01 and to 0.19+/-0.02 micromol/kg per min in CAPD and control subjects, respectively (P<0.01 versus basal). A second insulin clamp was performed in combination with an intravenous amino acid infusion (study II). During insulin plus amino acid administration, nonoxidative leucine disposal rose to 1.23+/-0.17 and 1.42+/-0.09 micromol/kg per min in CAPD and control subjects, respectively (both P<0.05 versus basal, P = NS versus control subjects), and leucine balance, an index of the net amino acid flux into protein, become positive in both groups (0.30+/-0.05 versus 0.40+/-0.07 micromol/kg per min in CAPD and control subjects, respectively) (both P<0.01 versus basal, P = NS versus control subjects). In summary, in CAPD patients: (1) basal glucose oxidation is increased; (2) basal lipid oxidation is decreased; (3) insulin-mediated glucose oxidation and storage are normal; (4) basal leucine flux is reduced; (5) the antiproteolitic action of insulin is normal; and (6) the anabolic response to insulin plus amino acid administration is normal. Uremic patients maintained on CAPD treatment show a preferential utilization of glucose as postabsorptive energy substrate; however, their anabolic response to substrate administration and the sensitivity to insulin are normal.  相似文献   

2.
Insulin hypersecretion and insulin resistance are physiologically linked features of obesity. We tested whether extreme hypersecretion impairs beta-cell function under free-living conditions and whether major weight loss modifies insulin hypersecretion, insulin sensitivity, and beta-cell function. Plasma glucose, C-peptide, and free fatty acid concentrations were measured at hourly intervals during 24 h of normal life (including calorie-standardized meals) in 20 morbidly obese nondiabetic patients (BMI 48.4 +/- 1.7 kg/m2) and 7 nonobese age- and sex-matched control subjects; 8 of the obese patients were restudied 6 months and 2 years following biliopancreatic diversion. Insulin secretion was reconstructed from C-peptide levels by deconvolution and related to concurrent glucose levels through a mathematical model incorporating key features of beta-cell function: rate sensitivity, beta-cell glucose sensitivity, and potentiation. Insulin sensitivity (by the euglycemic insulin clamp technique) was reduced by 50% in obese subjects (23.1 +/- 2.5 of obese subjects vs. 52.9 +/- 4.9 micromol.min(-1) . kg(FFM)(-1) of control subjects, means +/- SE, P = 0.0004) as was mean 24-h insulin clearance (median 809 [interquartile range 451] vs. 1,553 [520] ml.min(-1) . m(-2), P < 0.001) due to a 50% reduction in hepatic insulin extraction (P < 0.01). Over 24 h, insulin secretion was doubled in obese subjects (468 nmol [202] in obese subjects vs. 235 [85] of control subjects, P=0.0002). Despite the hypersecretion, beta-cell glucose sensitivity, rate sensitivity, and potentiation were similar in obese and control subjects. Six months postoperatively (weight loss = 33 +/- 3 kg), both insulin hypersecretion (282 nmol [213]) and insulin sensitivity (51.6 +/- 3.7 micromol.min(-1).kg(FFM)(-1)) were normalized. At 2 years (weight loss = 50 +/- 8 kg), insulin sensitivity was supernormal (68.7 +/- 3.3 micromol.min(-1).kg(FFM)(-1)) and insulin secretion was lower than normal (167 nmol [37]) (both P < 0.05 vs. control subjects). In conclusion, severe uncomplicated obesity is characterized by gross insulin hypersecretion and insulin resistance, but the dynamic aspects of beta-cell function are intact. Malabsorptive bariatric surgery corrects both the insulin hypersecretion and the insulin resistance at a time when BMI is still high. With continued weight loss over a 2-year period, moderately obese subjects become supersensitive to insulin and, correspondingly, insulin hyposecretors.  相似文献   

3.
Increased intramyocellular lipid concentrations are thought to play a role in insulin resistance, but the precise nature of the lipid species that produce insulin resistance in human muscle are unknown. Ceramides, either generated via activation of sphingomyelinase or produced by de novo synthesis, induce insulin resistance in cultured cells by inhibitory effects on insulin signaling. The present study was undertaken to determine whether ceramides or other sphingolipids are increased in muscle from obese insulin-resistant subjects and to assess whether ceramide plays a role in the insulin resistance of Akt in human muscle. Lean insulin-sensitive and obese insulin-resistant subjects (n = 10 each) received euglycemic-hyperinsulinemic clamps with muscle biopsies basally and after 30, 45, or 60 min of insulin infusion. The rate of glucose infusion required to maintain euglycemia (reflecting glucose uptake) was reduced by >50%, as expected, in the obese subjects at each time point (P < 0.01). Under basal conditions, total muscle ceramide content was increased nearly twofold in the obese subjects (46 +/- 9 vs. 25 +/- 2 pmol/2 mg muscle, P < 0.05). All species of ceramides were increased similarly in the obese subjects; in contrast, no other sphingolipid was increased. Stimulation of Akt phosphorylation by insulin in the obese subjects was significantly reduced after 30 min (0.96 +/- 0.11 vs. 1.84 +/- 0.38 arbitrary units) or 45-60 min (0.68 +/- 0.17 vs. 1.52 +/- 0.26) of insulin infusion (P < 0.05 for both). Muscle ceramide content was significantly correlated with the plasma free fatty acid concentration (r = 0.51, P < 0.05). We conclude that obesity is associated with increased intramyocellular ceramide content. This twofold increase in ceramide may be involved in the decrease in Akt phosphorylation observed after insulin infusion and could theoretically play a role in the reduced ability of insulin to stimulate glucose uptake in skeletal muscle from obese subjects.  相似文献   

4.
Regional postprandial fatty acid metabolism in different obesity phenotypes.   总被引:11,自引:0,他引:11  
Z Guo  D D Hensrud  C M Johnson  M D Jensen 《Diabetes》1999,48(8):1586-1592
To examine if postprandial splanchnic/hepatic free fatty acid (FFA) delivery is increased in upper-body (UB) obesity, and to determine the adipose tissue depots responsible for the greater postprandial FFA availability, we measured systemic and regional uptake and release of FFAs ([1-(14)C]palmitate) before and during a 5-h frequent-feeding mixed meal in eight UB and eight lower-body (LB) obese women. Postabsorptive FFA flux and splanchnic FFA delivery were not different in UB and LB obese women; however, postprandial FFA concentrations (257 +/- 45 vs. 81 +/- 12 micromol/l, P < 0.0001), FFA flux (8.5 +/- 1.2 vs. 3.9 +/- 0.8 micromol x kg(-1) fat-free mass x min(-1), P < 0.0001), splanchnic FFA delivery (275 +/- 45 vs. 88 +/- 24 micromol/min, respectively, P < 0.005), and estimated hepatic FFA delivery were greater in UB than LB obese women. Nonsplanchnic UB adipose tissue FFA release was greater in UB than in LB obese women (276 +/- 71 vs. 97 +/- 37 micromol/min, respectively, P < 0.05) and accounted for the greater postprandial FFA availability in UB obesity. Postprandial leg glucose uptake was less in UB than in LB obese women (8.4 +/- 5.1 vs. 22.9 +/- 2.6 micromol x kg(-1) leg fat-free mass x min(-1), P < 0.05). We conclude that the elevated postprandial FFA release observed in UB obese women originates from the nonsplanchnic UB fat, not visceral fat. These results suggest that visceral fat may be a marker for, but not the source of, excess postprandial FFAs in obesity.  相似文献   

5.
HIV protease inhibitor-related lipodystrophy is characterized by peripheral fat loss, hyperlipidemia, and insulin resistance. Increased availability of lipid to muscle may be one of the mechanisms that induce insulin resistance. Regional fat, intramyocellular lipid (by (1)H-magnetic resonance spectroscopy), serum lipids, and insulin-stimulated glucose disposal (by hyperinsulinemic-euglycemic clamp) were quantified in 10 men who had HIV-1 infection with moderate to severe lipodystrophy and a control group of 10 nonlipodystrophic men who had HIV-1 infection and were na?ve to protease inhibitors to examine the effects of lipodystrophy on glucose and lipid metabolism. Lipodystrophic subjects showed lower insulin-stimulated glucose disposal than control subjects (P = 0.001) and had increased serum triglycerides (P = 0.03), less limb fat (P = 0.02), increased visceral fat as a proportion of total abdominal fat (P = 0.003), and increased intramyocellular lipid (1.90 +/- 0.15 vs. 1.23 +/- 0.16% of water resonance peak area; P = 0.007). In both groups combined, visceral fat related strongly to intramyocellular lipid (r = 0.83, P < 0.0001) and intramyocellular lipid related negatively to insulin-stimulated glucose disposal (r = -0.71, P = 0.0005). Fasting serum cholesterol and triglycerides related positively to intramyocellular lipid and visceral fat in lipodystrophic subjects only. The data indicate that lipodystrophy is associated with increased lipid content in muscle accompanying impaired insulin action. The results do not establish causation but emphasize the interrelationships among visceral fat, myocyte lipid, and insulin action.  相似文献   

6.
To examine whether and how intramyocellular lipid (IMCL) content contributes to interindividual variation in insulin action, we studied 20 healthy men with no family history of type 2 diabetes. IMCL was measured as the resonance of intramyocellular CH(2) protons in lipids/resonance of CH(3) protons of total creatine (IMCL/Cr(T)), using proton magnetic resonance spectroscopy in vastus lateralis muscle. Whole-body insulin sensitivity was measured using a 120-min euglycemic-hyperinsulinemic (insulin infusion rate 40 mU/m(2). min) clamp. Muscle biopsies of the vastus lateralis muscle were taken before and 30 min after initiation of the insulin infusion to assess insulin signaling. The subjects were divided into groups with high IMCL (HiIMCL; 9.5 +/- 0.9 IMCL/Cr(T), n = 10) and low IMCL (LoIMCL; 3.0 +/- 0.5 IMCL/Cr(T), n = 10), the cut point being median IMCL (6.1 IMCL/Cr(T)). The groups were comparable with respect to age (43 +/- 3 vs. 40 +/- 3 years, NS, HiIMCL versus LoIMCL), BMI (26 +/- 1 vs. 26 +/- 1 kg/m(2), NS), and maximal oxygen consumption (33 +/- 2 vs. 36 +/- 3 ml. kg(-1). min(-1), NS). Whole-body insulin-stimulated glucose uptake was lower in the HiIMCL group (3.0 +/- 0.4 mg. kg(-1). min(-1)) than the LoIMCL group (5.1 +/- 0.5 mg. kg(-1). min(-1), P < 0.05). Serum free fatty acid concentrations were comparable basally, but during hyperinsulinemia, they were 35% higher in the HiIMCL group than the LoIMCL group (P < 0.01). Study of insulin signaling indicated that insulin-induced tyrosine phosphorylation of the insulin receptor (IR) was blunted in HiIMCL compared with LoIMCL (57 vs. 142% above basal, P < 0.05), while protein expression of the IR was unaltered. IR substrate-1-associated phosphatidylinositol (PI) 3-kinase activation by insulin was also lower in the HiIMCL group than in the LoIMCL group (49 +/- 23 vs. 84 +/- 27% above basal, P < 0.05 between HiIMCL and LoIMCL). In conclusion, IMCL accumulation is associated with whole-body insulin resistance and with defective insulin signaling in skeletal muscle independent of body weight and physical fitness.  相似文献   

7.
Insulin resistance plays an important role in the pathogenesis of type 2 diabetes; however, the multiple mechanisms causing insulin resistance are not yet fully understood. The aim of this study was to explore the possible contribution of intramyocellular lipid content in the pathogenesis of skeletal muscle insulin resistance. We compared insulin-resistant and insulin-sensitive subjects. To meet stringent matching criteria for other known confounders of insulin resistance, these individuals were selected from an extensively metabolically characterized group of 280 first-degree relatives of type 2 diabetic subjects. Some 13 lean insulin-resistant and 13 lean insulin-sensitive subjects were matched for sex, age, BMI, percent body fat, physical fitness, and waist-to-hip ratio. Insulin sensitivity was determined by the hyperinsulinemic-euglycemic clamp method (for insulin-resistant subjects, glucose metabolic clearance rate [MCR] was 5.77+/-0.28 ml x kg(-1) x min(-1) [mean +/- SE]; for insulin-sensitive subjects, MCR was 10.15+/-0.7 ml x kg(-1) x min(-1); P<0.002). Proton magnetic resonance spectroscopy (MRS) was used to measure intramyocellular lipid content (IMCL) in both groups. MRS studies demonstrated that in soleus muscle, IMCL was increased by 84% (11.8+/-1.6 vs. 6.4+/-0.59 arbitrary units; P = 0.008 ), and in tibialis anterior muscle, IMCL was increased by 57% (3.26+/-0.36 vs. 2.08+/-0.3 arbitrary units; P = 0.017) in the insulin-resistant offspring, whereas the extramyocellular lipid content and total muscle lipid content were not statistically different between the two groups. These data demonstrate that in these well-matched groups of lean subjects, IMCL is increased in insulin-resistant offspring of type 2 diabetic subjects when compared with an insulin-sensitive group matched for age, BMI, body fat distribution, percent body fat, and degree of physical fitness. These results indicate that increased IMCL represents an early abnormality in the pathogenesis of insulin resistance and suggest that increased IMCL may contribute to the defective glucose uptake in skeletal muscle in insulin-resistant subjects.  相似文献   

8.
Diurnal variations of adiponectin levels have been studied in normal-weight men and in diabetic and nondiabetic obese subjects, but no data have been reported in obese subjects after weight loss. We collected blood samples at 1-h intervals over 24 h from seven severely obese subjects before and after massive weight loss consequent to surgical operation (bilio-pancreatic diversion [BPD]) to measure adiponectin, insulin, glucose, and cortisol levels. Insulin sensitivity was assessed by euglycemic-hyperinsulinemic clamp (M value). Studies of diurnal variations and pulsatility of adiponectin, insulin, and cortisol were performed. The pulsatility index (PI) of adiponectin increased after BPD from 0.04 to 0.11 microg/min (P = 0.01). Insulin PI significantly increased after the operation (1.50 vs. 1.08 pmol.l(-1).min(-1), P = 0.01), while cortisol PI did not significantly change. The adiponectin clearance rate changed from 0.001 +/- 10(-4).min(-1) before BPD to 0.004 +/- 8. 10(-4).min(-1) after BPD (P = 0.03). Insulin clearance increased from 0.006 +/- 6. 10(-4).min(-1) before BPD to 0.009 +/- 4.10(-4). min(-1) after BPD (P = 0.02). The M value doubled after surgery (27.08 +/- 8.5 vs. 53.34 +/- 9.3 micromol.kg(FFM)(-1).min(-1); P < 0.001) becoming similar to the values currently reported for normal-weight subjects. In conclusion, in formerly severely obese subjects, weight loss paired with the reversibility of insulin resistance restores homeostatic control of the adiponectin secretion, contributing to the reduction of cardiovascular risk already described in these patients.  相似文献   

9.
To elucidate potential mechanisms for insulin resistance occurring early in the development of type 2 diabetes, we studied 10 young healthy individuals, each with two first-degree relatives with type 2 diabetes, and 10 control subjects without known type 2 diabetic relatives. They were pairwise matched for age (35 +/- 1 vs. 35 +/- 1 years), BMI (23.6 +/- 0.6 vs. 23.1 +/- 0.4 kg/m2), and sex (four men, six women). Glucose turnover was assessed during a euglycemic clamp at two insulin levels (low approximately 20 mU/l; high approximately 90 mU/l), and abdominal subcutaneous adipose tissue (SAT) lipolysis and blood flow were concomitantly studied with microdialysis and 133Xe clearance. HbA1c was higher in patients with type 2 diabetic relatives than in control subjects (4.8 +/- 0.1 vs. 4.5 +/- 0.1%, P < 0.02), but fasting glucose, insulin, and C-peptide levels were similar. During the clamp, the insulin sensitivity index for glucose disposal was lower (P < 0.03) in relatives than in control subjects (low 12.0 +/- 1.6 vs. 18.1 +/- 1.4; high 9.4 +/- 0.8 vs. 12.9 +/- 0.6 [100 x mg x l x kg(-1) x mU(-1) x min(-1)]). This difference was partially attributed to slightly higher clamp insulin levels in the relatives (P < 0.03), suggesting an impaired rate for insulin clearance. SAT lipolysis measured as in situ glycerol release did not differ under basal conditions (2.0 +/- 0.2 vs. 2.1 +/- 0.2 micromol x kg(-1) x min(-1)), but the suppression during the insulin infusion was less marked in relatives than in control subjects (glycerol release: low 0.92 +/- 0.09 vs. 0.68 +/- 0.16; high 0.71 +/- 0.10 vs. 0.34 +/- 0.10 micromol x kg(-1) x min(-1); P < 0.03). Plasma nonesterified fatty acids also tended to be higher in relatives than in control subjects during the insulin infusion (NS). In contrast, in vitro experiments with isolated subcutaneous adipocytes displayed similar effects of insulin in relatives and control subjects with respect to both glucose uptake and antilipolysis. In conclusion, insulin action in vivo on both lipolysis and glucose uptake is impaired early in the development of type 2 diabetes. Since this impairment was not found in isolated adipocytes, it may be suggested that neural or hormonal perturbations precede cellular insulin resistance in type 2 diabetes.  相似文献   

10.
The present study was intended to investigate the different components of fatty acid utilization during a 60-min period of moderate-intensity cycling exercise (50% of VO2max) in eight male type 2 diabetic subjects (aged 52.6 +/- 3.1 years, body fat 35.8 +/- 1.3%) and eight male obese control subjects (aged 45.1 +/- 1.4 years, body fat 34.2 +/- 1.3%) matched for age, body composition, and maximal aerobic capacity. To quantitate the different components of fatty acid metabolism, an isotope infusion of [U-13C]-palmitate was used in combination with indirect calorimetry. In separate experiments, the 13C label recovery in expired air was determined during infusion of [1,2-13C]-acetate (acetate recovery factor). There were no differences in energy expenditure or carbohydrate and total fat oxidation between the groups. The rate of appearance (Ra) of free fatty acid (FFA) (P < 0.05) and the exercise-induced increase in Ra of FFA were significantly lower (P < 0.05) in type 2 diabetic subjects compared with control subjects (baseline vs. exercise [40-60 min]; type 2 diabetes 11.9 +/- 0.9 vs. 19.6 +/- 2.2 micromol x kg(-1) fat-free mass [FFM] x min(-1) and control 15.8 +/- 1.8 vs. 28.6 +/- 2.1 micromol x kg(-1) FFM x min(-1)). The oxidation of plasma-derived fatty acids was significantly lower in type 2 diabetic subjects during both conditions (P < 0.05, baseline vs. exercise [40-60 min]; type 2 diabetes 4.2 +/- 0.5 vs. 14.1 +/- 1.9 micromol x kg(-1) FFM x min(-1) and control 6.2 +/- 0.6 vs. 20.4 +/- 1.9 micromol x kg(-1) FFM x min(-1)), whereas the oxidation of triglyceride-derived fatty acids was higher (P < 0.05). It is hypothesized that these impairments in fatty acid utilization may play a role in the etiology of skeletal muscle and hepatic insulin resistance.  相似文献   

11.
Currently, there are no data in the literature regarding the pathophysiological mechanisms involved in the rapid resolution of type 2 diabetes after bariatric surgery, which was reported as an additional benefit of the surgical treatment for morbid obesity. With this question in mind, insulin sensitivity, using euglycemic-hyperinsulinemic clamp, and insulin secretion, by the C-peptide deconvolution method after an oral glucose load, together with the circulating levels of intestinal incretins and adipocytokines, have been studied in 10 diabetic morbidly obese subjects before and shortly after biliopancreatic diversion (BPD) to avoid the weight loss interference. Diabetes disappeared 1 week after BPD, while insulin sensitivity (32.96 +/- 4.3 to 65.73 +/- 3.22 mumol . kg fat-free mass(-1) . min(-1) at 1 week and to 64.73 +/- 3.42 mumol . kg fat-free mass(-1) . min(-1) at 4 weeks; P < 0.0001) was fully normalized. Fasting insulin secretion rate (148.16 +/- 20.07 to 70.0.2 +/- 8.14 and 83.24 +/- 8.28 pmol/min per m(2); P < 0.01) and total insulin output (43.76 +/- 4.07 to 25.48 +/- 1.69 and 30.50 +/- 4.71 nmol/m(2); P < 0.05) dramatically decreased, while a significant improvement in beta-cell glucose sensitivity was observed. Both fasting and glucose-stimulated gastrointestinal polypeptide (13.40 +/- 1.99 to 6.58 +/- 1.72 pmol/l at 1 week and 5.83 +/- 0.80 pmol/l at 4 weeks) significantly (P < 0.001) decreased, while glucagon-like peptide 1 significantly increased (1.75 +/- 0.16 to 3.42 +/- 0.41 pmol/l at 1 week and 3.62 +/- 0.21 pmol/l at 4 weeks; P < 0.001). BPD determines a prompt reversibility of type 2 diabetes by normalizing peripheral insulin sensitivity and enhancing beta-cell sensitivity to glucose, these changes occurring very early after the operation. This operation may affect the enteroinsular axis function by diverting nutrients away from the proximal gastrointestinal tract and by delivering incompletely digested nutrients to the ileum.  相似文献   

12.
Insulin resistance correlates with intramyocellular lipid content (IMCL) and plasma free fatty acids (FFAs) and was recently linked to mitochondrial dysfunction. We examined the underlying relationships by measuring skeletal muscle ATP synthase flux, glucose transport/phosphorylation, and IMCL in response to different plasma insulin and plasma FFA concentrations. Healthy men were studied twice during hyperinsulinemic-euglycemic clamps with (LIP) or without (CON) lipid infusion (plasma FFA: CON approximately 36 vs. LIP approximately 1,034 micromol/l, P < 0.001). ATP synthase flux, glucose-6-phosphate (G6P), and IMCL were determined before and during the clamp in calf muscle using (31)P and (1)H magnetic resonance spectroscopy. Plasma lipid elevation resulted in approximately 46% reduced whole-body glucose metabolism (180-360 min; P < 0.0001 vs. CON) and a 70% lower rise of G6P (P < 0.05 vs. CON) without significant changes in IMCL (LIP 117 +/- 12% vs. CON 93 +/- 3% of basal, P = 0.073). During the clamp, ATP synthase flux increased by approximately 60% under control conditions (P = 0.02 vs. baseline) and was 24% lower during lipid infusion (LIP 11.0 +/- 0.9 vs. CON 14.6 +/- 1.2 micromol . g muscle(-1) . min(-1), P < 0.05). Physiologically increased plasma FFA concentrations reduce insulin-stimulated muscle ATP synthase flux in parallel with induction of insulin resistance.  相似文献   

13.
Gluconeogenesis (GNG) is enhanced in type 2 diabetes. In experimental animals, insulin at high doses decreases the incorporation of labeled GNG precursors into plasma glucose. Whether physiological hyperinsulinemia has any effect on total GNG in humans has not been determined. We combined the insulin clamp with the (2)H(2)O technique to measure total GNG in 33 subjects with type 2 diabetes (BMI 29.0 +/- 0.6 kg/m(2), fasting plasma glucose 8.1 +/- 0.3 mmol/l) and in 9 nondiabetic BMI-matched subjects after 16 h of fasting and after euglycemic hyperinsulinemia. A primed-constant infusion of 6,6-(2)H-glucose was used to monitor endogenous glucose output (EGO); insulin (40 mU. min(-1). m(-2)) was then infused while clamping plasma glucose for 2 h (at 5.8 +/- 0.1 and 4.9 +/- 0.2 mmol/l for diabetic and control subjects, respectively). In the fasting state, EGO averaged 15.2 +/- 0.4 micromol. min(-1). kg(-1)(ffm) (62% from GNG) in diabetic subjects and 12.2 +/- 0.7 micromol. min(-1). kg(-1)(ffm) (55% from GNG) in control subjects (P < 0.05 or less for both fluxes). Glycogenolysis (EGO - GNG) was similar in the two groups (P = NS). During the last 40 min of the clamp, both EGO and GNG were significantly (P < 0.01 or less, compared with fasting) inhibited (EGO 7.1 +/- 0.9 and 3.6 +/- 0.5 and GNG 7.9 +/- 0.5 and 4.5 +/- 1.0 respectively) but remained significantly (P < 0.05) higher in diabetic subjects, whereas glycogenolysis was suppressed completely and equally in both groups. During hyperinsulinemia, GNG micromol. min(-1). kg(-1)(ffm) in diabetic and control subjects, was reciprocally related to plasma glucose clearance. In conclusion, physiological hyperinsulinemia suppresses GNG by approximately 20%, while completely blocking glycogenolysis. Resistance of GNG (to insulin suppression) and resistance of glucose uptake (to insulin stimulation) are coupled phenomena. In type 2 diabetes, the excess GNG of the fasting state is carried over to the insulinized state, thereby contributing to glucose overproduction under both conditions.  相似文献   

14.
Insulin resistance is frequently associated with increased lipid content in muscle and liver. Insulin excess stimulates tissue lipid accumulation. To examine the effects of insulin and improved glycemia on insulin sensitivity and intracellular lipids, we performed stepped (1, 2, and 4 mU x min(-1) x kg(-1)) hyperinsulinemic-euglycemic clamps in eight type 2 diabetic and six nondiabetic control subjects at baseline and after 12 and 67 h of insulin-mediated near-normoglycemia (118 +/- 7 mg/dl). Intrahepatocellular lipids (IHCLs) and intramyocellular lipids (IMCLs) of soleus (IMCL-S) and tibialis anterior muscle (IMCL-TA) were measured with (1)H nuclear magnetic resonance spectroscopy. At baseline, nondiabetic subjects had an approximate twofold higher insulin sensitivity (P < 0.02) and lower IHCLs than diabetic patients (5.8 +/- 1.2 vs. 18.3 +/- 4.2%, P < 0.03), in whom IMCL-TA negatively correlated with insulin sensitivity (r = -0.969, P < 0.001). After a 67-h insulin infusion in diabetic patients, IMCL-S and IHCLs were increased (P < 0.05) by approximately 36 and approximately 18%, respectively, and correlated positively with insulin sensitivity (IMCL-S: r = 0.982, P < 0.0005; IHCL: r = 0.865, P < 0.03), whereas fasting glucose production, measured with D-[6,6-(2)H(2)]glucose, decreased by approximately 10% (P < 0.04). In conclusion, these results indicate that IMCLs relate to insulin resistance in type 2 diabetic patients at baseline and that insulin-mediated near-normoglycemia for approximately 3 days reduces fasting glucose production but stimulates lipid accumulation in liver and muscle without affecting insulin sensitivity.  相似文献   

15.
G Boden  B Lebed  M Schatz  C Homko  S Lemieux 《Diabetes》2001,50(7):1612-1617
The reason for the 3- to 4-h delay between a rise in plasma free fatty acid (FFA) levels and the development of insulin resistance remains unknown. In the current study, we have tested the hypothesis that the delay may be caused by the need for plasma FFAs to first enter muscle cells and to be re-esterified there before causing insulin resistance. To this end, we have determined intramyocellular triglyceride (IMCL-TG) content with proton nuclear magnetic resonance ((1)H-NMR) spectroscopy in healthy volunteers before and 4 h after lowering of plasma FFAs (with euglycemic-hyperinsulinemic clamping) or after increasing plasma FFAs (with lipid plus heparin infusions). Increasing plasma FFAs (from 516 to 1,207 micromol/l or from 464 to 1,857 micromol/l, respectively) was associated with acute increases in IMCL-TG from 100 to 109 +/- 5% (P < 0.05) or to 133 +/- 11% (P < 0.01), respectively, and with a significant increase in insulin resistance (P < 0.05 after 3.5 h). Lowering of plasma FFAs from 560 to 41 micromol/l was associated with a tendency for IMCL-TG to decrease (from 100 to 95 +/- 3%). Changes in plasma FFAs correlated linearly with IMCL-TG (r = 0.74, P < 0.003). The demonstration that acute changes in plasma FFAs were accompanied by corresponding changes in IMCL-TG and with the development of insulin resistance, taken together with previous reports of a close correlation between IMCL-TG and insulin resistance, supported the notion that accumulation of IMCL-TG is a step in the development of FFA-induced insulin resistance.  相似文献   

16.
To identify abnormally expressed genes contributing to muscle insulin resistance in type 2 diabetes, we screened the mRNA populations from normal and diabetic human skeletal muscle using cDNA differential display and isolated abnormally expressed cDNA clones of mitochondrial-encoded NADH dehydrogenase 1 (ND1), cytochrome oxidase 1, tRNA(leu), and displacement loop. We then measured mRNA expression of these mitochondrial genes using a relative quantitative polymerase chain reaction method in biopsies taken before and after an insulin clamp in 12 monozygotic twin pairs discordant for type 2 diabetes and 12 matched control subjects and in muscle biopsies taken after an insulin clamp from 13 subjects with type 2 diabetes, 15 subjects with impaired glucose tolerance, and 14 subjects with normal glucose tolerance. Insulin infusion increased mRNA expression of ND1 from 1.02 +/- 0.04 to 2.55 +/- 0.30 relative units (P < 0.001) and of cytochrome oxidase 1 from 0.80 +/- 0.01 to 1.24 +/- 0.10 relative units (P < 0.001). The ND1 response to insulin correlated with glucose uptake (r = 0.46, P = 0.002). Although the rate of insulin-mediated glucose uptake was decreased in the diabetic versus the nondiabetic twins (5.2 +/- 0.7 vs. 8.5 +/- 0.8 mg x kg(-1) fat-free mass x min(-1), P < 0.01), insulin-stimulated ND1 expression was not significantly different between them (2.4 +/- 0.5 vs. 2.7 +/- 0.5 relative units). Neither was there any significant intrapair correlation of ND1 expression between the monozygotic twins (r = -0.15, NS). We conclude that insulin upregulates mitochondrial-encoded gene expression in skeletal muscle. Given the positive correlation between ND1 expression and glucose uptake and the lack of intrapair correlation between monozygotic twins, mitochondrial gene expression may represent an adaptation to intracellular glucose flux rather than an inherited trait.  相似文献   

17.
Insulin and exercise have been shown to activate glucose transport at least in part via different signaling pathways. However, it is unknown whether insulin resistance is associated with a defect in the ability of an acute bout of exercise to enhance muscle glucose uptake in vivo. We compared the abilities of insulin and isometric exercise to stimulate muscle blood flow and glucose uptake in 12 men with type 1 diabetes (age 24 +/- 1 years, BMI 23.0 +/- 0.4 kg/m(2)) and in 11 age- and weight-matched nondiabetic men (age 25 +/- 1 years, BMI 22.3 +/- 0.6 kg/m(2)) during euglycemic hyperinsulinemia (1 mU. kg(-1). min(-1) insulin infusion for 150 min). One-legged exercise was performed at an intensity of 10% of maximal isometric force for 105 min (range 45-150). Rates of muscle blood flow, oxygen consumption, and glucose uptake were quantitated simultaneously in both legs using [(15)O]water, [(15)O]oxygen, [(18)F]-2-fluoro-2-deoxy-D-glucose, and positron emission tomography. Resting rates of oxygen consumption were similar during hyperinsulinemia between the groups (2.4 +/- 0.3 vs. 2.0 +/- 0.5 ml. kg(-1) muscle. min(-1); normal subjects versus patients with type 1 diabetes, NS), and exercise increased oxygen consumption similarly in both groups (25.3 +/- 4.3 vs. 20.1 +/- 3.0 ml. kg(-1) muscle. min(-1), respectively, NS). Rates of insulin-stimulated muscle blood flow and the increments in muscle blood flow induced by exercise were also similar in normal subjects (129 +/- 14 ml. kg(-1). min(-1)) and in patients with type 1 diabetes (115 +/- 12 ml. kg(-1). min(-1)). The patients with type 1 diabetes exhibited resistance to both insulin stimulation of glucose uptake (34 +/- 6 vs. 76 +/- 9 micromol. kg(-1) muscle. min(-1), P < 0.001) and also to the exercise-induced increment in glucose uptake (82 +/- 15 vs. 162 +/- 29 micromol. kg(-1) muscle. min(-1), P < 0.05). We conclude that the ability of exercise to increase insulin-stimulated glucose uptake in vivo is blunted in patients with insulin-resistant type 1 diabetes compared with normal subjects. This could be caused by either separate or common defects in exercise- and insulin-stimulated pathways.  相似文献   

18.
Insulin-resistant subjects have a slow onset of insulin action, and the underlying mechanism has not been determined. To evaluate whether a delayed transcapillary transport is part of the peripheral insulin resistance, we followed the kinetics of infused insulin and inulin in plasma and muscle interstitial fluid in obese insulin-resistant patients and control subjects. A total of 10 lean and 10 obese men (BMI 24 +/- 0.8 vs. 32 +/- 0.8 kg/m(2), P < 0.001) was evaluated during a hyperinsulinemic-euglycemic clamp (insulin infusion rate 120 mU. m(-2). min(-1)) combined with an inulin infusion. Measurements of insulin and inulin in plasma were taken by means of arterial-venous catheterization of the forearm and microdialysis in brachioradialis muscle combined with forearm blood flow measurements with vein occlusion pletysmography. The obese subjects had a significantly lower steady-state glucose infusion rate and, moreover, demonstrated a delayed appearance of insulin (time to achieve half-maximal concentration [T(1/2)] 72 +/- 6 vs. 46 +/- 6 min in control subjects, P < 0.05) as well as inulin (T(1/2) 83 +/- 3 vs. 53 +/- 7 min, P < 0.01) in the interstitial fluid. Also, the obese subjects had a delayed onset of insulin action (T(1/2) 70 +/- 9 vs. 45 +/- 5 min in control subjects, P < 0.05), and their forearm blood flow rate was significantly lower. These results demonstrate a delayed transcapillary transport of insulin and inulin from plasma to the muscle interstitial fluid and a delayed onset of insulin action in insulin-resistant obese subjects.  相似文献   

19.
Insulin resistance and loss of glucose-stimulated acute insulin response (AIR) are the two major and earliest defects in the course of type 2 diabetes. We investigated whether weight loss after bariatric surgery in patients with morbid obesity and type 2 diabetes could restore euglycemia and normal AIR to an intravenous glucose tolerance test (IVGTT). We studied 25 morbidly obese patients-12 with type 2 diabetes, 5 with impaired glucose tolerance, and 8 with normal glucose tolerance (NGT)-before and after a biliopancreatic diversion (BPD) with Roux-en-Y gastric bypass (RYGBP). Twelve individuals with normal BMI served as control subjects. Twelve months after surgery, in the diabetes group, BMI decreased from 53.2 +/- 2.0 to 29.2 +/- 1.7 kg/m(2), fasting glucose decreased from 9.5 +/- 0.83 to 4.5 +/- 0.13 mmol/l, and fasting insulin decreased from 168.4 +/- 25.9 to 37.7 +/- 4.4 pmol/l (mean +/- SE; P < 0.001). AIR, the mean of insulin concentration at 2, 3, and 5 min over basal in the IVGTT, increased by 770 and 935% at 3 and 12 months after surgery, respectively (from 24.0 +/- 22.7 to 209 +/- 43.4 and 248 +/- 33.1 pmol/l, respectively; P < 0,001). Conversely, in the NGT group, the AIR decreased by 40.5% (from 660 +/- 60 to 393 +/- 93 pmol/l; P = 0.027) 12 months after surgery. BPD with RYGBP performed in morbidly obese patients with type 2 diabetes leads to significant weight loss, euglycemia, and normal insulin sensitivity; but most importantly, it restores a normal beta-cell AIR to glucose and a normal relationship of AIR to insulin sensitivity. This is the first study to demonstrate that the lost glucose-induced AIR in patients with type 2 diabetes of mild or moderate severity is a reversible abnormality.  相似文献   

20.
R Prager  P Wallace  J M Olefsky 《Diabetes》1987,36(3):327-334
Based on previous steady-state measures of the biologic activity of insulin, it was thought that postprandial hyperinsulinemia in obesity compensated for insulin resistance. However, we recently demonstrated kinetic defects in insulin action in insulin-resistant nondiabetic obese subjects: activation of insulin-stimulated glucose disposal was slower and deactivation was faster in obese than in normal subjects. In view of these kinetic defects in peripheral insulin action and of the fact that insulin is normally secreted in a phasic manner after meals, we postulated that the hyperinsulinemia of obesity does not compensate for insulin resistance and that the abnormal kinetics of insulin action in obesity are functionally important. To test this hypothesis, oral glucose tolerance tests (OGTTs) were performed in five control (mean age, 33 +/- 2 yr) and five obese (mean age, 41 +/- 5 yr) subjects. All controls had normal glucose tolerance; two obese subjects had normal and three had impaired glucose tolerance. After the results of the OGTTs were available, euglycemic clamp studies were performed in which insulin was infused in a phasic stepped fashion to mimic the rise and fall of mean peripheral insulin levels during the OGTTs. Each subject was clamped at both the "normal" and "obese" OGTT insulin profiles. During the OGTT, glucose and insulin levels were significantly elevated in the obese subjects compared with controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号