首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Astrocytes respond to hypoxia by increasing glycolytic capacity.   总被引:9,自引:0,他引:9  
Astrocytes cope more readily with hypoxic insults than do neurons. We hypothesized that astrocytes can upregulate their glycolytic capacity, allowing anaerobic glycolysis to provide sufficient ATP for cell survival as well as for carrying out critical functions such as taking up glutamate. To test this hypothesis, astrocytes were subjected to hypoxia for 5 hr. Lactate dehydrogenase (LDH) and pyruvate kinase activities increased 3- to 4-fold. Examination of LDH isoenzyme patterns determined that it was the anaerobic isoenzymes that were upregulated. To determine whether increase in enzyme activity translates into increased glycolytic capacity, astrocytes were subjected to varying time periods of hypoxia, and glucose uptake was measured under conditions where astrocytes were forced to consume more ATP. This demonstrated that 8 hr of hypoxia resulted in a doubling of glycolytic capacity. We suggest that how quickly astrocytes upregulate glycolytic capacity may determine whether or not neurons within the stroke penumbra survive.  相似文献   

2.
3.
The cerebral metabolic responses to perinatal hypoglycemia and anoxia were studied in newborn rats given regular insulin (30 units per kilogram of body weight). Animals were observed for up to 2 hours with no apparent ill effects in spite of blood glucose concentrations of 0.75 mmol per liter. When exposed to 100% nitrogen at 37°C, hypoglycemic animal survived only one-tenth as long as littermate controls with normal blood glucose levels (4.7 mmol/L). Pretreatment of hypoglycemic rats with glucose (10 mmol/kg) 10 and 30 minutes prior to nitrogen exposure nearly completely reversed the anoxic vulnerability. Hypoglycemia led to progressive reductions in crebral glycogen and glucose; however, only glucose reverted to normal levels 20 minutes after systemic glucose administration. The glycolytic intermediates glucose 6-phosphate and lactate were also lower during hypoglycemia. Brain glucose levels below 0.1 mmol per kilogram were associated with a disrupted cerebral energy state, reflected by declines in phosphocreatine (33%) and adenosine triphosphate (ATP) (10%). Cerebral energy utilization (metabolic rate) was minimally reduced (?7.2%) by hypoglycemia and returned to the control value (2.36 mmol ~ P/kg/min) with glucose treatment. The cerebral energy reserves ATP, adenosine diphosphate, and phosphocreatine delined more rapidly and to a lower level in hypoglycemic rats subjected to 2 1/2 minutes of anoxia than in normoglycemic animals rendered similarly hypoxic. The findings suggest that decreased anoxic resistance of hypoglycemic newborn rats is not primarily a function of reduced brain glycogen or altered cerebral metabolic rate. The presence of endogenous cerebral glucose stores combined with continued circulating glucose (cerebrovascular perfusion) appear to be critical factors for maintaining perinatal hypoxic survival.  相似文献   

4.
Fructose-1,6-bisphosphate reduces ATP loss from hypoxic astrocytes   总被引:2,自引:0,他引:2  
Hypoxia caused injury and metabolic dysfunction of astrocytes, as indicated by a time-dependent loss of lactate dehydrogenase (LDH) activity and ATP content. The combination of 3.5 mM fructose-1,6-bisphosphate (FBP) and 7.5 mM glucose (GLC) reduced the decrease of ATP and prevented the loss of LDH. These data indicate that the combination of GLC + FBP protects astrocytes from hypoxia. The results also suggest that the maintainance of ATP concentration is the mechanism by which FBP prevents hypoxic injury.  相似文献   

5.
Recent reports based on a chemiluminescent enzymatic assay for detection of adenosine conclude that cultured astrocytes release adenosine during mildly hypoxic conditions. If so, astrocytes may suppress neural activity in early stages of hypoxia. The aim of this study was to reevaluate the observation using high-performance liquid chromatography (HPLC). The HPLC analysis showed that exposure to 20 or 120 minutes of mild hypoxia failed to increase release of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine from cultured astrocytes. Similar results were obtained using a chemiluminescent enzymatic assay. Moreover, since the chemiluminescent enzymatic assay relies on hydrogen peroxide generation, release of free-radical scavengers from hypoxic cells can interfere with the assay. Accordingly, adenosine added to samples collected from hypoxic cultures could not be detected using the chemiluminescent enzymatic assay. Furthermore, addition of free-radical scavengers sharply reduced the sensitivity of adenosine detection. Conversely, use of a single-step assay inflated measured values due to the inability of the assay to distinguish adenosine and its metabolite inosine. These results show that cultured astrocytes do not release adenosine during mild hypoxia, an observation consistent with their high resistance to hypoxia.  相似文献   

6.
7.
Brain function depends on complex metabolic interactions among only a few different cell types, with astrocytes providing critical support for neurons. Astrocyte functions include buffering the extracellular space, providing substrates to neurons, interchanging glutamate and glutamine for synaptic transmission with neurons, and facilitating access to blood vessels. Whereas neurons possess highly oxidative metabolism and easily succumb to ischemia, astrocytes rely more on glycolytic metabolism and hence are less susceptible tolack of oxygen. Astrocytoma cells seem to retain basic metabolic mechanisms of astrocytes; for example, they show a high glycolytic rate, lactate extrusion, ability to flourish under hypoxia, and opportunistic use of mechanisms to enhance cell division and maintain growth. Differences in metabolism between neurons and astrocytes may also extend to astrocytoma cells, providing therapeutic opportunities against astrocytomas, including sensitivity to acetate, a high rate of glycolysis and lactate extrusion, glutamate uptake transporters, differential sensitivities of monocarboxylate transporters, presence of glycogen, high interlinking with gap junctions, use of nicotinamide adenine dinucleotide phosphate for lipid synthesis, using different isoforms of synthetic enzymes (e.g. isocitrate dehydrogenase, pyruvate carboxylase, pyruvate kinase, lactate dehydrogenase), and different glucose uptake mechanisms. These unique metabolic susceptibilities may augment conventional therapeutic attacks based on cell division differences and surface receptors alone.  相似文献   

8.
Astrocytes play a critical role in brain homeostasis controlling the local environment in normal as well as in pathological conditions, such as during hypoxic/ischemic insult. Since astrocytes have recently been identified as a source for a wide variety of gliotransmitters that modulate synaptic activity, we investigated whether the hypoxia-induced excitatory synaptic depression might be mediated by adenosine release from astrocytes. We used electrophysiological and Ca2+ imaging techniques in hippocampal slices and transgenic mice, in which ATP released from astrocytes is specifically impaired, as well as chemiluminescent and fluorescence photometric Ca2+ techniques in purified cultured astrocytes. In hippocampal slices, hypoxia induced a transient depression of excitatory synaptic transmission mediated by activation of presynaptic A1 adenosine receptors. The glia-specific metabolic inhibitor fluorocitrate (FC) was as effective as the A1 adenosine receptor antagonist CPT in preventing the hypoxia-induced excitatory synaptic transmission reduction. Furthermore, FC abolished the extracellular adenosine concentration increase during hypoxia in astrocyte cultures. Several lines of evidence suggest that the increase of extracellular adenosine levels during hypoxia does not result from extracellular ATP or cAMP catabolism, and that astrocytes directly release adenosine in response to hypoxia. Adenosine release is negatively modulated by external or internal Ca2+ concentrations. Moreover, adenosine transport inhibitors did not modify the hypoxia-induced effects, suggesting that adenosine was not released by facilitated transport. We conclude that during hypoxia, astrocytes contribute to regulate the excitatory synaptic transmission through the release of adenosine, which acting on A1 adenosine receptors reduces presynaptic transmitter release. Therefore, adenosine release from astrocytes serves as a protective mechanism by down regulating the synaptic activity level during demanding conditions such as transient hypoxia.  相似文献   

9.
Glucose deprivation of astrocytes results in an elevation of cytosolic calcium concentration ([Ca2+]i) [Kahlert, S., Reiser, G., 2000. Requirement of glycolytic and mitochondrial energy supply for loading of Ca2+ stores and InsP3-mediated Ca2+ signaling in rat hippocampus astrocytes. J. Neurosci. Res. 61, 409-420; Silver, I.A., Deas, J., Erecinska, M., 1997. Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 78, 589-601] equivalent to an impairment of astrocytic energy metabolism and function. Superfusion of fura-2 loaded primary cortical astrocytes with glucose-free solution triggered a slow and progressive, 56-fold increase of the [Ca2+]i from 60 nM up to 3.3 microM within 2 h. Re-addition of glucose led to a rapid drop of [Ca2+]i, yet [Ca2+]i did not fully recover to the low levels recorded prior to glucose deprivation and, moreover, astrocytic Ca2+ signaling was impaired: adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) were no longer able to trigger a transient Ca2+ response as recorded in controls. 17beta-estradiol protected astrocytes from the glucose deprivation-induced [Ca2+]i increase and the impaired signaling independently of the nuclear estrogen receptor, as the antiestrogen tamoxifen and the protein synthesis inhibitor cycloheximide did not impede the protective effect of 17beta-estradiol.  相似文献   

10.
The aim of the present study was to establish whether piracetam (2-pyrrolidon-N-acetamide; PIR) and vinpocetine (a vasoactive vinca alkaloid; VINP) are capable of protecting astrocytes against hypoxic injury. Using the model of astrocyte cell culture we observed the cells treated with PIR and VINP during and after in vitro simulated hypoxia. Cell viability was determined by Live/Dead Viability/Cytotoxicity Assay Kit, LDH release assay and MTT conversion test. Apoptotic cell death was distinguished by a method of Hoechst 33342 staining underfluorescence microscope and caspase-3 colorimetric assay. In addition the intracellular levels of ATP and phosphocreatine (PCr) were evaluated by bioluminescence method. Moreover, the effect of the drugs on the DNA synthesis was evaluated by measuring the incorporation of [3H]thymidine into DNA of astrocytes. PIR (0.01 and 1 mM) and VINP (0.1 and 10 microM) were added to the medium both during 24 h normoxia, 24 h hypoxia or 24 h reoxygenation. Administration of 1 mM PIR or 0.1 microM VINP to the cultures during hypoxia significantly decreases the number of dead and apoptotic cells. The antiapoptic effects of drugs in the above mentioned concentrations was also confirmed by their stimulation of mitochondrial function, the increase of intracellular ATP, and the inhibition of the caspase-3 activity. The prevention of apoptosis was accompanied by the increase in ATP and PCr levels and increase in the proliferation of astrocytes exposed to reoxygenation. The higher concentration of VINP (10 microM) was detrimental in hypoxic conditions. Our experiment proved the significant cytoprotective effect of 1 mM PIR and 0.1 microM VINP on astrocytes in vitro.  相似文献   

11.
Cerebral artery occlusion produces regions of incomplete ischemia (the ischemic penumbra), which, in the absence of reflow, undergo progressive metabolic deterioration culminating in infarction. The factors causing infarction are not yet established, but progression to cell death is preceded by progressive acidosis, decreasing glucose utilization, and ATP depletion. To identify potential mechanisms of glial death in the ischemic penumbra, astrocytes in culture were subjected to conditions that occur during incomplete ischemia: hypoxia, acidosis, and raised extracellular K+. Neither acidosis (to pH 6.2) nor chemical hypoxia (5 mM azide) alone produced significant astrocyte death or marked ATP depletion. By contrast, hypoxia combined with acidosis caused near-complete ATP depletion by 3.5 h and 70% cell death after 7 h. Glycolytic rate increased during hypoxia alone but decreased during hypoxia with acidosis. Since glycolysis is the sole source of ATP production during hypoxia, acidosis inhibition of glycolysis is a likely cause of the far greater ATP depletion resulting from hypoxia with acidosis. Glutamate uptake was reduced during hypoxia and further reduced during hypoxia with acidosis, consistent with the changes in astrocyte ATP. Glutamate uptake, ATP levels, and glycolytic rate each exhibited reductions that were progressive over 3 h of hypoxia with acidosis, and these changes were accompanied by progressive intracellular acidosis. Since ATP depletion leads to acidosis, and acidosis inhibits glycolysis, these findings suggest a regenerative cycle initiated by the combination of hypoxia with acidosis. This cycle could result in progressive metabolic decline and cell death in the ischemic penumbra. GLIA 21:142–153, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
Brain infarction was induced in rats by injection of microspheres through the right internal carotid artery, and structural changes in the astrocytes were observed during the early period following the infarction. Necrotic foci, varying in size and shape, were found in the right hemisphere. After immunohistochemical staining for GFAP, GFAP-positive astrocytes in the perinecrotic area known as the ischemic penumbra had distinctly increased in number and size with elongation of cytoplasmic processes 3 days after infarction. Electron microscopic observation revealed that glycogen granules had markedly accumulated in the cytoplasm of astrocytes located in the ischemic penumbra 3 and 5 days after infarction. Seven days after infarction, however, the glycogen granules disappeared from the astrocytes. Intermediate filaments increasingly appeared in the protoplasmic astrocytes after 3 days and were abundant in the activated and hypertrophied astrocytes after 7 days. As a result of our present study, we conclude that: (1) the function of glucose uptake from blood vessels was not impaired in the astrocytes under hypoxic conditions; (2) the astrocytes actively ingested blood glucose through the endothelial cells and accumulated it as glycogen for activation of their functions, and the cell volume increased under hypoxic conditions; (3) the depression of energy metabolism and the decrease in the uptake of energy sources in the nerve cells promoted glycogen accumulation in the astrocytes under hypoxic conditions; (4) intermediate filaments (GFAP filaments) increased in number, coincident with the activation and enlargement of the astrocytes; and (5) protoplasmic astrocytes were transformed into fibrous astrocytes in the ischemic penumbra of the brain infarction.  相似文献   

15.
1H and 31P nuclear magnetic resonance spectroscopy was used to study intracellular pH (pHi), high-energy phosphates, lactate, and amino acids in cortical brain slices superfused in Krebs-Henseleit bicarbonate buffer during and after severe hypoxia at 0, 10, and 50 mM glucose. An extensive drop in phosphocreatine (PCr) and a rapid build-up of intracellular lactate and H+ were the first signs of hypoxia. Adenosine triphosphate (ATP) was significantly more resistant to hypoxia provided that glucose was present. In the preparations that had been exposed to hypoxia in the presence of glucose, PCr became detectable within 2 min of reoxygenation, and both PCr and ATP concentrations were restored to 72-80% of normoxic levels within 30 min. Lactate was washed out, and pHi returned to normal within 4-8 min. Using 1-[13C]glucose as a tracer, we demonstrated that the rate of lactate production in the immediate posthypoxic period was at the prehypoxic level, indicating that the elevated lactate during this period was due solely to that produced during hypoxia. During reoxygenation of the preparations that were denied glucose during hypoxia, only 30% of total creatine + PCr and 18% of PCr were restored, and ATP was not detectable. The lactate concentration rose twofold in this period, and pHi became significantly more alkaline than before the hypoxic insult. Thus acute metabolic damage was considerably greater if glucose was absent during the insult, suggesting that either anaerobic ATP production or low pH may exert some protective effect against acute cell damage.  相似文献   

16.
Active neurons require a substantial amount of adenosine triphosphate (ATP) to re-establish ion gradients degraded by ion flux across their plasma membranes. Despite this fact, neurons, in contrast to astrocytes, do not contain any significant stores of energy substrates. Recent work has provided evidence for a neuro-metabolic coupling between both cell types, in which increased glycolysis and lactate production in astrocytes support neuronal metabolism. Here, we established the cell type-specific expression of the Förster resonance energy transfer (FRET) based nanosensor ATeam1.03YEMK (“Ateam”) for dynamic measurement of changes in intracellular ATP levels in organotypic brain tissue slices. To this end, adeno-associated viral vectors coding for Ateam, driven by either the synapsin- or glial fibrillary acidic protein (GFAP) promoter were employed for specific transduction of neurons or astrocytes, respectively. Chemical ischemia, induced by perfusion of tissue slices with metabolic inhibitors of cellular glycolysis and mitochondrial respiration, resulted in a rapid decrease in the cellular Ateam signal to a new, low level, indicating nominal depletion of intracellular ATP. Increasing the extracellular potassium concentration to 8 mM, thereby mimicking the release of potassium from active neurons, did not alter ATP levels in neurons. It, however, caused in an increase in ATP levels in astrocytes, a result which was confirmed in acutely isolated tissue slices. In summary, our results demonstrate that organotypic cultured slices are a reliable tool for FRET-based dynamic imaging of ATP in neurons and astrocytes. They moreover provide evidence for an increased ATP synthesis in astrocytes, but not neurons, during periods of elevated extracellular potassium concentrations.  相似文献   

17.
A major consequence of brain hypoxia and hypoglycemia, which induces the detrimental effects of stroke, is impaired ATP supply. However, it is not yet clear to which degree reduced cellular ATP production affects Ca(2+) homeostasis and Ca(2+) signaling of glia cells. Here we studied in cultured hippocampal astrocytes the influence of inhibition of cellular energy supply on Ca(2+) load of intracellular stores. Inhibition of glycolysis in the presence of substrates for mitochondrial respiration resulted in an average drop of intracellular ATP levels by 35%. Inhibition of oxidative phosphorylation reduced intracellular ATP on average by 16%. With inhibition of both glycolysis and mitochondrial ATP production, intracellular ATP level was drastically reduced (84%). In astrocytes in Ca(2+)-free buffer, cytosolic [Ca(2+)](i) was dramatically increased due to inhibition of glycolysis, even in the presence of mitochondrial substrates. However, only a minor increase of [Ca(2+)](i) was observed with inhibitors of mitochondrial ATP synthesis. Remarkably, the moderate reduction of ATP levels found with inhibitors of glycolysis caused a severe loss of Ca(2+) from cyclopiazonic acid (CPA)-sensitive Ca(2+) stores. Consequently, inhibition of glycolysis reduced P2Y receptor- or thrombin receptor-evoked Ca(2+) responses on average by 95%, whereas a reduction of only 26% was found with mitochondrial inhibitors. In conclusion, glycolysis is the most important source of ATP for the maintenance of Ca(2+) load in stores that are required for transmitter-induced signaling. These results are consistent with the concept that a local ATP source in the vicinity of endoplasmic reticulum Ca(2+) pumps is required.  相似文献   

18.
Astrocytic energy demand is stimulated by K(+) and glutamate uptake, signaling processes, responses to neurotransmitters, Ca(2+) fluxes, and filopodial motility. Astrocytes derive energy from glycolytic and oxidative pathways, but respiration, with its high-energy yield, provides most adenosine 5' triphosphate (ATP). The proportion of cortical oxidative metabolism attributed to astrocytes ( approximately 30%) in in vivo nuclear magnetic resonance (NMR) spectroscopic and autoradiographic studies corresponds to their volume fraction, indicating similar oxidation rates in astrocytes and neurons. Astrocyte-selective expression of pyruvate carboxylase (PC) enables synthesis of glutamate from glucose, accounting for two-thirds of astrocytic glucose degradation via combined pyruvate carboxylation and dehydrogenation. Together, glutamate synthesis and oxidation, including neurotransmitter turnover, generate almost as much energy as direct glucose oxidation. Glycolysis and glycogenolysis are essential for astrocytic responses to increasing energy demand because astrocytic filopodial and lamellipodial extensions, which account for 80% of their surface area, are too narrow to accommodate mitochondria; these processes depend on glycolysis, glycogenolysis, and probably diffusion of ATP and phosphocreatine formed via mitochondrial metabolism to satisfy their energy demands. High glycogen turnover in astrocytic processes may stimulate glucose demand and lactate production because less ATP is generated when glucose is metabolized via glycogen, thereby contributing to the decreased oxygen to glucose utilization ratio during brain activation. Generated lactate can spread from activated astrocytes via low-affinity monocarboxylate transporters and gap junctions, but its subsequent fate is unknown. Astrocytic metabolic compartmentation arises from their complex ultrastructure; astrocytes have high oxidative rates plus dependence on glycolysis and glycogenolysis, and their energetics is underestimated if based solely on glutamate cycling.  相似文献   

19.
T K Hevor  P Delorme 《Glia》1991,4(1):64-69
The convulsant methionine sulfoximine is a potent glycogenic agent in the central nervous system of rodents in vivo. This investigation was undertaken to look for the basic mechanism underlying this property. Astrocytes were cultivated from newborn rat neopallium and glycogen was studied by both biochemical and ultrastructural methods. When the astrocytes were incubated in a medium containing 5.55 mM glucose, methionine sulfoximine (0.55 mM) induced a significant increase in their glycogen content. Glucose content did not change in astrocytes, but it diminished in the medium in all cases. When the decrease in glucose level in the medium was limited, the same glycogenic effects of methionine sulfoximine were observed, but the glycogen contents were higher. The augmentation of the concentration of the convulsant enhanced its glycogenic effect, but this was not directly dose dependent. When the flat and polygonal astrocytes were transformed into process-bearing astrocytes by dibutyryl cyclic AMP methionine sulfoximine always induced an increase in glycogen content. In this case, the values of glycogen contents were lower. In electron microscopy, no glycogen particles were present in the astrocytes even after methionine sulfoximine treatment, contrary to the case in vivo. These results show that the convulsant does not need the presence of neuronal cells to induce glycogen accumulation and that astrocytes may be the direct cell targets. The apparent discrepancy between the biochemical and ultrastructural data is probably due to the relatively low concentration of glycogen in cultured astrocytes.  相似文献   

20.
The hypoxia-responsive cytokine erythropoietin (EPO) provides neuroprotective effects in the damaged brain during ischemic events and neurodegenerative diseases. The purpose of the present study is to evaluate the EPO/EPO receptor (EPOR) endogenous system between astrocyte and oligodendrocyte precursor cell (OPC) under hypoxia. We report here elevated EPO mRNA levels and protein release in cultured astrocytes following hypoxic stimulation by quantitative RT-PCR and ELISA. Furthermore, the EPOR gene expressions were detected in cultured OPCs as in astrocytes and microglias by quantitative RT-PCR. Cell staining revealed the EPOR expression in OPC. To evaluate the protective effect of endogenous EPO from astrocyte to OPCs, EPO/EPOR signaling was blocked by EPO siRNA or EPOR siRNA gene silencing in in vitro study. The suppression of endogenous EPO production in astrocytes by EPO siRNA decreased the protection to OPCs against hypoxic stress. Furthermore, OPC with EPOR siRNA had less cell survival after hypoxic/reoxygenation injury. This suggested that EPO/EPOR signaling from astrocyte to OPC could prevent OPC damage under hypoxic/reoxygenation condition. Our present finding of an interaction between astrocytes and OPCs may lead to a new therapeutic approach to OPCs for use against cellular stress and injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号