共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
《Brain stimulation》2018,11(6):1314-1321
BackgroundPaired associative stimulation (PAS) induces long-term potentiation (LTP)-like effects when interstimulus intervals (ISIs) between electrical peripheral nerve stimulation and transcranial magnetic stimulation (TMS) to M1 are approximately 21–25 ms (PASLTP). It was previously reported that two forms of motor learning (i.e., mode-free and model-based learning) can be differentially modulated by PASLTP depending on the different synaptic inputs to corticospinal neurons (CSNs), which relate to posterior-to-anterior (PA) or anterior-to-posterior (AP) currents induced by TMS (PA or AP inputs, respectively). However, the effects of long-term depression (LTD)-inducing PAS with an ISI of approximately 10 ms (PASLTD) on motor learning and its dependency on current direction have not yet been tested.ObjectiveTo investigate whether, and how, PASLTD affects distinct types of motor learning.MethodsEighteen healthy volunteers participated. We adopted the standard PAS using suprathreshold TMS with the target muscle relaxed, as well as subthreshold PAS during voluntary contraction, which was suggested to selectively recruit PA or AP inputs depending on the orientation of the TMS coil. We examined the effects of suprathreshold and subthreshold PASLTD on the performance of model-free and model-based learning, as well as the corticospinal excitability, indexed as the amplitudes of motor evoked potentials (MEPs).ResultsPASLTD inhibited model-free learning and MEPs only when subthreshold AP currents were applied. The PASLTD protocols tested here showed no effects on model-based learning.ConclusionsPASLTD affected model-free learning, presumably by modulating CSN excitability changes, rather than PA inputs, which are thought to be related to model-free learning. 相似文献
3.
《Clinical neurophysiology》2021,132(6):1367-1379
ObjectiveWe examined the effects of caffeine, time of day, and alertness fluctuation on plasticity effects after transcranial alternating current stimulation (tACS) or 25 ms paired associative stimulation (PAS25) in caffeine-naïve and caffeine-adapted subjects.MethodsIn two randomised, double-blinded, cross-over or placebo-controlled (caffeine) studies, we measured sixty subjects in eight sessions (n = 30, Male: Female = 1:1 in each study).ResultsWe found caffeine increased motor cortex excitability in caffeine naïve subjects. The aftereffects in caffeine naïve subjects were enhanced and prolonged when combined with PAS 25. Caffeine also increased alertness and the motor evoked potentials (MEPs) were reduced under light deprivation in caffeine consumers both with and without caffeine. In caffeine consumers, the time of day had no effect on tACS-induced plasticity.ConclusionsWe conclude that caffeine should be avoided or controlled as confounding factor for brain stimulation protocols. It is also important to keep the brightness constant in all sessions and study groups should not be mixed with caffeine-naïve and caffeine consuming participants.SignificanceCaffeine is one of the confounding factors in the plasticity induction studies and it induces different excitability effects in caffeine-naïve and caffeine-adapted subjects.This study was registered in the ClinicalTrials.gov with these registration IDs:1) NCT03720665 https://clinicaltrials.gov/ct2/results?cond=NCT03720665&term=&cntry=&state=&city=&dist=2) NCT04011670 https://clinicaltrials.gov/ct2/results?cond=&term=NCT04011670&cntry=&state=&city=&dist= 相似文献
4.
《Clinical neurophysiology》2020,131(10):2402-2409
ObjectiveSub-motor threshold 5 Hz repetitive paired associative stimulation (5 Hz-rPAS25ms) produces a long-lasting increase in corticospinal excitability. Assuming a spike-timing dependent plasticity-like (STDP-like) mechanism, we hypothesized that 5 Hz-rPAS at a shorter inter-stimulus interval (ISI) of 15 ms (5 Hz-rPAS15ms) would exert a lasting inhibitory effect on corticospinal excitability.Methods20 healthy volunteers received two minutes of 5 Hz-rPAS15ms. Transcranial magnetic stimulation (TMS) was applied over the motor hotspot of the right abductor pollicis brevis muscle at 90% active motor threshold. Sub-motor threshold peripheral electrical stimulation was given to the left median nerve 15 ms before each TMS pulse. We assessed changes in mean amplitude of the unconditioned motor evoked potential (MEP), short-latency intracortical inhibition (SICI), intracortical facilitation (ICF), short-latency afferent inhibition (SAI), long-latency afferent inhibition (LAI), and cortical silent period (CSP) before and for 60 minutes after 5-Hz rPAS15ms.ResultsSubthreshold 5-Hz rPAS15ms produced a 20–40% decrease in mean MEP amplitude along with an attenuation in SAI, lasting at least 60 minutes. A follow-up experiment revealed that MEP facilitation was spatially restricted to the target muscle.ConclusionsSubthreshold 5-Hz rPAS15ms effectively suppresses corticospinal excitability. Together with the facilitatory effects of subthreshold 5-Hz rPAS25ms (Quartarone et al., J Physiol 2006;575:657–670), the results show that sub-motor threshold 5-Hz rPAS induces STDP-like bidirectional plasticity in the motor cortex.SignificanceThe results of the present study provide a new short-time paradigm of long term depression (LTD) induction in human sensory-motor cortex. 相似文献
5.
Hatice Kumru Sergiu Albu John Rothwell Daniel Leon Cecilia Flores Eloy Opisso Josep Maria Tormos Josep Valls-Sole 《Clinical neurophysiology》2017,128(10):2043-2047
Objective
Repetitive application of peripheral electrical stimuli paired with transcranial magnetic stimulation (rTMS) of M1 cortex at low frequency, known as paired associative stimulation (PAS), is an effective method to induce motor cortex plasticity in humans. Here we investigated the effects of repetitive peripheral magnetic stimulation (rPMS) combined with low frequency rTMS (‘magnetic-PAS’) on intracortical and corticospinal excitability and whether those changes were widespread or circumscribed to the cortical area controlling the stimulated muscle.Methods
Eleven healthy subjects underwent three 10 min stimulation sessions: 10 Hz rPMS alone, applied in trains of 5 stimuli every 10 s (60 trains) on the extensor carpi radialis (ECR) muscle; rTMS alone at an intensity 120% of ECR threshold, applied over motor cortex of ECR and at a frequency of 0.1 Hz (60 stimuli) and magnetic PAS, i.e., paired rPMS and rTMS. We recorded motor evoked potentials (MEPs) from ECR and first dorsal interosseous (FDI) muscles. We measured resting motor threshold, motor evoked potentials (MEP) amplitude at 120% of RMT, short intracortical inhibition (SICI) at interstimulus interval (ISI) of 2 ms and intracortical facilitation (ICF) at an ISI of 15 ms before and immediately after each intervention.Results
Magnetic-PAS, but not rTMS or rPMS applied separately, increased MEP amplitude and reduced short intracortical inhibition in ECR but not in FDI muscle.Conclusion
Magnetic-PAS can increase corticospinal excitability and reduce intracortical inhibition. The effects may be specific for the area of cortical representation of the stimulated muscle.Significance
Application of magnetic-PAS might be relevant for motor rehabilitation. 相似文献6.
Objective
To examine the effects of theta burst stimulation (TBS) and paired associative stimulation (PAS) on excitability in the human motor cortex.Methods
Sixteen healthy young participants received intermittent TBS (iTBS) or PAS to the primary motor cortex on two testing occasions, at least a week apart. Ten of the participants also received iTBS or PAS after conditioning with continuous TBS on two other occasions. Cortical excitability was assessed with single TMS pulses to the motor cortex. Motor evoked potentials (MEPs) were measured from the first dorsal interosseus (FDI) muscle before TBS or PAS stimulation, and every 10 min for 60 min after stimulation. Changes in excitability were compared against the potential for motor learning, assessed with the rotor pursuit task.Results
After the PAS protocol MEP amplitudes were significantly increased. This increase was greater than after intermittent TBS, which did not change MEPs significantly. Conditioning with continuous TBS showed no significant effect. Participants’ responses were not correlated across protocols and were not correlated with rotor pursuit learning.Conclusions
PAS was the only protocol which induced significant increases in MEP amplitude.Significance
PAS is robust in inducing excitatory cortical change. This makes it a suitable protocol for testing plasticity in healthy and patient groups. 相似文献7.
Input from primary somatosensory cortex (S1) to primary motor cortex (M1) is important for high-level motor performance, motor skill learning and motor recovery after brain lesion. This study tested the effects of manipulating S1 excitability with paired associative transcranial stimulation (S1-PAS) on M1 excitability. Given the important role of S1 in sensorimotor integration, we hypothesized that changes in S1 excitability would be directly paralleled by changes in M1 excitability. We applied two established protocols (S1-PAS(LTP) and S1-PAS(LTD) ) to the left S1 to induce long-term potentiation (LTP)-like or long-term depression (LTD)-like plasticity. S1 excitability was assessed by the early cortical components (N20-P25) of the median nerve somatosensory-evoked potential. M1 excitability was assessed by motor-evoked potential amplitude and short-interval intracortical inhibition. Effects of S1-PAS(LTP) were compared with those of a PAS(LTP) protocol targeting the left M1 (M1-PAS(LTP) ). S1-PAS(LTP) and S1-PAS(LTD) did not result in significant modifications of S1 or M1 excitability at the group level due to substantial interindividual variability. The individual S1-PAS-induced changes in S1 and M1 excitability showed no correlation. Furthermore, the individual changes in S1 and M1 excitability induced by S1-PAS(LTP) did not correlate with changes in M1 excitability induced by M1-PAS(LTP) . This demonstrates that the effects of S1-PAS in S1 are variable across individuals and, within a given individual, unrelated to those induced by S1-PAS or M1-PAS in M1. Potentially, this extends the opportunities of therapeutic PAS applications because M1-PAS 'non-responders' may well respond to S1-PAS. 相似文献
8.
Ming‐Kuei Lu Barbara Bliem Patrick Jung Noritoshi Arai Chon‐Haw Tsai Ulf Ziemann 《Human brain mapping》2009,30(11):3645-3656
Paired associative transcranial magnetic stimulation (PAS) has been shown to induce long‐term potentiation (LTP)‐like or long‐term depression (LTD)‐like change in excitability of human primary motor cortex (M1), as probed by motor evoked potential (MEP) amplitude. In contrast, little is known about PAS effects on volitional motor cortical activity. In 10 healthy subjects, movement related cortical potentials (MRCP) were recorded to index volitional motor cortical activity during preparation of simple thumb abduction (prime mover: abductor pollicis brevis, APB) or wrist extension movements (prime mover: extensor carpi radialis, ECR). PASLTP increased, PASLTD decreased, and PAScontrol did not change MEPAPB, while MEPECR, not targeted by PAS, remained unchanged in all PAS conditions. PASLTP decreased MRCP negativity during the late Bereitschaftspotential (?500 to 0 ms before movement onset), only in the APB task, and predominantly over central scalp electrodes contralateral to the thumb movements. This effect correlated negatively with the PASLTP induced increase in MEPAPB. PASLTD and PAScontrol did not affect MRCP amplitude. Findings indicate a specific interference of PAS with preparatory volitional motor cortical activity, suggestive of a net result caused by increased M1 excitability and disrupted effective connectivity between premotor areas and M1. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
9.
ObjectiveTo investigate the effects of paired associated stimulation (PAS) with different stimulation position on motor cortex excitability and upper limb motor function in patients with cerebral infarction.MethodA total of 120 volunteers with cerebral infarction were randomly divided into four groups. Based on conventional rehabilitation treatment, the PAS stimulation group was given the corresponding position of PAS treatment once a day for 28 consecutive days. The MEP amplitude and RMT of both hemispheres were assessed before and after treatment, and a simple upper limb Function Examination Scale (STEF) score, simplified upper limb Fugl–Meyer score (FMA), and improved Barthel Index (MBI) were used to assess upper limb motor function in the four groups.ResultsFollowing PAS, the MEP amplitude decreased, and the RMT of abductor pollicis brevis (APB) increased on the contralesional side, while the MEP amplitude increased and the RMT of APB decreased on the ipsilesional side. After 28 consecutive days the scores of STEF, FMA, and MBI in the bilateral stimulation group were significantly better than those in the ipsilesional stimulation group and the contralesional stimulation group, but there was no significant difference in the scores of STEF, FMA, and MBI between the ipsilesional stimulation group and the contralesional stimulation group.ConclusionThe excitability of the motor cortex can be changed when the contralesional side or the ipsilesional side was given the corresponding PAS stimulation, while the bilateral PAS stimulation can more easily cause a change of excitability of the motor cortex, resulting in better recovery of the upper limb function. 相似文献
10.
Long-term potentiation (LTP) and long-term depression (LTD) underlie most models of learning and memory, but neural activity would grow or shrink in an uncontrolled manner, if not guarded by stabilizing mechanisms. The Bienenstock-Cooper-Munro (BCM) rule proposes a sliding threshold for LTP/LTD induction: LTP induction becomes more difficult if neural activity was high previously. Here we tested if this form of homeostatic plasticity applies to the human motor cortex (M1) in vivo by examining the interactions between two consecutive sessions of paired associative stimulation (PAS). PAS consisted of repeated pairs of electrical stimulation of the right median nerve followed by transcranial magnetic stimulation of the left M1. The first PAS session employed an interstimulus interval equalling the individual N20-latency of the median nerve somatosensory-evoked cortical potential plus 2 ms, N20-latency minus 5 ms, or a random alternation between these intervals, to induce an LTP-like increase in motor-evoked potential (MEP) amplitudes in the right abductor pollicis brevis muscle (PAS(LTP)), an LTD-like decrease (PAS(LTD)), or no change (PAS(Control)), respectively. The second PAS session 30 min later was always PAS(LTP). It induced an moderate LTP-like effect if conditioned by PAS(Control), which increased if conditioned by PAS(LTD), but decreased if conditioned by PAS(LTP). Effects on MEP amplitude induced by the second PAS session exhibited a negative linear correlation with those in the first PAS session. Because the two PAS sessions activate identical neuronal circuits, we conclude that 'homosynaptic-like' homeostatic mechanisms in accord with the BCM rule contribute to regulating plasticity in human M1. 相似文献
11.
Introduction
In Alzheimer's disease (AD), transcranial magnetic stimulation (TMS) studies have been limited to test motor cortical excitability. The aim of this study was to investigate the inhibitory circuits of the motor cortex and to relate these to measures of cognitive function in AD patients. Results were compared with those of a control group of healthy subjects matched for age, sex and education.Patients and methods
Forty-five AD patients and 37 healthy volunteers were included in the study. Each participant received a neurological evaluation, Mini-Mental State Examination (MMSE), and Clinical Dementia Rating (CDR). Neurophysiological evaluations included resting and active motor threshold (rMT and aMT), motor evoked potential (MEP), cortical silent period (CSP), and transcallosal inhibition (TI).Results
AD patients showed significantly reduced rMT, aMT and shorter MEP onset latency; in addition there was a prolongation of both CSP and TI. There was a significant positive correlation between the MMSE and CDR, on the one hand, and aMT and rMT, on the other hand, whereas the correlation was negative with CSP and TI durations.Conclusion
AD is associated with hyperexcitability of the motor cortex, which supports the hypothesis that changes in GABAb and glutamate function are important factors in cognitive impairment. 相似文献12.
Mar Cortes Gary W. Thickbroom Josep Valls-Sole Alvaro Pascual-Leone Dylan J. Edwards 《Clinical neurophysiology》2011,122(11):2254-2259
Objective
Repetitive, paired peripheral and transcranial stimulation targeting the cerebral cortex can increase cortical excitability, outlasting the stimulation period. It is unknown whether paired stimulation specifically targeting the spinal cord can modulate spinal excitability. We tested whether the H-reflex facilitation from a sub-threshold conditioning TMS pulse could modulate spinal excitability if delivered repetitively.Method
In 13 healthy subjects, we delivered single-pulse TMS (80% RMT) for the right soleus muscle, 20 ms prior to an electrical peripheral nerve stimulus delivered over the posterior tibial nerve on the same side at 0.1 Hz during 15 min.Results
PNS alone evoked an H-reflex of 0.25 mV ± 0.06 SEM, while pairing of TMS and PNS facilitated the H-reflex to 0.7 ± 0.11 mV. TMS–PNS pairs delivered at 0.1 Hz for 15 min progressively increased in the evoked response to ∼130% (r2 = 0.97) of the starting amplitude (normalized to 1st min). Post-intervention, H-reflex threshold decreased (pre = 12.9 ± 1.7 mA; post = 11.6 ± 1.6 mA; p = 0.04), as did the stimulus intensity at maximum H-reflex amplitude (pre = 23.5 ± 02.8 mA; post = 21.6 ± 2.6 mA; p = 0.03), and recruitment curve width (pre = 11.6 ± 1.5 mA; post = 10.93 ± 1.4 mA; p = 0.03). No such changes were observed with intervention of PNS or TMS alone.Conclusion
Paired stimulation targeting spinal facilitatory interactions, when applied repetitively, can increase spinal excitability during and after the intervention.Significance
Spinal associative stimulation may have potential for neuromodulation in spinal cord injury patients. 相似文献13.
Orlando B.C. Swayne James T.H. Teo Richard J. Greenwood John C. Rothwell 《Clinical neurophysiology》2009,120(8):1610-1615
ObjectiveIntermittent theta burst stimulation (iTBS) is increasingly widely used as a means of facilitating corticospinal excitability in the human primary motor cortex. This form of facilitatory plasticity within the stimulated cortex may occur by induction of long term potentiation (LTP). In animal models, agonists of nicotinic acetylcholine receptors have been shown to modulate or induce LTP; we thus sought to test whether nicotine may modulate the effects of iTBS on corticospinal excitability in humans.MethodsA double-blind placebo-controlled cross-over design study was conducted with 10 healthy subjects. iTBS was delivered 60 min after subjects took either 4 mg nicotine or placebo lozenges, and motor-evoked potentials (MEPs) were then recorded for 40 min after the end of stimulation.ResultsIn the placebo arm, iTBS produced an increase in the amplitudes of MEPs which lasted for 5 min. In the nicotine arm, iTBS produced a more pronounced facilitation of MEPs that was still present at 40 min. In a control experiment, nicotine alone had no effect on MEP amplitudes when given in the absence of iTBS.ConclusionsThese data indicate that the effects of iTBS can be enhanced and prolonged by nicotine.SignificanceThese results are consistent with animal models demonstrating nicotinic modulation of facilitatory plasticity, and will be of interest to investigators seeking to enhance artificially induced changes in cortical excitability. 相似文献
14.
Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. 总被引:13,自引:0,他引:13
OBJECTIVE: Repetitive transcranial magnetic stimulation (rTMS) is able to modulate the corticospinal excitability and the effects appear to last beyond the duration of the rTMS itself. Different studies, employing different rTMS parameters, report different modulation of corticospinal excitability ranging from inhibition to facilitation. Intraindividual variability of these effects and their reproducibility are unclear. METHODS: We examined the modulatory effects of rTMS to the motor cortex at various frequencies (1, 10, 20 Hz) and at different time-points in twenty healthy volunteers. RESULTS: We observed significant inhibition of MEPs following 1 Hz rTMS and significant facilitation of MEPs following 20 Hz rTMS for both day1 and day 2. Interestingly, at 1 Hz and 20 Hz rTMS, the modulatory effect produced by rTMS was greater on day 2. However, there was no significant change in corticospinal excitability following 10 Hz rTMS neither on day 1 nor day 2. CONCLUSION: Our findings raise questions as to how stimulation parameters should be determined when conducting studies applying rTMS on multiple days, and in particular, studies exploring rTMS as a treatment modality in neuropsychiatric disorders. 相似文献
15.
Modification of cortical excitability induced by gabapentin: a study by transcranial magnetic stimulation 总被引:4,自引:0,他引:4
V. Rizzo A. Quartarone S. Bagnato F. Battaglia G. Majorana P. Girlanda 《Neurological sciences》2001,22(3):229-232
Transcranial magnetic stimulation (TMS) was employed before and after a single dose of gabapentin to evaluate how this drug
affects the activity of excitatory and inhibitory circuits within the motor cortex. Eleven healthy volunteers were studied.
For the evaluation of cortical excitability, the following parameters were taken into account: resting and active motor threshold
(RMT, AMT); cortical silent period (CSP); and intracortical inhibition (ICI) and facilitation (ICF). Peripheral silent period
(PSP) was also detected. All parameters were measured before and 3 and 24 hours after 800 mg gabapentin was administered in
a single oral dose. Gabapentin deepened the ICI and suppressed the ICF at 3 h but not at 5 h after dosing. We conclude that,
in the normal human brain, gabapentin may act on intracortical excitability by shifting the balance towards less excitation
and more inhibition.
Received: 30 March 2001 / Accepted in revised form: 17 May 2001 相似文献
16.
A. Suppa A. Quartarone H. Siebner R. Chen V. Di Lazzaro P. Del Giudice Walter Paulus J.C. Rothwell U. Ziemann J. Classen 《Clinical neurophysiology》2017,128(11):2140-2164
The original protocol of Paired Associative Stimulation (PAS) in humans implies repetitive cortical and peripheral nerve stimuli, delivered at specific inter-stimulus intervals, able to elicit non-invasively long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity in the human motor cortex. PAS has been designed to drive cortical LTP/LTD according to the Hebbian rule of associative plasticity. Over the last two decades, a growing number of researchers have increasingly used the PAS technique to assess cortical associative plasticity in healthy humans and in patients with movement disorders and other neuropsychiatric diseases. The present review covers the physiology, pharmacology, pathology and motor effects of PAS. Further sections of the review focus on new protocols of “modified PAS” and possible future application of PAS in neuromorphic circuits designed for brain-computer interface. 相似文献
17.
The aim of this study was to verify the short-term reliability of transcranial magnetic stimulation (TMS) parameters for a damaged stump muscle in upper-limb amputees (n = 6). The motor threshold, response latency and map center of gravity in the mediolateral plane showed good reliability, whereas the map volume measure was less stable. The stability of most TMS measures across time supports the use of TMS in studying cortical plasticity in amputees. 相似文献
18.
Oberman L Eldaief M Fecteau S Ifert-Miller F Tormos JM Pascual-Leone A 《The European journal of neuroscience》2012,36(6):2782-2788
Most candidate genes and genetic abnormalities linked to autism spectrum disorders (ASD) are thought to play a role in developmental and experience-dependent plasticity. As a possible index of plasticity, we assessed the modulation of motor corticospinal excitability in individuals with Asperger's syndrome (AS) using transcranial magnetic stimulation (TMS). We measured the modulatory effects of theta-burst stimulation (TBS) on motor evoked potentials (MEPs) induced by single-pulse TMS in individuals with AS as compared with age-, gender- and IQ-matched neurotypical controls. The effect of TBS lasted significantly longer in the AS group. The duration of the TBS-induced modulation alone enabled the reliable classification of a second study cohort of subjects as AS or neurotypical. The alteration in the modulation of corticospinal excitability in AS is thought to reflect aberrant mechanisms of plasticity, and might provide a valuable future diagnostic biomarker for the disease and ultimately offer a target for novel therapeutic interventions. 相似文献
19.
Paired-associative stimulation can modulate muscle fatigue induced motor cortex excitability changes
Milanović S Filipović SR Blesić S Ilić TV Dhanasekaran S Ljubisavljević M 《Behavioural brain research》2011,223(1):30-35
The aim of this study was to examine whether the changes of the motor cortex excitability induced by muscle fatigue could be affected by prior or subsequent intervention protocol supposed to induce opposing excitability changes. For this purpose we used paired associative stimulation (PAS) method, where peripheral nerve stimuli were associated with transcranial magnetic stimulation (TMS) of the motor cortex at a fixed interstimulus interval of 25 ms. The PAS protocol used is known to produce a long lasting, long-term potentiation (LTP) like change of cortical plasticity manifested by significant increase in motor evoked potentials (MEPs) amplitude. In this study, we confirmed significant MEP size reduction following fatigue, which had been already reported in the literature. When PAS was applied either immediately before or after muscle fatigue protocol, the excitability changes were largely occluded and MEP sizes remained close to baseline levels. However, in spite of the effects on cortical excitability, conditioning with PAS did not cause any change in target fatigue measure, the endurance point, which remained the same as when fatiguing protocol was applied alone. The present results demonstrate that fatigue-related changes in cortical excitability can be modulated by either prior or subsequent excitability promoting activity. They also suggest that muscle fatigue associated changes in motor cortical excitability probably represent non-specific activity-related plasticity, rather than a direct expression of the so-called central fatigue. 相似文献
20.
Similar effect of intermittent theta burst and sham stimulation on corticospinal excitability: A 5‐day repeated sessions study 下载免费PDF全文
Ruben Perellón‐Alfonso Magdalena Kralik Indre Pileckyte Matic Princic Jurij Bon Caspar Matzhold Benjamin Fischer Petra Šlahorová Zvezdan Pirtošek John Rothwell Maja Kojovic 《The European journal of neuroscience》2018,48(4):1990-2000
Despite accumulating evidence of inter and intraindividual variability in response to theta burst stimulation, it is widely believed that in therapeutic applications, repeated sessions can have a “build‐up” effect that increases the response over and above that seen in a single session. However, strong evidence for this is lacking. Therefore, we examined whether daily administration of intermittent theta burst stimulation (iTBS) over the primary motor cortex induces cumulative changes in transcranial magnetic stimulation measures of cortical excitability, above the changes induced by sham stimulation. Over five consecutive days, 20 healthy participants received either active iTBS or sham stimulation. Each day, baseline measures of cortical excitability were assessed before and up to 30 min after the intervention. There was no significant difference in the rate of response between iTBS and sham stimulation on any of the 5 days. There was no iTBS specific cumulative increase of corticospinal excitability. The likelihood that an individual would remain a responder from day‐to‐day was low in both groups, implying high within‐subject variability of both active and sham iTBS after‐effects. In contrast, we found a high within‐subject repeatability of resting and active motor threshold, and baseline motor‐evoked potential amplitude. In summary, sham stimulation has similar effect to active iTBS on corticospinal excitability, even when applied repeatedly for 5 days. Our results might be relevant to research and clinical applications of theta burst stimulation protocols. 相似文献