首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Vascular endothelial and smooth muscle cells generate nitric oxide (NO) via different nitric oxide synthase (NOS) isozymes. Activation of the endothelial constitutive NOS (ecNOS) contributes to the maintenance of cardiovascular homeostasis, whereas expression of the endotoxin- and cytokine-inducible pathway (iNOS) within the vascular smooth muscle is thought to be responsible for the cardiovascular collapse which occurs during septic shock and antitumour therapy with cytokines. Since the cytoskeleton is involved in the activation of certain genes and in some effects of endotoxin in macrophages, we investigated the role of microtubules and microfilaments in the activation of the NO pathway in cultured vascular cells. 2. Depolymerization of microtubules by either nocodazole or colchicine prevented lipopolysaccharide (LPS)- and interleukin-1 beta-induction of NO-dependent cyclic GMP accumulation. Steady state levels of iNOS mRNA, assessed by Northern blot and RT-PCR, and iNOS protein, assessed by Western blotting, were also decreased by either colchicine or nocodazole treatment. 3. Taxol enhanced microtubule polymerization alone, and prevented microtubule depolymerization elicited by nocodazole and colchicine. Associated with its effect on microtubule assembly, taxol prevented the inhibitory effects of nocodazole and colchicine on cyclic GMP accumulation and iNOS mRNA levels. 4. Disruption of microfilaments by cytochalasins had no inhibitory effect on the activation of the inducible NO pathway. 5. In contrast to cytokine-stimulated smooth muscle cells, modulation of either microtubule or microfilament assembly did not affect the constitutive NO pathway in endothelial cells, as endothelial cell- and NO-dependent cyclic GMP accumulation in endothelial-smooth muscle co-cultures remained unchanged. 6. Our findings demonstrate that microtubules play a prominent role in the activation of the inducible NO pathway in response to inflammatory mediators in smooth muscle cells but not of the constitutive synthesis of NO in endothelial cells.  相似文献   

2.
3.
The effect of transforming growth factor-beta 1 (TGF-beta 1) and platelet-derived growth factor (PDGF) was investigated on the induction of nitric oxide synthase activity caused by interleukin-1 beta in cultured smooth muscle cells from rat aorta. TGF-beta 1, PDGFAB and PDGFBB but not PDGFAA inhibited in a concentration-dependent manner the production of nitrite, an oxidation product of nitric oxide, evoked by interleukin-1 beta. The growth factors alone did not stimulate the release of nitrite. The addition of interleukin-1 beta-treated smooth muscle cells to suspensions of indomethacin-treated human washed platelets inhibited the aggregation evoked by thrombin whereas no effect was observed with untreated cells. Platelet aggregation was not inhibited by smooth muscle cells that had been pretreated with interleukin-1 beta in combination with either TGF-beta 1, PDGFAB or PDGFBB but not with PDGFAA. These observations demonstrate that platelet-derived products such as TGF-beta and PDGFs inhibit the induction of nitric oxide synthase activity in vascular smooth muscle cells.  相似文献   

4.
Overproduction of nitric oxide by inducible nitric oxide synthase contributes to the progression of cardiovascular disease. We investigated the effects of azelnidipine and other Ca2+-channel blockers on nitric oxide production by cultured aortic smooth muscle cells isolated from Wistar rats and human umbilical vein endothelial cells (HUVECs), using the Griess reaction and oxyhemoglobin method. Release of lactic dehydrogenase (LDH) was measured to evaluate cell damage, and immunohistochemistry was performed to examine the expression of inducible nitric oxide synthase and nitrotyrosine protein. Azelnidipine and other Ca2+-channel blockers inhibited the release of nitric oxide induced by lipopolysaccharide plus interferon-gamma. Azelnidipine inhibited it most potently among the Ca2+-channel blockers tested (azelnidipine, amlodipine, nifedipine, diltiazem, verapamil, and nicardipine) at a concentration of 10 microM. Longer stimulation with these agents induced the expression of inducible nitric oxide synthase and nitrotyrosine, with an increase of lactic dehydrogenase release, whereas azelnidipine suppressed these changes. In human umbilical vein endothelial cells, azelnidipine enhanced basal nitric oxide production by endothelial nitric oxide synthase. In conclusion, azelnidipine potently inhibited the induction of inducible nitric oxide synthase and then nitric oxide production in vascular smooth muscle cells, while enhancing constitutive nitric oxide production by endothelial cells. Azelnidipine may inhibit nitrotyrosine expression and cell damage caused by overproduction of nitric oxide, suggesting a mechanism for its cardiovascular protective effect.  相似文献   

5.
Recent studies have suggested that cyclic GMP accumulation in platelets mediates the antiaggregatory effects of certain nitrogen oxide-containing agents such as sodium nitroprusside, nitric oxide, nitrosoguanidines, and related agents. The vasodilator effect of these agents may involve the formation of S-nitrosothiol intermediates which relax vascular smooth muscle, elevate tissue levels of cyclic GMP, and activate guanylate cyclase. The purpose of this study was to investigate the effects of various synthetic S-nitrosothiols on human platelet aggregation. The S-nitroso derivatives of N-acetylpenicillamine, cysteine, and beta-D-thioglucose inhibited human platelet aggregation in a concentration-dependent fashion when ADP, collagen, U46619, or sodium arachidonate was employed as the aggregating agent. The antiaggregatory effects of the S-nitrosothiols were associated with a rapid and marked increase in intracellular platelet cyclic GMP levels, whereas cyclic AMP levels remained unchanged. Additionally, S-nitrosothiols disaggregated platelets which had been aggregated while concomitantly elevating platelet cyclic GMP levels. Moreover, guanylate cyclase, partially purified from the soluble fraction of human platelets, was markedly activated by S-nitrosothiols in a heme-dependent manner. Methemoglobin, a hemoprotein with a high affinity for nitric oxide, partially reversed the antiaggregatory effects, attenuated the accumulation of cyclic GMP, and inhibited the activation of guanylate cyclase by S-nitrosothiols. These data are consistent with the hypothesis that S-nitrosothiols could serve as active intermediates in the inhibitory action of sodium nitroprusside, nitric oxide, and related nitrogen oxides on platelet aggregation.  相似文献   

6.
1. The effects of the immunosuppressants cyclosporin A (CsA) and FK506 on nitric oxide (NO) synthesis induced by lipopolysaccharide (LPS) or cytokines were examined in rat vascular smooth muscle cells (VSMC) in culture. 2. CsA inhibited by up to 90% the accumulation of nitrite induced by LPS, but FK506 had a weaker effect on nitrite accumulation induced by LPS in these cells. Both CsA and FK506 (at 1 μmol/L) significantly inhibited nitrite production induced by recombinant murine interleukin-1β (rIL-1β). 3. Given their differing potency, it is likely that CsA and FK506 suppress induction of NO synthase through different intracellular mechanisms. This action could contribute to the side effects of CsA therapy.  相似文献   

7.
Vasorelaxant effects of calcitonin gene-related peptide (CGRP) are dependent on endothelium-derived nitric oxide (NO) in some arteries. The mechanism involved is still not clear. In the present study, we used NO donors (sodium nitroprusside (SNP) and 6-(2-hydroxy-1-methyl-2-nitrisohydrazino)-N-methyl-1-hyxanamine (NOC-9)), cyclic GMP elevator (brain natriuretic peptide (BNP)) and a selective type III (cyclic GMP-inhibited) phosphodiesterase (PDE) inhibitor 5-(4-acetamidophenyl)pyrazin-2(1H)-one (SK&F94120) to investigate involvement of NO, cyclic GMP and type III PDE in CGRP-induced accumulation of cyclic AMP in cultured rat aortic smooth muscle cells. SNP (10 microM), NOC-9 (10 microM) and BNP (1 microM) all increased intracellular cyclic GMP to similar levels (2- to 2.5-fold above basal) and caused significant enhancement of CGRP (10 nM)-induced cyclic AMP accumulation similar to that caused by 10 microM SK&F 94120. The data are therefore consistent with our hypothesis that the mechanism of endothelium-dependent vasorelaxation effect of CGRP involves cyclic GMP-mediated inhibition of type III PDE and subsequent accumulation of cyclic AMP in smooth muscle cells.  相似文献   

8.
The history of how we reached the goal of determining the mechanism of vasodilatation caused by non-adrenergic, non-cholinergic nerve stimulation in cerebral arteries was traced. We concluded from this project that electrical and chemical (by nicotine) stimulations evoke an increased influx of Ca2+ into nerve terminals and activate nitric oxide (NO) synthase, resulting in the synthesis and release of NO that stimulates the guanylate cyclase in smooth muscle, thereby causing the accumulation of cyclic GMP and eliciting muscle relaxation. Reviewed also are the neurally-induced inhibitory responses of extracranial arteries, intestines, etc. with respect to NO.  相似文献   

9.
1. The interactions between pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS) on L-arginine transporter and inducible nitric oxide synthase (iNOS) activities were examined in rat cultured aortic smooth muscle cells. 2. LPS induced a concentration (0.01-100 micrograms ml-1) and time (8-24 h)-dependent stimulation of nitrite production which was accompanied by a parallel increase in L-arginine transport. 3. Unlike LPS, activation of smooth muscle cells with either interferon-gamma (IFN-gamma, 100 u ml-1), tumour necrosis factor-alpha (TNF-alpha, 300 u ml-1) or interleukin-1 alpha (IL-1 alpha, 100 u ml-1) failed to stimulate L-arginine transport or increase nitrite accumulation. 4. When applied in combination with LPS (100 micrograms ml-1) both IFN-gamma and TNF-alpha, but not IL-1 alpha, enhanced the effects observed with LPS alone. Furthermore, activation of cells with LPS and IFN-gamma had no effect on uptake of the neutral amino acid L-citrulline but selectively increased the Vmax for L-arginine transport 2.8 fold and nitrite levels from 24 +/- 7 to 188 +/- 14 pmol micrograms-1 protein 24 h-1. 5. The substrate specificity, Na- and pH-independence of saturable L-arginine transport in both unactivated (K(m) = 44 microM, Vmax = 3 pmol micrograms-1 protein min-1) and activated (K(m) = 75 microM, Vmax = 8.3 pmol micrograms-1 protein min-1) smooth muscle cells were characteristic of the cationic amino acid transport system y+. 6. Cycloheximide (1 microM) abolished induction of L-arginine transport and nitrite accumulation in response to LPS and IFN-gamma. In contrast, the glucocorticoid dexamethasone (10 microM, 24 h) selectively inhibited nitrite production. 7. Our results demonstrate that pro-inflammatory mediators selectively enhance transport of L-arginine under conditions of sustained NO synthesis by vascular smooth muscle cells. In addition, the differential inhibition of iNOS and L-arginine transporter activity by dexamethasone suggests that distinct signalling pathways mediate induction of the cationic transport protein and iNOS. The close coupling between substrate supply and NO production may have important implications in the pathogenesis of several disease states including endotoxin shock.  相似文献   

10.
1. While exposure of smooth muscle cells to sodium nitroprusside (SNP) leads to the development of tolerance to soluble guanylate cyclase (sGC) activation, the mechanisms responsible for this phenomenon in intact cells remain unclear. In the present study, possible mechanisms of tolerance were investigated in a cell culture model where sGC activity was estimated from the accumulation of cyclic GMP in response to 10 microM SNP over a 15 min period in the presence of a phosphodiesterase (PDE) inhibitor. 2. Pretreatment of rat aortic smooth muscle cells with 10-500 microM SNP led to a dose-dependent downregulation of cyclic GMP accumulation upon subsequent SNP stimulation. This effect was evident as early as 2 h following incubation with 10 microM SNP, reached a plateau at 4 h and was blocked by co-incubation with 30 microM oxyhaemoglobin. 3. Pretreatment of smooth muscle cells with the PDE inhibitor, zaprinast, resulted in downregulation of the SNP-induced cyclic GMP accumulation in a time- and concentration-dependent manner, that was first evident after 12 h. Moreover, while the zaprinast-induced downregulation of cyclic GMP accumulation was completely inhibited by the protein kinase A (PKA) inhibitor, H89, tolerance to SNP was partially reversed by H89. 4. beta 1 sGC steady state mRNA levels of S-nitroso N-acetylpenicillamine (SNAP)- or 8Br-cyclic GMP-pretreated cells were unchanged, as indicated by Northern blot analysis. However, Western blot analysis revealed that alpha 1 protein levels were decreased in zaprinast, but not in SNP, SNAP or 8Br-cyclic GMP pretreated cells. 5. While thiol depletion did not prevent the development of tolerance, pretreatment of cells with SNP in the presence of reducing agents partially or completely restored the ability of cells to respond to SNP. 6. We conclude that tolerance to SNP results from two distinct mechanisms: an early onset, NO-mediated event that is reversed by reducing agents and a more delayed, PKA-sensitive process that is mediated through increases in cyclic GMP and a decrease in sGC protein levels.  相似文献   

11.
The expression of inducible nitric-oxide synthase (iNOS) in vascular smooth muscle cells leads to prolonged vasorelaxation in vivo and contributes to the profound vasodilation induced by bacterial lipopolysaccharide (LPS) in septic shock. This induction of iNOS depends, in large part, on activation of nuclear factor (NF)-kappaB. Hypertonicity regulates the activity of NF-kappaB in different cell lines; as such, we propose that it should also regulate the expression of iNOS. Thus, the goal of this study was to determine whether hypertonicity regulates iNOS expression and function in smooth muscle cells and to elucidate the mechanism(s) underlying this process. Treatment of hamster ductus deferens (DDT1MF-2) cells and porcine aortic smooth muscle cells with either mannitol (50 mM) or NaCl (50 mM) reduced LPS-stimulated iNOS expression and nitric oxide release. Both of these agents also reduced the activation of NF-kappaB induced by LPS, tumor necrosis factor-alpha and interleukin-1beta in smooth muscle cells. This inhibitory action was caused by suppression of IkappaB-alpha phosphorylation, a prerequisite for ubiquitination and degradation of this protein, and showed additivity with N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG-132), an inhibitor of proteasomal degradation of IkappaB-alpha. Furthermore, exposure to mannitol inhibited the activity of IkappaB kinase, an enzyme involved in phosphorylation of IkappaB-alpha. Mannitol was unable to affect the induction of iNOS produced by overexpression of RelA in DDT1MF-2 cells, suggesting that this agent does not have additional downstream inhibitory actions on this activated NF-kappaB subunit. Taken together, these data suggest that these hypertonic solutions may prove useful as anti-inflammatory agents, especially against conditions associated with increased NF-kappaB activity.  相似文献   

12.
The cyclic GMP content of rat lung mince was increased nearly 50-fold within 4 sec following exposure to nitric oxide. This rapid increase in cyclic GMP accumulation was prevented by 10 mM, but not 1 mM, dithiothreitol which itself caused a slower yet massive (100-fold) increase in the cyclic GMP content of lung mince. Tissue cyclic GMP following nitric oxide exposure declined rapidly even in the presence of the phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine. The decline in cyclic GMP was accelerated by the thiol oxidant diamide (1 mM). The cyclic GMP content of lung mince was also increased by norepinephrine, pyruvate and t-butyl hydroperoxide. Diamide blocked cyclic GMP accumulation in response to these other agents as well as that caused by nitric oxide or dithiothreitol. The results suggest that sulfhydryl group modification may be a common pathway for the enhancement of cyclic GMP synthesis in tissues by a variety of stimuli.  相似文献   

13.
1. During their reproductive years women have a much lower incidence of coronary heart disease than men of similar age. A cardioprotective effect of circulating oestrogen appears to be responsible for this decrease in cardiovascular mortality in women. 2. Oestrogen can enhance nitric oxide (NO) production by the vacular endothelium, possibly through enhanced production of the enzyme NO synthase. 3. Pressure-induced constrictions in isolated coronary arteries from rats with physiological circulating levels of oestrogen are reduced compared to oestrogen-deficient animals. This difference is abolished by endothelial removal or inhibition of NO synthase. 4. NO through stimulation of guanylyl cyclase increases levels of the cytosolic second messenger cyclic GMP (cGMP) which activates a cGMP-dependent protein kinase in vascular smooth muscle cells. 5. Potassium currents through calcium-activated channels in vascular smooth muscle cells are increased in response to NO or upon exposure to cGMP-dependent protein kinase. 6. In rat coronary arteries dilations to NO are reduced by agents which inhibit calcium-activated potassium channels. NO can also hyperpolarize this tissue, suggesting membrane potential changes are involved in the response to NO. 7. We propose that oestrogen increases NO production leading to more negative membrane potentials and decreased calcium entry in coronary vascular smooth muscle cells.  相似文献   

14.
The expression of inducible nitric oxide synthase (iNOS) and the resultant increased nitric oxide production are associated with endotoxemia and atherosclerotic lesions observed in transplant hearts or balloon-injured artery. Ursodeoxycholic acid has been shown to have cardiovascular protective effects, such as inhibition of the development of transplant arteriosclerosis, but its mechanism remains unclear. Here, we investigated the effects of ursodeoxycholic acid on nitric oxide production and the expression of iNOS in vascular smooth muscle cells isolated from adult rat aorta and rabbit coronary artery. Nitrite released from cells in the culture medium was measured with the Griess reaction. iNOS mRNA and protein were measured by Northern and Western blot analyses. Treatment with ursodeoxycholic acid (30-1000 microM) significantly inhibited lipopolysaccharide plus interferon-gamma-induced nitric oxide production in a concentration-dependent manner, but ursodeoxycholic acid showed only small inhibitory effects on nitric oxide production that had already been induced by lipopolysaccharide plus interferon-gamma. Ursodeoxycholic acid by itself did not affect basal nitric oxide production. Ursodeoxycholic acid also suppressed lipopolysaccharide plus interferon-gamma-induced expression of iNOS mRNA and protein. Ursodeoxycholic acid had the most potent inhibitory effect among various kinds of bile acids examined, i.e. chenodeoxycholic acid, deoxycholic acid, cholic acid and conjugated bile acids such as tauroursodeoxycholic acid. These results suggest that ursodeoxycholic acid inhibits the induction of iNOS and then nitric oxide production in aortic and coronary artery smooth muscle cells, suggesting a possible mechanism for the cardiovascular protective effect of ursodeoxycholic acid under various pathophysiological conditions such as endotoxemia and atherosclerosis.  相似文献   

15.
Tolerance of vascular smooth muscle to nitroglycerin could be induced by an impaired biotransformation of nitroglycerin to nitric oxide, the activator of soluble guanylate cyclase, or by desensitization of guanylate cyclase to activation with nitric oxide. The latter would imply that there would also be tolerance to nitric oxide delivered from sodium nitroprusside or endothelial cells. Therefore, endothelium-denuded segments of rabbit aorta were treated with nitroglycerin to induce tolerance, and were then assessed for mechanical response, cyclic GMP content, and activity of soluble guanylate cyclase after addition of nitrovasodilators. Nitrate tolerance decreased the vasodilation and the increase in cyclic GMP elicited by nitroglycerin, but not that elicited by sodium nitroprusside or endothelium-derived relaxing factor, in norepinephrine-contracted segments. However, soluble guanylate cyclase in the supernatants of homogenates of nitrate-tolerant aortas was desensitized to activation with nitroglycerin and sodium nitroprusside. As the guanylate cyclase was still responsive to activation by nitric oxide in the intact, tolerant smooth muscle, an impaired biotransformation of nitroglycerin rather than desensitization of soluble guanylate cyclase may be the mechanism by which nitrate tolerance develops.  相似文献   

16.
Stimulation of vascular smooth muscle by bacterial lipopolysaccharide has been shown to produce interleukin-1β and to induce vasodilation in septic shock. To understand the mechanisms of interleukin-1β-induced relaxation, we examined the effects of interleukin-1β on contractility and cyclic GMP contents of vascular smooth muscle. After treatment of the rat aorta with interleukin-1β (20 ng/ml) for 6 h, the cyclic GMP content increased and the contraction induced by phenylephrine (1 μM) was partially inhibited. An inhibitor of nitric oxide (NO) synthase, NG-monomethyl-

-arginine (

-NMMA, 100 μM), prevented the inhibitory effect of interleukin-1β. After treatment with interleukin-1β for 24 h, the phenylephrine-induced contraction was inhibited more strongly. Neither

-NMMA (100 μM) nor aminoguanidine (100 μM) reversed the inhibition, whereas methylene blue (10 μM) partially reversed the inhibition. After treatment with interleukin-1β for 12 or 24 h, the cyclic GMP content increased but to a level lower than that obtained with a 6-h treatment. The effects of sodium nitroprusside (1 μM) to inhibit the phenylephrine-induced contraction and to increase the cyclic GMP content were markedly suppressed by the 24-h interleukin-1β treatment. In contrast, the 24-h interleukin-1β treatment did not change the ability of 8-bromo-cGMP to relax the phenylephrine-stimulated aorta. Addition of

-NMMA (1 mM) during the 24 h treatment prevented NO production and preserved the sodium nitroprusside-induced cGMP generation by interleukin-1β. The 24 h interleukin-1β treatment increased the threshold concentration of KCl needed to induce contraction without changing the maximum contraction. In the presence of 25.4 mM KCl or the non-selective K+ channel inhibitor, tetraethylammonium, the inhibitory effect of the 24-h interleukin-1β treatment on phenylephrine-induced contraction was restored. These results suggest that interleukin-1β inhibits vascular smooth muscle contraction by a time-dependent, dual mechanism. After a 6-h treatment with interleukin-1β, the NO/cyclic GMP system is activated. After a 24-h interleukin-1β treatment, in contrast, the NO/cyclic GMP system may be desensitized and the contraction of vascular smooth muscle is inhibited by another mechanism, possibly membrane hyperpolarization.  相似文献   

17.
Overproduction of nitric oxide (NO) from inducible nitric oxide synthase (iNOS) is importantly involved in the pathogenesis of endotoxemia and atherosclerosis. Calcium antagonists are commonly used as cardiovascular drugs and have a beneficial effect on prolonging survival in various models of endotoxin shock. The present study was to investigate the effect of a calcium antagonist amlodipine on nitrite, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) formation and iNOS induction both in lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma)-treated rat aortic smooth muscle cells (RASMC) and in a rat model of endotoxemia. Incubation with amlodipine (0.1 - 10 microM) for 24 h resulted in a significant and dose-dependent attenuation in medium nitrite, TNF-alpha and IL-1beta formation as well as iNOS protein expression in LPS/IFN-gamma-treated RASMC. In addition, amlodipine inhibited leucigenin-induced superoxide formation in RASMC. In the rat endotoxic model, the serum nitrite/nitrate, TNF-alpha and IL-1beta levels as well as iNOS protein expression of lungs were also suppressed by administration of amlodipine (50 microg/kg, i.v.). These results suggest that amlodipine may exert vascular beneficial effects by suppressing pro-inflammatory cytokines and free radical generation as well as iNOS induction in smooth muscle cells during activation of inflammatory mechanism.  相似文献   

18.
19.
1. In this paper we have determined the different signalling pathways involved in muscarinic acetylcholine receptor (AChR)-dependent inhibition of contractility in rat isolated atria. 2. Carbachol stimulation of M2 muscarinic AChRs exerts a negative inotropic response, activation of phosphoinositide turnover, stimulation of nitric oxide synthase and increased production of cyclic GMP. 3. Inhibitors of phospholipase C, protein kinase C, calcium/calmodulin, nitric oxide synthase and guanylate cyclase, shifted the dose-response curve of carbachol on contractility to the right. These inhibitors also attenuated the muscarinic receptor-dependent increase in cyclic GMP and activation of nitric oxide synthase. In addition, sodium nitroprusside, isosorbide, or 8-bromo cyclic GMP, induced a negative inotropic effect, increased cyclic GMP and activated nitric oxide synthase. 4. These results suggest that carbachol activation of M2 AChRs, exerts a negative inotropic effect associated with increased production of nitric oxide and cyclic GMP. The mechanism appears to occur secondarily to stimulation of phosphoinositides turnover via phospholipase C activation. This in turn, triggers cascade reactions involving calcium/calmodulin and protein kinase C, leading to activation of nitric oxide synthase and soluble guanylate cyclase.  相似文献   

20.
1. We have investigated whether porcine endocardial cells in culture express the inducible, Ca(2+)-independent form of nitric oxide (NO) synthase. 2. NO synthase activity in cytosolic extracts of endocardial cells was measured by estimation of the rate of formation of L-[14C]-citrulline from L-[14C]-arginine. 3. Treatment of the cells in culture with lipopolysaccharide or cytokines induced a Ca(2+)-independent NO synthase activity in the cell cytosol. The combination of tumour necrosis factor (TNF alpha, 10 ng ml-1) and interleukin-1 beta (IL-1 beta, 10 ng ml-1) induced the greatest enzyme activity. 4. The increased Ca(2+)-independent NO synthase activity following exposure to cytokines was paralleled by an increase in guanosine 3':5'-cyclic monophosphate (cyclic GMP) levels in the endocardial cell cytosol. 5. Simultaneous addition of dexamethasone (0.01-1 microM) or cycloheximide (0.03-3 microM) inhibited in a concentration-dependent manner TNF alpha- and IL-1 beta-induced expression of Ca(2+)-independent NO synthase activity. Neither dexamethasone (1 microM) nor cycloheximide (3 microM) had any effect on the activity of the constitutive NO synthase. 6. The possible pathophysiological consequences of endocardial expression of the inducible NO synthase are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号