首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carnosol, a naturally occurring phenolic diterpene found in rosemary, has been reported to exhibit antioxidant, anticancer and hepatoprotective effects. In the present study, the antiplatelet activity of carnosol was investigated. Carnosol concentration-dependently inhibited washed rabbit platelet aggregation induced by collagen and arachidonic acid (AA), with IC(50) values of 5.5+/-0.3 and 42.5+/-0.9 microM, respectively, while failed to inhibit that induced by, ADP and thrombin. Consist with inhibition of collagen-induced platelet aggregation, carnosol revealed blocking of collagen-mediated cytosolic calcium mobilization, serotonin secretion and arachidonic acid liberation. However, contrary to the inhibition of AA-induced platelet aggregation, carnosol has no effect on AA-mediated TXA(2) and PGD(2) formation, indicating carnosol may directly inhibit TXA(2) receptor, which was supported by the finding that carnosol potently inhibited U46619 (a TXA(2) mimic)-induced platelet aggregation, with an IC(50) value of 22.0+/-2.5 microM. In addition, the U46619-induced concentration-response curve was downward shifted by the application of carnosol at concentrations of 22 and 50 microM, indicating a typical non-competitive antagonism on TXA(2) receptor. Taken together, these results suggest that antiplatelet activity of carnosol may be mediated by the inhibition of TXA(2) receptor and cytosolic calcium mobilization, and carnosol has a potential to be developed as a novel-antiplatelet agent.  相似文献   

2.
nAChR介导茶多酚EGCG的神经保护作用   总被引:4,自引:3,他引:4  
田建英  杨浩 《中国药理学通报》2007,23(11):1494-1496
目的探讨茶多酚EGCG(Epigallocatechin-3-gallate,表没食子儿茶素没食子酸酯)的神经保护作用机制。方法采用MTT比色分析,蛋白定量以及Dot Blot测定,观察Aβ1-40诱导缺损后,EGCG对α4、α7nAChR亚单位蛋白水平的改变。结果EGCG可抑制Aβ1-40诱导α4、α7nAChR亚单位蛋白水平下降和各类神经细胞活性的降低。结论茶多酚EGCG可通过上调α4、α7nAChR亚单位水平,抑制Aβ的神经毒性发挥神经保护作用,有可能成为防治记忆减退的有效途径。  相似文献   

3.
We have confirmed that theanine, a major amino acid in green tea, enhances the antitumor activity of doxorubicin (DOX) without an increase in DOX-induced side effects. We believe that the action of theanine is due to decreases in glutamate uptake via inhibition of the glutamate transporter, intracellular glutathione (GSH) synthesis, GS-DOX conjugate level, and subsequent extracellular transport of GS-DOX by the MRP5/GS-X pump. To increase the clinical usefulness of theanine, we examined its effects on the antitumor activity of cisplatin and irinotecan (CPT-11), which a known to be transported by the efflux system related to MRP. Cisplatin decreased tumor volume in M5076 tumor-bearing mice. Furthermore, the combination of theanine with cisplatin increased the decrease in tumor volume as compared with the cisplatin-alone group. Tumor volume in the CPT-11-alone group did not show a decrease, but the combination of theanine with CPT-11 significantly reduced tumor volume. The concentration of cisplatin in the tumor was significantly increased by combination with theanine, and thus we assume that it correlated with the enhancement on the antitumor activity of theanine. On the other hand, changes in drug concentrations with theanine were not observed in normal tissues, but rather it is indicated that theanine tends to reduce their concentrations. Therefore theanine enhances the antitumor activity not only of DOX but also of cisplatin or CPT-11.  相似文献   

4.
Effects of green tea catechins on membrane fluidity.   总被引:5,自引:0,他引:5  
H Tsuchiya 《Pharmacology》1999,59(1):34-44
Catechins originating from green tea have been used in plaque inhibition for caries prevention and treatment for liver damage because of their antibacterial activity against cariogenic bacteria and protective activity on hepatic cells. The effects of catechins on membrane fluidity were studied by a fluorescence polarization method using liposomes prepared with dipalmitoylphosphatidylcholine and dioleoylphosphatidylcholine to assess their pharmacological mechanism at micromol/l levels found in human body fluids after clinical application. All eight catechins tested, ranging from 1 to 1,000 micromol/l, significantly reduced membrane fluidity in both hydrophilic and hydrophobic regions of lipid bilayers. Catechin gallate esters were superior in fluidity reduction to the corresponding nonesters. The fluidity-reducing degree was different between the cis and trans forms, suggesting the stereospecific activity of catechins. A reference antiplaque agent, chlorhexidine, similarly reduced membrane fluidity at the antibacterial concentration. (+)-Catechin (250 micromol/l) and (-)-epigallocatechin gallate (2.5 micromol/l) significantly prevented the membrane fluidization induced by hepatotoxic chloroform. These results indicate that the reduction in membrane fluidity is responsible for the antiplaque and hepatoprotective effects of green tea catechins.  相似文献   

5.
Geranylgeraniol is a natural isoprenoid with anti-inflammatory properties extracted from the Pterodon pubescens Benth. fruit oil (PpO). In this work, the antiplatelet effect of both PpO and geranylgeraniol is investigated. ADP-, thrombin- and arachidonic acid (AA)-induced aggregation in human and rabbit platelets showed a prime involvement of PpO and geranylgeraniol in the arachidonic acid cascade. The lack of any significant inhibition of platelet aggregation induced by U-46 619 and thrombin, associated with PpO and geranylgeraniol suppression of prostaglandin E(2) and thromboxane A(2) formation demonstrate, for the first time, the involvement of geranylgeraniol in the AA metabolisation by inhibiting the cyclooxygenase enzyme.  相似文献   

6.
Inhibition of adenovirus infection and adenain by green tea catechins   总被引:6,自引:0,他引:6  
Green tea catechins have been reported to inhibit proteases involved in cancer metastasis and infection by influenza virus and HIV. To date there are no effective anti-adenoviral therapies. Consequently, we studied the effect of green tea catechins, and particularly the predominant component, epigallocatechin-3-gallate (EGCG), on adenovirus infection and the viral protease adenain, in cell culture. Adding EGCG (100 microM) to the medium of infected cells reduced virus yield by two orders of magnitude, giving and IC(50) of 25 microM and a therapeutic index of 22 in Hep2 cells. The agent was the most effective when added to the cells during the transition from the early to the late phase of viral infection suggesting that EGCG inhibits one or more late steps in virus infection. One of these steps appears to be virus assembly because the titer of infectious virus and the production of physical particles was much more affected than the synthesis of virus proteins. Another step might be the maturation cleavages carried out by adenain. Of the four catechins tested on adenain, EGCG was the most inhibitory with an IC(50) of 109 microM, compared with an IC(50) of 714 microM for PCMB, a standard cysteine protease inhibitor. EGCG and different green teas inactivated purified adenovirions with IC(50) of 250 and 245-3095, respectively. We conclude that the anti-adenoviral activity of EGCG manifests itself through several mechanisms, both outside and inside the cell, but at effective drug concentrations well above that reported in the serum of green tea drinkers.  相似文献   

7.
Metabolism of green tea catechins: an overview   总被引:1,自引:0,他引:1  
Green tea is one of the most popular beverages worldwide. Its major components include (-)-epicatechin ((-)-EC), (-)-epicatechin-3-gallate (ECG) (-)-epigallocatechin (EGC) and (-)-epigallocatechin-3-gallate (EGCG). It has demonstrated strong antioxidative, anti-inflammatory and anti-cancerous properties and attracted a great deal of interest over last several years. However, there is some discrepancy between the results from human pidemiological studies and cultured cell and animal models. Two reasons for its limited in vivo activities have been considered: metabolism and bioavailability. Recent studies have demonstrated that green tea catechins undergo methylation, glucuronidation and sulfation in in vitro systems and in animals and in humans. It has been also found that efflux transporters Pgp, MRP1 and MRP2 play roles in the absorption and excretion of green tea catechins. Several processes including intestinal metabolism, microbial metabolism, hepatic metabolism and chemical degradation have been found to be involved in the fate of green tea, and to be responsible for its low availability in animals, and most likely also in humans. Pharmacokinetics, absorption, distribution, drug metabolism and excretion properties of green tea provide a better understanding for its in vivo activities. In this article, drug metabolism and microbial metabolism of green tea catechins in in vitro systems and in animals and in humans will be reviewed. It also covers the factors affecting their biotransformation and bioavailability: drug-drug inhibitory and inductive interactions of phase I and phase II enzymes, inhibition of non-drug-metabolizing enzymes, transporters, chemical instability, epimerization and interindividual variability.  相似文献   

8.
We orally administered polyphenone-60 (P-60), green tea extract catechins, in the diet (0, 1.25 and 5%) to male rats for 2, 4 and 8 weeks initiated at 5 weeks old. It was found that a 5% dose to male rats for 2-8 weeks induced goiters and decreased weights of the body, testis and prostate gland. Endocrinologically, elevating plasma thyroid stimulating hormone (TSH), luteinizing hormone (LH) and testosterone levels and decreasing tri-iodothyronine (T(3)) and thyroxine (T(4)) levels were induced by this treatment. We also found that P-60 as a whole and some of its constituents exhibited inhibitory effects on human placental aromatase activity by in vitro assay. The concentration of P-60 that required producing 50% inhibition of the aromatase activity (IC(50) value) was 28 microg/ml. The IC(50) values of (-)-catechin gallate (Cg), (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCg) and (-)-gallocatechin gallate (GCg) were 5.5 x 10(-6), 1.0 x 10(-4), 6.0 x 10(-5) and 1.5 x 10(-5) M, respectively. (-)- Epicatechin gallate (ECg) at 1.0 x 10(-4) M produced 20% inhibition. (-)-Epicatechin (EC) and (+)-catechin (CT) exhibited no effects on aromatase activity. The endocrinological changes observed in vivo were in conformity with antithyroid effects and aromatase inhibition effects of P-60 and its constituents.  相似文献   

9.
The effects of green tea extract catechins on the rat thyroid were examined in a 13-week feeding study and subsequent 2-,4- and 8-week studies. Commercially available polyphenon-60 (P-60) which contains green tea extract catechins at 66.2% was used as a source of catechins. A basic diet containing different concentrations of P-60 was used for experiments. In the 13-week study, 10 rats of each sex were administered diets containing P-60 at 0 (control), 0.625, 1.25, 2.5 and 5.0%. Goiters were observed in the 13-week test. The mean thyroid weight of rats fed a diet containing 5.0% of P-60 (5.0% group) significantly increased to 444% of the control in males and to 304% of the control in females. Histological examinations of the thyroid of the 5.0% group revealed marked hypertrophy and/or hyperplasia of the follicles, some with depletion of colloid and some with rich colloid, and formation of a fibrous capsule. Slight hypertrophy of follicular cells was observed in male rats fed a diet containing 1.25% of P-60 (1.25% group) and female rats fed a diet containing 2.5% of P-60 (2.5% group). Degree and incidence of thyroid lesions were higher in males than in females in the 1.25, 2.5 and 5.0% groups. In the 2-8-week studies, five rats of each sex were given diets containing 0 (control) and 5.0% of P-60. In the 5.0% group, the mean thyroid weight in males significantly increased to 161% of the control as early as 2 weeks and increased to 357% of the control at 8 weeks. Histologically, these goiters were also associated with follicular cell hypertrophy/hyperplasia as in the 13-week study. The degree and incidence of thyroid lesions were higher in males than in females. These results indicate that dietary administration of the green tea extract catechins at high doses induced goiters in rats, and this may be due to antithyroid effects of catechins. In the 13-week study, the no-observed effect level (NOEL) of green tea extract catechins for F344 rats based on histological changes of the thyroid was considered to be 0.625% in males and 1.25% in females in the diet, respectively.  相似文献   

10.

BACKGROUND AND PURPOSE

Catechins, biologically active polyphenols in green tea, are known to have a protective effect against cardiovascular diseases. In this study, we investigated direct actions of green tea catechins on cardiac muscle function to explore their uses as potential drugs for cardiac muscle disease.

EXPERIMENTAL APPROACH

The effects of catechins were systematically investigated on the force-pCa relationship in skinned cardiac muscle fibres to determine their direct effects on cardiac myofilament contractility. The mechanisms of action of effective catechins were investigated using troponin exchange techniques, quartz crystal microbalance, nuclear magnetic resonance and a transgenic mouse model.

KEY RESULTS

(-)-Epicatechin-3-gallate (ECg) and (-)-epigallocatechin-3-gallate (EGCg), but not their stereoismers (-)-catechin-3-gallate and (-)-gallocatechin-3-gallate, decreased cardiac myofilament Ca2+ sensitivity probably through its interaction with cardiac troponin C. EGCg restored cardiac output in isolated working hearts by improving diastolic dysfunction caused by increased myofilament Ca2+ sensitivity in a mouse model of hypertrophic cardiomyopathy.

CONCLUSIONS AND IMPLICATIONS

The green tea catechins, ECg and EGCg, are Ca2+ desensitizers acting through binding to cardiac troponin C. These compounds might be useful compounds for the development of therapeutic agents to treat the hypertrophic cardiomyopathy caused by increased Ca2+ sensitivity of cardiac myofilaments.  相似文献   

11.
In the present investigation, we studied the modulating effects of several tea catechins and bioflavonoids on DNA methylation catalyzed by prokaryotic SssI DNA methyltransferase (DNMT) and human DNMT1. We found that each of the tea polyphenols [catechin, epicatechin, and (-)-epigallocatechin-3-O-gallate (EGCG)] and bioflavonoids (quercetin, fisetin, and myricetin) inhibited SssI DNMT- and DNMT1-mediated DNA methylation in a concentration-dependent manner. The IC(50) values for catechin, epicatechin, and various flavonoids ranged from 1.0 to 8.4 microM, but EGCG was a more potent inhibitor, with IC(50) values ranging from 0.21 to 0.47 microM. When epicatechin was used as a model inhibitor, kinetic analyses showed that this catechol-containing dietary polyphenol inhibited enzymatic DNA methylation in vitro largely by increasing the formation of S-adenosyl-L-homocysteine (a potent noncompetitive inhibitor of DNMTs) during the catechol-O-methyltransferase-mediated O-methylation of this dietary catechol. In comparison, the strong inhibitory effect of EGCG on DNMT-mediated DNA methylation was independent of its own methylation and was largely due to its direct inhibition of the DNMTs. This inhibition is strongly enhanced by Mg(2+). Computational modeling studies showed that the gallic acid moiety of EGCG plays a crucial role in its high-affinity, direct inhibitory interaction with the catalytic site of the human DNMT1, and its binding with the enzyme is stabilized by Mg(2+). The modeling data on the precise molecular mode of EGCG's inhibitory interaction with human DNMT1 agrees perfectly with our experimental finding.  相似文献   

12.
Neuroprotective effects of the green tea components theanine and catechins   总被引:6,自引:0,他引:6  
The neuroprotective effects of theanine and catechins contained in green tea are discussed. Although the death of cultured rat cortical neurons was induced by the application of glutamic acid, this neuronal death was suppressed with exposure to theanine. The death of hippocampal CA1 pyramidal neurons caused by transient forebrain ischemia in the gerbil was inhibited with the ventricular preadministration of theanine. The neuronal death of the hippocampal CA3 region by kainate was also prevented by the administration of theanine. Theanine has a higher binding capacity for the AMPA/kainate receptors than for NMDA receptors, although the binding capacity in all cases is markedly less than that of glutamic acid. The results of the present study suggest that the mechanism of the neuroprotective effect of theanine is related not only to the glutamate receptor but also to other mechanisms such as the glutamate transporter, although further studies are needed. One of the onset mechanisms for arteriosclerosis, a major factor in ischemic cerebrovascular disease, is probably the oxidative alteration of low-density lipoprotein (LDL) by active oxygen species. The oxidative alterations of LDL were shown to be prevented by tea catechins. Scavenging of *O(2)(-) was also exhibited by tea catechins. The neuroprotective effects of theanine and catechins contained in green tea are a focus of considerable attention, and further studies are warranted.  相似文献   

13.
Green tea extract was found to provide a strong protective effect against asbestos-induced injury of peritoneal macrophages and red blood cells in vitro. The main polyphenolic constituents of green tea extract, (-)-epicatechin gallate (ECG) and (-)-epigallocatechin gallate (EGCG), were also efficient in preventing injury of cells following exposure to asbestos fibers. The protective efficacies of EGCG and ECG expressed as IC50 values were, respectively, 10 microM and 12 microM if peritoneal macrophages were injured by chrysotile and 4 microM and 5 microM in the case of crocidolite-induced cell injury. Antiradical and chelating properties of ECG and EGCG were evaluated and it was concluded that the protective effect of catechins against asbestos-induced injury may be related to both scavenger properties towards to superoxide anion and the ability to chelate iron ions.  相似文献   

14.
Recently, there is a growing interest in the cardiovascular beneficial effects of green tea. Epidemiological and clinical studies have suggested that consumption of green tea is inversely associated with the risk of developing cardiovascular diseases. Catechins, the major flavonoid constituents of green tea, exert cardioprotective effects through diverse mechanisms that include reversal of endothelial dysfunctions, decreasing inflammatory biomarkers, and providing antioxidant, antiplatelet and antiproliferative effects. Moreover, dietary consumption of green tea catechins has beneficial effects on blood pressure and lipid parameters. This review will focus on discussing the latest research on the cardioprotective effects of green tea catechins and their underlying molecular mechanisms. Several recent patents pertinent to green tea and cardiovascular health will also be discussed. It is noteworthy that clinical studies involving green tea are fraught with multiple complexity and confounding factors. Therefore, a rigorous assessment of the effects of green tea catechins in well-controlled human trials will be required for better understanding of the effects of green tea in cardiovascular health.  相似文献   

15.
Antiviral effect of catechins in green tea on influenza virus   总被引:6,自引:0,他引:6  
Polyphenolic compound catechins ((-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG) and (-)-epigallocatechin (EGC)) from green tea were evaluated for their ability to inhibit influenza virus replication in cell culture and for potentially direct virucidal effect. Among the test compounds, the EGCG and ECG were found to be potent inhibitors of influenza virus replication in MDCK cell culture and this effect was observed in all influenza virus subtypes tested, including A/H1N1, A/H3N2 and B virus. The 50% effective inhibition concentration (EC50) of EGCG, ECG, and EGC for influenza A virus were 22-28, 22-40 and 309-318 microM, respectively. EGCG and ECG exhibited hemagglutination inhibition activity, EGCG being more effective. However, the sensitivity in hemagglutination inhibition was widely different among three different subtypes of influenza viruses tested. Quantitative RT-PCR analysis revealed that, at high concentration, EGCG and ECG also suppressed viral RNA synthesis in MDCK cells whereas EGC failed to show similar effect. Similarly, EGCG and ECG inhibited the neuraminidase activity more effectively than the EGC. The results show that the 3-galloyl group of catechin skeleton plays an important role on the observed antiviral activity, whereas the 5'-OH at the trihydroxy benzyl moiety at 2-position plays a minor role. The results, along with the HA type-specific effect, suggest that the antiviral effect of catechins on influenza virus is mediated not only by specific interaction with HA, but altering the physical properties of viral membrane.  相似文献   

16.
It has been reported that inhibition of fatty-acid synthase (FAS) is selectively cytotoxic to human cancer cells. Considerable interest has developed in identifying novel inhibitors of this enzyme complex. Our previous work showed that green tea (-)-epigallocatechin gallate can inhibit FAS in vitro. To elucidate the structure-activity relationship of the inhibitory effects of tea polyphenols, we investigated the inhibition kinetics of the major catechins and analogues. Ungallated catechins from green tea do not show obvious inhibition compared with gallated catechins. Another gallated catechin, (-)-epicatechin gallate, was also found as a potent inhibitor of FAS and its inhibition characteristics are similar to (-)-epigallocatechin gallate. Furthermore, the analogues of galloyl moiety without the catechin skeleton such as propyl gallate also showed obvious slow-binding inhibition, whereas the green tea ungallated catechin not. Atomic orbital energy analyses suggest that the positive charge is more distinctly distributed on the carbon atom of ester bond of galloyl moiety of gallate catechins, and that gallated forms are more susceptible for a nucleophilic attack than other catechins. Here we identify the galloyl moiety of green tea catechins as critical in the inactivation of the ketoacyl reductase activity of FAS for the first time.  相似文献   

17.
We have previously reported that green tea catechins displayed a potent antithrombotic effect by inhibition of platelet aggregation. In the present study, the antiplatelet and antithrombotic activities of epigallocatechin gallate (EGCG), the major catechin derived from green tea, were extensively investigated. EGCG inhibited arterial thrombus formation and U46619-, collagen-, and arachidonic acid (AA)-induced washed rabbit platelet aggregation in a concentration-dependent manner, with IC50 values of 61 +/- 3, 85 +/- 4, and 99 +/- 4 microM, respectively. In line with the inhibition of collagen-induced platelet aggregation, EGCG revealed blocking of the collagen-mediated phospholipase (PL) Cgamma2 and protein tyrosine phosphorylation, and it caused concentration-dependent decreases of cytosolic calcium mobilization, AA liberation, and serotonin secretion. In addition, the platelet aggregation, intracellular Ca2+ mobilization, and protein tyrosine phosphorylation induced by thapsigargin, a Ca2(+)-ATPase pump inhibitor, were completely blocked by EGCG. Contrary to the inhibition of AA-induced platelet aggregation, EGCG failed to inhibit cyclooxygenase and thromboxane (TX) A2 synthase activities, but it concentration-dependently elevated AA-mediated PGD2 formation. In contrast, epigallocatechin (EGC), a structural analogue of EGCG lacking a galloyl group in the 3' position, slightly inhibited collagen-stimulated cytosolic calcium mobilization, but failed to affect other signal transductions as did EGCG in activated platelets and arterial thrombus formation. These results suggest that antiplatelet activity of EGCG may be attributable to its modulation of multiple cellular targets, such as inhibitions of PLCgamma2, protein tyrosine phosphorylation and AA liberation, and elevation of cellular PGD2 levels, as well as maintaining Ca2(+)-ATPase activity, which may underlie its beneficial effect on the atherothrombotic diseases.  相似文献   

18.
The chemopreventive effects of curcumin and green tea catechins individually and in combination on 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis were studied in male Wister rats following 32 weeks of dietary treatment. The incidence, number and size of colorectal cancer were measured. Colorectal aberrant crypt foci (ACF) were analyzed by methylene blue staining. Proliferation indices and apoptotic indices were determined by PCNA immunostaining and TUNEL assay, respectively. The results showed that dietary curcumin, catechins and combination administration significantly inhibited the total number of ACF per rat. The combination treatment displayed the most potent inhibitory effect, while there was no difference of inhibition between curcumin and catechins-treated groups. The incidence of colorectal cancer in the treated groups was significantly lower than that of positive control group. Compared with the positive control group, the proliferation index was significantly decreased and the apoptotic index was significantly increased in all treatment groups, while the effect of the combination was the greatest among the treated groups. Our findings suggest that the combination of curcumin and catechins may produce a synergistic colon cancer-preventative effect that would be more potent than each of the compounds alone.  相似文献   

19.
1.?Green tea extract (GTE) and EGCG have previously shown to increase the uptake of MPP+ into Caco-2 cells. However, whether GTE and its derivatives interact with renal basolateral organic cation transporter 2 (Oct2) which plays a crucial role for cationic clearance remains unknown. Thus, this study assessed the potential of drug-green tea (GT) catechins and its derivatives interactions with rat Oct2 using renal cortical slices and S2 stably expressing rat Oct2 (S2rOct2).

2.?Both GTE and ECG inhibited MPP+ uptake in renal slices in a concentration-dependent manner (IC50?=?2.71?±?0.360?mg/ml and 0.87?±?0.151?mM), and this inhibitory effect was reversible. Inhibition of [3H]MPP+ transport in S2rOct2 by either GTE or ECG (IC50?=?1.90?±?0.087?mg/ml and 1.67?±?0.088?mM) was also observed.

3.?The weak and reversible interactions of GTE and ECG with rOct2 indicate that consumption of GT beverages could not interfere with cationic drugs secreted via renal OCT2 in humans. However, the rise of therapeutic use of GTE and ECG might have to take into account the significant possibility of adverse drug–green tea catechins interactions which could alter renal organic cation drug clearance.  相似文献   

20.
Progesterone induced rapid relaxation of KCl-contracted tail artery helical strips from rats. The effect was dose dependent, with an IC50 (inhibitory concentration which produces 50% of the maximal response) of 8.9 microM progesterone. The actions of progesterone were not blocked by bicuculline, indicating that in this tissue the non-genomic actions of progesterone were not mediated via a gamma-aminobutyric acid (GABA)-A receptor. Fura-2 was used to measure intracellular calcium levels ([Ca(2+)](i)) in isolated vascular smooth muscle cells (VSMC). Incubation of cultured VSMC for 15 min with progesterone (10 microM) resulted in an inhibition of the KCl-induced [Ca(2+)](i )increase. The whole-cell patch-clamp technique was used to examine Ca(2+)-channel currents in the membrane of isolated VSMC. Progesterone suppressed the L-type Ca(2+)-channel currents in cells held at a potential of -40 mV. The effects of progesterone were quickly reversed by washout in all three experimental protocols suggesting that these effects on vascular tissues are non-genomic. The correlation of the effects on all these preparations, their time course and reversibility suggested that the rapid relaxation of the rat tail artery induced by progesterone is mediated at least in part by inhibition of L-type calcium channels, leading to inhibition of calcium responses in the VSMC of this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号