首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Young adult Long-Evans female rats were subjected to intracerebroventricular injections of 150 microg 5,7-dihydroxytryptamine (5,7-DHT), 2 microg 192 IgG-saporin, or a combination of both neurotoxins. All rats were tested for olfactory recognition (short-term memory) using a task based on spontaneous exploration of odor sources. Compared with animals undergoing sham operations, 5,7-DHT reduced the concentration of serotonin by 60-80% in the frontoparietal cortex, hippocampus, striatum and the olfactory bulbs. After 192 IgG-saporin treatment, acetylcholine concentrations were reduced by approximately 40% in all these structures, except the striatum. Neither lesion induced a significant deficit in olfactory recognition. These data suggest that combined lesions of cholinergic and serotonergic neurons in the rat brain do not alter olfactory perception or olfactory short-term memory.  相似文献   

2.
Adult Long-Evans male rats sustained injections of 5,7-dihydroxytryptamine into the fimbria-fornix (2.5 microg/side) and the cingular bundle (1.5 microg/side) and/or to intraseptal injections of 192 IgG-saporin (0.4 microg/side) in order to deprive the hippocampus of its serotonergic and cholinergic innervations, respectively. Sham-operated rats were used as controls. The rats were tested for locomotor activity (postoperative days 18, 42 and 65), spontaneous T-maze alternation (days 20-29), beam-walking sensorimotor (days 34-38), water maze (days 53-64) and radial maze (days 80-133) performances. The cholinergic lesions, which decreased the hippocampal concentration of ACh by about 65%, induced nocturnal hyperlocomotion, reduced T-maze alternation, impaired reference-memory in the water maze and working-memory in the radial maze, but had no effect on beam-walking scores and working-memory in the water maze. The serotonergic lesions, which decreased the serotonergic innervation of the hippocampus by about 55%, failed to induce any behavioural deficit. In the group of rats given combined lesions, all deficits produced by the cholinergic lesions were observed, but the nocturnal hyperlocomotion and the working-memory deficits in the radial maze were attenuated significantly. These results suggest that attenuation of the serotonergic tone in the hippocampus may compensate for some dysfunctions subsequent to the loss of cholinergic hippocampal inputs. This observation is in close concordance with data showing that a reduction of the serotonergic tone, by pharmacological activation of somatodendritic 5-HT(1A) receptors on raphe neurons, attenuates the cognitive disturbances produced by the intrahippocampal infusion of the antimuscarinic drug, scopolamine. This work has been presented previously [Serotonin Club/Brain Research Bulletin conference, Serotonin: From Molecule to the Clinic (satellite to the Society for Neuroscience Meeting, New Orleans, USA, November 2-3, 2000)].  相似文献   

3.
Adult rats who have undergone neonatal 192 IgG-saporin induced lesions of forebrain acetylcholine (ACH) neurons are normal on many behavioral tasks. In this study we determined whether ectopic hippocampal ingrowths, a documented consequence of these neonatal cholinergic lesions, functionally compensate for ACH denervation in these rats. Neonatal rats underwent systemic 6-hydroxydopamine (6-OHDA) injections on postnatal days (PND) 1-3 to prevent the ingrowths, and/or intraventricular 192 IgG-saporin injections on PND 7. The 192 IgG-saporin profoundly reduced basal forebrain p75 neurotrophin receptor (p75(NTR)) immunoreactive (IR) neurons. The 6-OHDA treatment abolished hippocampal and cortical dopamine-beta-hydroxylase (DBH) IR terminals, indicating the absence of normal norepinephrine (NE) innervation. Ectopic DBH IR and p75(NTR) IR varicosities which occurred in the hippocampus of 192 IgG-saporin treated rats were also eliminated by 6-OHDA treatment. Behavioral testing in adulthood indicated no effect of the treatments on the Morris water maze. 192 IgG-saporin treatment caused perseveration during delayed spatial alternation (DSA) and increased working but not reference memory errors on the radial arm maze (RAM). The 6-OHDA plus 192 IgG-saporin treated rats did not differ from the 192 IgG-saporin only rats on any task. These results indicate that ectopic hippocampal NE ingrowths do not functionally compensate for neonatal ACH lesions. Neonatal forebrain ACH lesion impairs working memory on the RAM but the absence of an effect on DSA contraindicates a basic dysfunction of short term memory. Despite severe combined neonatal loss of forebrain ACH and NE innervation, behavior is remarkably intact.  相似文献   

4.
Depletion of the forebrain serotonergic system was found in previous studies to induced an increased excitability of the dentate gyrus (DG) granule cells and, when combined with a cholinergic deficiency, to impair spatial learning. We now compared the effects of general forebrain serotonergic lesions induced by intracerebroventricular injection of 5,7-dihydroxytryptamine (5,7-DHT), to those of a more restricted injection of 5,7-DHT into fornix-fimbria and cingulum, to eliminate hippocampal serotonergic innervation. Control and lesioned rats were injected with atropine and tested in the spatial learning water-maze task. Following the behavioral tests, rats were anesthetized and the responsiveness of the DG to perforant path (PP) stimulation was measured. To assess the lesions functionally, responses to application of the serotonin releasing drug fenfluramine (FFA) were measured. Finally, the reduction, in the hippocampus of serotonergic innervation was evaluated by [3H]imipramine binding. The effects of the lesions on the responsiveness to FFA confirmed that the ICV lesions were functionally more general than the FF lesions. [3H]Imipramine binding indicated that both lesions reduced the sertonergic innervation of the hippocampus significantly. Behaviorally, both lesioned groups were impaired in the water-maze. Electrophysiologically, in both DG excitability was higher than in controls and in both hyperexcitability was associated with an increase in feed-forward inhibition. The results suggest that the serotonergic innervation of the hippocampus proper is involved in cognitive functions associated with the hippocampus.  相似文献   

5.
Chang Q  Gold PE 《Hippocampus》2004,14(2):170-179
To lesion the cholinergic input to the hippocampus, rats received injections of 192 IgG-saporin into the medial septum/vertical limb of the diagonal band (MS/VDB). The lesions produced near-total loss of choline acetyltransferase (ChAT)-positive neurons in the MS/VDB. The loss was accompanied, however, by only partial decreases (to 40% of control levels) in acetylcholine (ACh) release in the hippocampus. Moreover, ACh release in the hippocampus increased when lesioned and control rats were tested on a spontaneous alternation task, indicating that there was significant residual cholinergic function in the hippocampus. The lesions were sufficient to impair spontaneous alternation scores. However, this impairment could be reversed by either systemic or intra-hippocampal injections of the indirect cholinergic agonist, physostigmine, providing additional evidence of residual and effective cholinergic functions in the hippocampus of lesioned rats. Moreover, systemic injections of physostigmine at doses that produced mild tremors in control rats led to more severe tremors in the lesioned rats, suggesting upregulation of cholinergic mechanisms after saporin lesions, likely in brain areas other than the hippocampus. Thus, these findings provide evidence for decreases in cholinergic input to the hippocampus accompanied by deficits on a spontaneous alternation tasks. The findings also provide evidence for considerable residual cholinergic input to the hippocampus after saporin lesions of the MS/VDB. Together, the results suggest that 192 IgG-saporin lesions of the MS/VDB, using methods often employed, do not fully remove septohippocampal cholinergic input to the hippocampus but are nonetheless sufficient to produce impairments on a task impaired by hippocampal lesions.  相似文献   

6.
Male Long-Evans rats received micro-injections of either (NMDA) in the medial septum/vertical diagonal band (MS/DB), 5,7-dihydroxytryptamine (5,7-DHT) in the fimbria/fornix and cingulate bundle or combined NMDA/5,7-DHT micro-injections. NMDA administration caused considerable damage to the MS and enlarged the lateral ventricles. It reduced the activity of choline acetyltransferase as well as the intensity of acetylcholinesterase staining in the hippocampus. 5,7-DHT selectively reduced the concentration of hippocampal serotonin. The rats were assessed for spatial memory in the Morris water maze and the radial arm maze (reference and working memory version). The 5,7-DHT-induced lesion of hippocampal serotonin had no effect by itself on either task. However, it augmented the reference memory impairment caused by the NMDA-induced lesion and delayed the recovery from NMDA-induced impairment of working memory on the radial maze. Combined damage of hippocampal cholinergic and serotonergic afferents did not severely affect spatial memory.  相似文献   

7.
In rats, nonspecific mechanical or neurotoxic lesions of the septum impair spatial memory in, e.g., Morris water- and radial-maze tasks. Unfortunately, the lack of specificity of such lesions limits inferences about the role of the cholinergic hippocampal projections in spatial cognition. We therefore tested the effects of septal lesions produced by 192 IgG-saporin in rats, which is highly selective for basal forebrain cholinergic neurons, on home cage activity, noncognitive tests (modified Irwin test, open field and forced swimming tests, and various sensorimotor tasks), and the cone-field spatial learning task. The immunotoxic lesion reduced acetylcholine (ACh) levels in the septum (-61%) and hippocampus (>-75%). Rats with lesions showed mild home-cage hyperactivity at 4 weeks postlesion, but no noncognitive deficits at 13 weeks postsurgery. In the cone-field task, rats with septal lesions made more working- and reference-memory errors than the controls, but acquisition curves were parallel in both groups. The speed of visiting cones was faster in the rats with lesions, indicative of disturbed attention or increased motivation. These data support the growing evidence that involvement of the septohippocampal cholinergic system in spatial learning and memory may have been overestimated in studies that used lesions with poor selectivity.  相似文献   

8.
Administration of 192IgG-saporin, a cholinergic neurotoxin, to the medial septum destroys the cell bodies from which the septo-hippocampal cholinergic projection originates, leading to reductions in both hippocampal acetylcholinesterase (AChE) and choline acetyltransferase (ChAT). Despite reports that 192IgG-saporin-induced cholinergic loss leads to post-operative impairments in acquisition and performance of spatial memory tasks, a number of other reports have described intact spatial memory performance following these lesions. Factors that might account for these different outcomes include variations in toxin injection sites or volumes, and post-operative testing at times that might permit regeneration of damaged neuronal processes. We, therefore, assessed the effects of intraseptal microinjection of 192IgG-saporin, in rats, on the post-operative retention of pre-operatively acquired discrete-trial rewarded alternation in the T-maze. This design allowed us to assess the effects of the lesion 7 days post-surgery, at which point, at best, incomplete neuronal regeneration would have been expected to have occurred. The lesion led to a profound loss of hippocampal AChE staining, and a clear inflammatory response, as assessed by proliferation of OX42-stained macrophages in the medial septum and diagonal band nuclei, but there was no impairment in spatial working memory.  相似文献   

9.
The cholinergic system has been widely implicated in cognitive processes and cholinergic loss is a classical hallmark in Alzheimer disease. Increasing evidence supports a role of the serotonergic system in cognition, possibly through a modulation of cholinergic activity. We compared selective cholinergic denervation by administration of the immunotoxin 192 IgG-saporin in the nucleus basalis of Meynert (NBM) with intracerebroventricular (ICV) lesions of the basal forebrain in male rats 7 days after lesioning. NBM lesions induced significant changes in cholinergic markers in the frontal cortex, whereas ICV lesions produced significant decreases in cholinergic markers both in the frontal cortex and hippocampus. Only ICV lesions lead to memory impairments in passive avoidance and Morris water maze tasks. Both models lead to reductions of serotonin levels in the frontal cortex. Similar changes in 5-hydroxytriptophan levels were observed, suggesting a downregulation of the rate-limiting enzyme for the synthesis of serotonin along with the cholinergic deficit. Neither 5-HT1A nor 5-HT1B receptors seem to mediate this process. These data imply that the serotonergic system in the frontal cortex can compensate for diminished cholinergic function and support the investigation of the serotonergic system as a therapeutic target to treat Alzheimer disease.  相似文献   

10.
A monoclonal antibody to the low-affinity NGF receptor, 192 IgG, coupled to a cytotoxin, saporin, was recently introduced as an efficient selective neurotoxin for the NGFr-bearing cholinergic neurones in the rat basal forebrain. In the present study we report that an intracerebroventricular injection of this 192 IgG-saporin conjugate induces a severe, long-lasting spatial learning impairment, as assessed in the Morris water-maze task. This behavioural impairment was associated with 65-90% depletion of choline acetyltransferase activity (ChAT) in the hippocampus and cortex. ChAT activity associated with other cholinergic neurone systems in the brain (striatum, mesencephalon, spinal cord), was left virtually unaffected. This new immunotoxin holds great promise as a tool for selective and efficient lesions of the forebrain cholinergic system in functional and behavioural studies.  相似文献   

11.
Wrenn CC  Lappi DA  Wiley RG 《Brain research》1999,847(2):424-298
The cholinergic basal forebrain (CBF) degenerates in Alzheimer's Disease (AD), and the degree of this degeneration correlates with the degree of dementia. In the present study we have modeled this degeneration in the rat by injecting various doses of the highly selective immunotoxin 192 IgG-saporin (192-sap) into the ventricular system. The ability of 192-sap-treated rats to perform in a previously learned radial maze working memory task was then tested. We report here that 192-sap created lesions of the CBF and, to a lesser extent, cerebellar Purkinje cells in a dose-dependent fashion. Furthermore, we found that rats harboring lesions of the entire CBF greater than 75% had impaired spatial working memory in the radial maze. Correlational analysis of working memory impairment and lesion extent of the component parts of the CBF revealed that high-grade lesions of the hippocampal-projecting neurons of the CBF were not sufficient to impair working memory. Only rats with high-grade lesions of the hippocampal and cortical projecting neurons of the CBF had impaired working memory. These data are consistent with other 192-sap reports that found behavioral deficits only with high-grade CBF lesions and indicate that the relationship between CBF lesion extent and working memory impairment is a threshold relationship in which a high degree of neuronal loss can be tolerated without detectable consequences. Additionally, the data suggest that the CBF modulates spatial working memory via its connections to both the hippocampus and cortex.  相似文献   

12.
Male Long-Evans rats sustained injections of 5,7-dihydroxytryptamine (5,7-DHT) into the fimbria-fornix and the cingular bundle or/and intraseptal injections of 192 IgG-saporin to induce serotonergic or/and cholinergic hippocampal denervations; Sham-operated rats served as controls. Four to ten weeks after lesioning, we measured (i). the electrically evoked release of acetylcholine ([3H]ACh), noradrenaline ([3H]NA) and serotonin ([3H]5-HT) in hippocampal slices in the presence of drugs acting on auto- or heteroreceptors, (ii). the nicotine-evoked release of NA and (iii). the choline acetyltransferase (ChAT) activity and the concentration of monoamines in homogenates. Saporin lesions reduced the accumulation of [3H]choline, the release of [3H]ACh and the ChAT activity, but increased the concentration of NA and facilitated the release of [3H]NA evoked by nicotine. 5,7-DHT lesions reduced the accumulation and the release of [3H]5-HT, the concentration of 5-HT, and also facilitated the release of [3H]NA evoked by nicotine. Accumulation and electrically evoked release of [3H]NA were not altered by either lesion. The combination of both toxins resulted in an addition of their particular effects. The 5-HT(1B) receptor agonist, CP 93129, and the muscarinic agonist, oxotremorine, reduced the release of [3H]ACh in control and 5,7-DHT-lesioned rats; in rats injected with saporin, their effects could not be measured reliably. CP 93129 and the alpha(2)-adrenoceptor agonist, UK 14304, reduced the release of [3H]5-HT in all groups by about 65%. In conclusion: (i). selective neurotoxins can be combined to enable controlled and selective damage of hippocampal transmitter systems; (ii). 5-HT exerts an inhibitory influence on the nicotine-evoked release of NA, but partial serotonergic lesions do not influence the release of ACh at a presynaptic level and (iii). presynaptic modulatory mechanisms involving auto- and heteroreceptors may be conserved on fibres spared by the lesions.  相似文献   

13.
Mnemonic deficits resulting from excitotoxic lesion of the basal forebrain have been classically attributed to the resulting depletion of cortical acetylcholine activity. In this study, we have performed a detailed analysis of the cholinergic status of the insular cortex (IC) following local injections of either 192IgG-saporin (192IgG-sap) or N-methyl-D-aspartate (NMDA) directly into the nucleus basalis magnocellularis (NBM). By means of in vivo microdialysis, we show that the immunotoxin lesion results in an almost complete lack of extracellular acetylcholine release, whereas NMDA-induced lesions result in a marginal reduction in cortical cholinergic activity. Choline-acetyltransferase activity in the IC further confirmed this differential pattern of cortical deafferentation. Surprisingly, however, only NMDA-induced lesions showed a strong disruptive effect upon taste aversion learning whereas no detectable deficits could be found following 192IgG-sap lesions. By combining intrabasal injections of 192IgG-sap with acute pre-training infusions of the cholinergic antagonist scopolamine into the IC, a strong disruption of taste aversion was attained. These results imply that residual cholinergic activity, following 192IgG-saporin lesions, might be still critical for normal cortical mediation of memory processing. They also support the role of basal forebrain in mediating learning and memory processes, and demonstrate that mnemonic deficits resulting from excitotoxic lesions of the basal forebrain are not the sole result of cortical acetylcholine activity hypofunction.  相似文献   

14.
Vitamin A is quite often implicated in supporting acetylcholine synthesis. Choline acetyltransferase, the enzyme promoting acetylcholine synthesis, and the vesicular acetylcholine transporter are modulated by retinoic acid treatment. This paper illustrates the effect of vitamin A deprivation on acetylcholine content in the hippocampus, striatum and prefrontal cortex of rats, brain regions containing retinoid acid receptors. The effect of vitamin A deprivation on working memory was also examined. The results obtained demonstrate a decrease in acetylcholine content following 12 weeks vitamin A deprivation in the hippocampus and striatum, but not in prefrontal cortex. Working memory performance assessed in the same rats was unaffected, suggesting a higher susceptibility of hippocampus and striatum to vitamin A deficiency, in terms of cholinergic transmission.  相似文献   

15.
The contribution of the septohippocampal cholinergic pathway to performance of a working/episodic memory task was compared to that of the septocingulate cholinergic path. The septocingulate and septohippocampal cholinergic pathways were selectively destroyed in male Sprague–Dawley rats using site-specific injections of the anti-neuronal immunotoxin 192-IgG saporin into either the hippocampus or the cingulate cortex. 192-IgG-saporin selectively destroys cholinergic neurons and terminals that express the p75 neurotrophin receptor. Following extensive pre-operative training, working memory was assessed using a delayed nonmatch to sample eight arm radial maze task, with delays of 1, 4 and 8 h. The group with lesions of the septohippocampal cholinergic pathway displayed performance deficits on this task which were not related to length of delay. In contrast, the group with lesions of the septocingulate cholinergic pathway did display delay-dependent deficits which were observed at the 4- and 8-h delays, but not at the 1-h delay. These data suggest that the septocingulate cholinergic pathway is critically involved in working/episodic memory but that the septohippocampal cholinergic pathway is either not contributing to working/episodic memory per se or it is involved only at shorter delays.  相似文献   

16.
The serotonergic system is implicated in learning and memory and its disorder, e.g. after 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") abuse. This study examined the effects of widespread depletion of serotonin (5-HT) using intraventricular injection of 5,7-dihydroxytryptamine (5,7-DHT) on the learning of a working memory task in the dark agouti (DA) rat.The lesion impaired acquisition but not later performance of a nonspatial working memory rule, as measured using nonmatch to sample object recognition in the Y-maze. The lesion had a marginal effect on choice completion times over the course of testing. However, nonspecific effects did not provide a good account of the reduction in choice accuracy as this persisted when completion times were taken into account statistically. Similarly, in a second experiment, the same lesioned rats were slowed in the acquisition of spatial alternation in the T-maze. However, in the open field, there were no comparably long-lasting effects of the serotonergic depletion on line crossings and defecation, only a transient reduction in activity on the first day.Together, these data suggest that the serotonergic system is important in the acquisition of working memory tasks in the rat and that this outcome was unlikely to be the result of nonspecific effects of the lesion.  相似文献   

17.
Learning in rats trained in the Stone 14-unit T-maze, a complex, positively reinforced spatial discrimination task was assessed following cytotoxic (5,7-dihydroxytryptamine; 5,7-DHT) deafferentation of the serotonergic inputs to the hippocampus. Serotonergic deafferentation was accomplished by infusing the cytotoxin in to the fornix-fimbria/cingulum bundle. Lesioned rats reached criterion (i.e. learned) in significantly fewer trials and made significantly fewer errors throughout training than either vehicle-injected or sham-operated controls. This represents the first time that the effects of selective chronic destruction of serotonergic inputs to the hippocampus have been investigated. The present results provide, therefore, evidence in support of a neuromodulatory role for serotonin (5-HT) within the rat hippocampus in the mediation of the processes underlying learning and memory for this task. Other studies are, therefore, warranted in order to determine whether hippocampal 5-HT also plays a role in the mediation of the processes underlying learning and memory in other types of tasks.  相似文献   

18.
Intraventricular administration of the immunotoxin 192 IgG-saporin in rats has been shown to cause a selective loss of cholinergic afferents to the hippocampus and cortical areas, and to facilitate seizure development in hippocampal kindling. Here we demonstrate that this lesion also accelerates seizure progression when kindling is induced by electrical stimulations in the amygdala. However, whereas intraventricular 192 IgG-saporin facilitated the development of the initial stages of hippocampal kindling, the same lesion promoted the late stages of amygdala kindling. To explore the role of various parts of the basal forebrain cholinergic system in amygdala kindling, selective lesions of the cholinergic projections to either hippocampus or cortex were produced by intraparenchymal injections of 192 IgG-saporin into medial septum/vertical limb of the diagonal band or nucleus basalis, respectively. Cholinergic denervation of the cortical regions caused acceleration of amygdala kindling closely resembling that observed after the more widespread lesion induced by intraventricular 192 IgG-saporin. In contrast, removal of the cholinergic input to the hippocampus had no effect on the development of amygdala kindling. These data indicate that basal forebrain cholinergic neurons suppress kindling elicited from amygdala, and that this dampening effect is mediated via cortical but not hippocampal projections.  相似文献   

19.
The regional cerebral metabolic effects of manipulations of the central serotonergic pathways are largely unknown. To address this topic, we have examined the consequences of electrolytic lesions of the rostral (median and/or dorsal) raphé nuclei on local cerebral glucose utilization (CMRglu) in the unanaesthethized rat brain. These studies were complemented by comparing control rats to rats that received prior intraventricular administration of the serotonergic neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT). CMRglu was determined in 56 neuroanatomically defined regions of the central nervous system in lighly restrained rats, by the quantitative autoradiographic 2-deoxyglucose technique. In all, 6 groups of rats were studied: sham-lesioned rats, rats with electrolytic lesion of the median, dorsal, or both these raphé nuclei: sham-injected and 5,7-DHT pretreated rats. The efficacy of both electrolytic and neurotoxic lesions was verified, in each animal, by neurochemical microassay of 5-hydroxytryptamine and its metabolite in samples of striatum, hippocampus and prefrontal cortex. Chronic interruption of serotonergic transmission was remarkable for the lack of resultant change in CMRglu. In rats that were subjected to electrolytic lesions of both median and dorsal raphé nuclei, discrete and significant decreases in CMRglu were observed in the red nucleus, substantia nigra and inferior olivary nucleus only. The rats subjected to 5,7-DHT treatment displayed no significant changes in CMRglu in all the brain regions analyzed, despite an 80% decrease in the concentrations of endogenous 5-hydroxytryptamine. Thus, it would appear that a viable serotonergic transmission is not a major determinant of integrated functional activity, even in those brain structures that receive rich raphé projections. Two hypothesis are advanced for this lack of change: firstly, the chronic reduction of 5-hydroxytryptamine levels is accompanied by compensatory changes in this or other neurotransmitter systems; secondly, serotonergic neurones may exert a phasic — rather than tonic — influence on glucose use in the mammalian brain.  相似文献   

20.
About 45% of the serotonergic raphe neurons are reported to express nerve growth factor (NGF) receptors. We therefore investigated whether selective serotonergic lesions of the median or dorsal raphe nuclei are associated with changes in NGF protein levels of the brain and whether the loss of serotonergic function alters the vulnerability of cholinergic septohippocampal neurons. In adult rats the hippocampal NGF content changed in a biphasic way after lesion of the median raphe nucleus by 5,7-dihydroxytryptamine (5,7-DHT), with a significant increase after 2-3 weeks of up to 35%, followed by a significant reduction of 22% below control levels after 7 weeks, and a return to control levels within the following 4 weeks. By contrast, the decrease in hippocampal serotonin and 5-hydroxyindoleacetic acid remained throughout the observation period of 11 weeks, being still reduced to 15 and 30% of the control levels, respectively. In the frontal cortex the partial loss of the serotonergic innervation projecting from the median raphe was associated 5 weeks after 5,7-DHT injection with an increase in NGF protein of 39.7+/-9.6% (P<0.05), which remained elevated up to 11 weeks. At 9 weeks after 5,7-DHT, the lesion of the septohippocampal cholinergic neurons induced by the cholinotoxin ethylcholine aziridinium (AF64A) was exaggerated (P<0.05) as compared to AF64A-treated rats with intact serotonergic innervation. The present data indicate that a serotonergic lesion of the median raphe nucleus results in biphasic changes of NGF protein content and in a delayed increase in the vulnerability of septohippocampal cholinergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号