首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH) has devastating consequences. Oxyhemoglobin (oxyhb) has been implicated in SAH-induced cerebral vasospasm as it causes cerebral artery constriction and increases tyrosine kinase activity. Voltage-dependent, Ca(2+)-selective and K(+)-selective ion channels play an important role in the regulation of cerebral artery diameter and represent potential targets of oxyhb. Here we provide novel evidence that oxyhb selectively decreases 4-aminopyridine sensitive, voltage-dependent K(+) channel (K(v)) currents by approximately 30% in myocytes isolated from rabbit cerebral arteries but did not directly alter the activity of voltage-dependent Ca(2+) channels or large conductance Ca(2+)-activated (BK) channels. A combination of tyrosine kinase inhibitors (tyrphostin AG1478, tyrphostin A23, tyrphostin A25, genistein) abolished both oxyhb-induced suppression of K(v) channel currents and oxyhb-induced constriction of isolated cerebral arteries. The K(v) channel blocker 4-aminopyridine also inhibited oxyhb-induced cerebral artery constriction. The observed oxyhb-induced decrease in K(v) channel activity could represent either channel block, or a decrease in K(v) channel density on the plasma membrane. To explore whether oxyhb altered trafficking of K(v) channels to the plasma membrane, we used an antibody generated against an extracellular epitope of K(v)1.5 channels. In the presence of oxyhb, staining of K(v)1.5 on the plasma membrane surface was markedly reduced. Furthermore, oxyhb caused a loss of spatial distinction between staining with K(v)1.5 and the general anti-phosphotyrosine antibody PY-102. We propose that oxyhb-induced suppression of K(v) currents occurs via a mechanism involving enhanced tyrosine kinase activity and channel endocytosis. This novel mechanism may contribute to oxyhb-induced cerebral artery constriction following SAH.  相似文献   

2.
Hypertension is associated with a remodeling of arterial smooth muscle K(+) channels with Ca(2+)-gated K(+) channel (BK(Ca)) activity being enhanced and voltage-gated K(+) channel (K(v)) activity depressed. Because both of these channel types are modulated by intracellular Ca(2+), we tested the hypothesis that Ca(2+) had a larger effect on both BK(Ca) and K(v) channels in arterial myocytes from hypertensive animals. Myocytes were enzymatically dispersed from small mesenteric arteries (SMA) of 12-week-old Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Using whole cell patch clamp methods, BK(Ca) and K(v) current components were determined as iberiotoxin-sensitive and -insensitive currents, respectively. The effects of Ca(2+) on these K(+) current components were determined from measurements made with 0.2 and 2 mmol/L external Ca(2+). Increasing external Ca(2+) from 0.2 to 2 mmol/L Ca(2+) increased BK(Ca) currents recorded using myocytes from both WKY rats and SHR with a larger effect in SHR. Increasing external Ca(2+) decreased K(v) currents recorded using myocytes from both WKY and SHR also with a larger effect in SHR. In other experiments, currents through voltage-gated Ca(2+) channels (Ca(v)) measured at 0.2 mmol/L external Ca(2+) were 12 +/- 2% (n = 12) of those recorded at 2 mmol/L Ca(2+) with no differences in percent effect between WKY and SHR. In isolated SMA segments, isometric force development in response to 140 mmol/L KCl at 0.2 mmol/L external Ca(2+) was about 23 +/- 6% (n = 8) of that measured at 2 mmol/L external Ca(2+). These results suggest that an increase in Ca(2+) influx through Ca(v) or in intracellular Ca(2+) secondary to an increase in external Ca(2+) augments BK(Ca) currents and inhibits K(v) currents in SMA myocytes with a larger effect in SHR compared to WKY. This mechanism may contribute to the functional remodeling of K(+) currents of arterial myocytes in hypertensive animals.  相似文献   

3.
Zhao G  Zhao Y  Pan B  Liu J  Huang X  Zhang X  Cao C  Hou N  Wu C  Zhao KS  Cheng H 《Circulation research》2007,101(5):493-502
Large conductance Ca(2+)-activated K(+) channels (BK(Ca)) play a critical role in blood pressure regulation by tuning the vascular smooth muscle tone, and hyposensitivity of BK(Ca) to Ca(2+) sparks resulting from its altered beta1 subunit stoichiometry underlies vasoconstriction in animal models of hypertension. Here we demonstrate hypersensitivity of BK(Ca) to Ca(2+) sparks that contributes to hypotension and blunted vasoreactivity in acute hemorrhagic shock. In arterial smooth muscle cells under voltage-clamp conditions (0 mV), the amplitude and duration, but not the frequency, of spontaneous transient outward currents of BK(Ca) origin were markedly enhanced in hemorrhagic shock, resulting in a 265% greater hyperpolarizing current. Concomitantly, subsurface Ca(2+) spark frequency was either unaltered (at 0 mV) or decreased in hyperpolarized resting cells. Examining the relationship between spark and spontaneous transient outward current amplitudes revealed a hypersensitive BK(Ca) activity to Ca(2+) spark in hemorrhagic shock, whereas the spark-spontaneous transient outward current coupling fidelity was near unity in both groups. Importantly, we found an acute upregulation of the beta1 subunit of the channel, and single-channel recording substantiated BK(Ca) hypersensitivity at micromolar Ca(2+), which promotes the alpha and beta1 subunit interaction. Treatment of shock animals with the BK(Ca) inhibitors iberiotoxin and charybdotoxin partially restored vascular membrane potential and vasoreactivity to norepinephrine and blood reinfusion. Thus, the results underscore a dynamic regulation of the BK(Ca)-Ca(2+) spark coupling and its therapeutic potential in hemorrhagic shock-associated vascular disorders.  相似文献   

4.
Cerebral aneurysm rupture and subarachnoid hemorrhage (SAH) inflict disability and death on thousands of individuals each year. In addition to vasospasm in large diameter arteries, enhanced constriction of resistance arteries within the cerebral vasculature may contribute to decreased cerebral blood flow and the development of delayed neurological deficits after SAH. In this study, we provide novel evidence that SAH leads to enhanced Ca2+ entry in myocytes of small diameter cerebral arteries through the emergence of R-type voltage-dependent Ca2+ channels (VDCCs) encoded by the gene CaV 2.3. Using in vitro diameter measurements and patch clamp electrophysiology, we have found that L-type VDCC antagonists abolish cerebral artery constriction and block VDCC currents in cerebral artery myocytes from healthy animals. However, 5 days after the intracisternal injection of blood into rabbits to mimic SAH, cerebral artery constriction and VDCC currents were enhanced and partially resistant to L-type VDCC blockers. Further, SNX-482, a blocker of R-type Ca2+ channels, reduced constriction and membrane currents in cerebral arteries from SAH animals, but was without effect on cerebral arteries of healthy animals. Consistent with our biophysical and functional data, cerebral arteries from healthy animals were found to express only L-type VDCCs (CaV 1.2), whereas after SAH, cerebral arteries were found to express both CaV 1.2 and CaV 2.3. We propose that R-type VDCCs may contribute to enhanced cerebral artery constriction after SAH and may represent a novel therapeutic target in the treatment of neurological deficits after SAH.  相似文献   

5.
Transgenic mice with cardiac-specific overexpression of G alpha q exhibit a biochemical and physiological phenotype of load-independent cardiac hypertrophy with contractile dysfunction. To elucidate the cellular basis for altered contractility, we measured cellular contraction, Ca(2+)transients, and l -type Ca(2+)channel currents (I(Ca)) in left ventricular (LV) myocytes isolated from non transgenic (NT) controls or G alpha q hearts. Although baseline contractile function (% shortening) and the amplitude of Ca(2+)transients in G alpha q myocytes were similar to NT myocytes, the rates of cellular shortening and relengthening and the duration of Ca(2+)transients were prolonged in G alpha q myocytes. Myocytes from G alpha q hearts had larger cell capacitance but no change in I(Ca)density, voltage-dependence of activation and inactivation. The responses of I(Ca)to dihydropyridine drugs and a membrane permeable cAMP analog, 8-(4-chlorophenylthio) cAMP, were not altered; however, the time course of I(Ca)inactivation was significantly slower in G alpha q myocytes compared to NT myocytes. The kinetic difference in inactivation was abolished when Ba(2+)was used as the charge carrier or when the sarcoplasmic reticulum (SR) Ca(2+)was depleted by ryanodine, suggesting that Ca(2+)-dependent inactivation is reduced in G alpha q myocytes due to altered SR Ca(2+)release. Consistent with this hypothesis, the function of SR as assessed by the maximal Ca(2+)uptake rates and the apparent affinity of SR Ca(2+)-ATPase for Ca(2+)was reduced in ventricles of G alpha q heart. These results suggest that the reduced SR function contributes to the depressed contractility associated with this form of cardiac hypertrophy.  相似文献   

6.
Large-conductance potassium (BK) channels in vascular smooth muscle cells (VSMCs) sense both changes in membrane potential and in intracellular Ca(2+) concentration. BK channels may serve as negative feedback regulators of vascular tone by linking membrane depolarization and local increases in intracellular Ca(2+) concentration (Ca(2+) sparks) to repolarizing spontaneous transient outward K(+) currents (STOCs). BK channels are composed of channel-forming BKalpha and auxiliary BKbeta1 subunits, which confer to BK channels an increased sensitivity for changes in membrane potential and Ca(2+). To assess the in vivo functions of this ss subunit, mice with a disrupted BKbeta1 gene were generated. Cerebral artery VSMCs from BKbeta1 -/- mice generated Ca(2+) sparks of normal amplitude and frequency, but STOC frequencies were largely reduced at physiological membrane potentials. Our results indicate that BKbeta1 -/- mice have an abnormal Ca(2+) spark/STOC coupling that is shifted to more depolarized potentials. Thoracic aortic rings from BKbeta1 -/- mice responded to agonist and elevated KCl with a increased contractility. BKbeta1 -/- mice had higher systemic blood pressure than BKbeta1 +/+ mice but responded normally to alpha(1)-adrenergic vasoconstriction and nitric oxide-mediated vasodilation. We propose that the elevated blood pressure in BKbeta1 -/- mice serves to normalize Ca(2+) spark/STOC coupling for regulating myogenic tone. The full text of this article is available at http://www.circresaha.org.  相似文献   

7.
The cellular events that cause ischemic neurological damage following aneurysmal subarachnoid hemorrhage (SAH) have remained elusive. We report that subarachnoid blood profoundly impacts communication within the neurovascular unit-neurons, astrocytes, and arterioles-causing inversion of neurovascular coupling. Elevation of astrocytic endfoot Ca(2+) to ~400 nM by neuronal stimulation or to ~300 nM by Ca(2+) uncaging dilated parenchymal arterioles in control brain slices but caused vasoconstriction in post-SAH brain slices. Inhibition of K(+) efflux via astrocytic endfoot large-conductance Ca(2+)-activated K(+) (BK) channels prevented both neurally evoked vasodilation (control) and vasoconstriction (SAH). Consistent with the dual vasodilator/vasoconstrictor action of extracellular K(+) ([K(+)](o)), [K(+)](o) <10 mM dilated and [K(+)](o) >20 mM constricted isolated brain cortex parenchymal arterioles with or without SAH. Notably, elevation of external K(+) to 10 mM caused vasodilation in brain slices from control animals but caused a modest constriction in brain slices from SAH model rats; this latter effect was reversed by BK channel inhibition, which restored K(+)-induced dilations. Importantly, the amplitude of spontaneous astrocytic Ca(2+) oscillations was increased after SAH, with peak Ca(2+) reaching ~490 nM. Our data support a model in which SAH increases the amplitude of spontaneous astrocytic Ca(2+) oscillations sufficiently to activate endfoot BK channels and elevate [K(+)](o) in the restricted perivascular space. Abnormally elevated basal [K(+)](o) combined with further K(+) efflux stimulated by neuronal activity elevates [K(+)](o) above the dilation/constriction threshold, switching the polarity of arteriolar responses to vasoconstriction. Inversion of neurovascular coupling may contribute to the decreased cerebral blood flow and development of neurological deficits that commonly follow SAH.  相似文献   

8.
Local control of cerebral blood flow is regulated in part through myogenic constriction of resistance arteries. Although this response requires Ca2+ influx via voltage-dependent Ca2+ channels secondary to smooth muscle cell depolarization, the mechanisms responsible for alteration of vascular smooth muscle (VSM) cell membrane potential are not fully understood. A previous study from our laboratory demonstrated a critical role for a member of the transient receptor potential (TRP) superfamily of ion channels, TRPC6, in this response. Several other of the approximately 22 identified TRP proteins are also present in cerebral arteries, but their functions have not been elucidated. Two of these channels, TRPM4 and TRPM5, exhibit biophysical properties that are consistent with a role for control of membrane potential of excitable cells. We hypothesized that TRPM4/TRPM5-dependent currents contribute to myogenic vasoconstriction of cerebral arteries. Cation channels with unitary conductance, ion selectivity and Ca2+-dependence similar to those of cloned TRPM4 and TRPM5 were present in freshly isolated VSM cells. We found that TRPM4 mRNA was detected in both whole cerebral arteries and in isolated VSM cells whereas TRPM5 message was absent from cerebral artery myocytes. We also found that pressure-induced smooth muscle cell depolarization was attenuated in isolated cerebral arteries treated with TRPM4 antisense oligodeoxynucleotides to downregulate channel subunit expression. In agreement with these data, myogenic vasoconstriction of intact cerebral arteries administered TRPM4 antisense was attenuated compared with controls, whereas KCl-induced constriction did not differ between groups. We concluded that activation of TRPM4-dependent currents contributed to myogenic vasoconstriction of cerebral arteries.  相似文献   

9.
In the mouse, genetic reduction in the Na(+), K(+)-ATPase alpha1 or alpha2 isoforms results in different functional phenotypes: heterozygous alpha2 isolated hearts are hypercontractile, whereas heterozygous alpha1 hearts are hypocontractile. We examined Na(+)/Ca(2+) exchange (NCX) currents in voltage clamped myocytes (pipette [Na(+)]=15 mM) induced by abrupt removal of extracellular Na(+). In wild-type (WT) myocytes, peak exchanger currents were 0.59+/-0.04 pA/pF (mean+/-S.E.M., n=10). In alpha1(+/-) myocytes (alpha2 isoform increased by 54%), NCX current was reduced to 0.33+/-0.05 (n=9, P<0.001) indicating a lower subsarcolemmal [Na(+)]. In alpha2(+/-) myocytes (alpha2 isoform reduced by 54%), the NCX current was increased to 0.89+/-0.11 (n=8, P=0.03). The peak sarcolemmal Na(+) pump currents activated by abrupt increase in [K(+)](o) to 4 mM in voltage clamped myocytes in which the Na(+) pump had been completely inhibited for 5 min by exposure to 0 [K(+)](o) were similar in alpha1(+/-) (0.86+/-0.12, n=10) and alpha2(+/-) myocytes (0.94+/-0.08 pA/pF, n=16), and were slightly but insignificantly reduced relative to WT (1.03+/-0.05, n=24). The fluo-3 [Ca(2+)](i) transient (F/F(o)) in WT myocytes paced at 0.5 Hz was 2.18+/-0.09, n=34, was increased in alpha2(+/-) myocytes (F/F(o)=2.56+/-0.14, n=24, P=0.02), and was decreased in alpha1(+/-) myocytes (F/F(o)=1.93+/-0.08, n=28, P<0.05). Thus the alpha2 isoform rather than the alpha1 appears to influence Na(+)/Ca(2+) exchanger currents [Ca(2+)](i) transients, and contractility. This finding is consistent with the proposal that alpha2 isoform of the Na pump preferentially alters [Na(+)] in a subsarcolemmal micro-domain adjacent to Na(+)/Ca(2+) exchanger molecules and SR Ca(2+) release sites.  相似文献   

10.
It has been reported that sarcoplasmic reticulum (SR) Ca(2+) uptake is more rapid in rat than rabbit ventricular myocytes, but little information is available on the relative SR Ca(2+) uptake activity in others species, including humans. We induced Ca(2+) transients with a short caffeine pulse protocol (rapid solution switcher, 10 mM caffeine, 100 ms) in single ventricular myocytes voltage clamped (-80 mV) with pipettes containing 100 microM fluo-3 and nominal 0 Ca(2+), in 0 Na(+)(o)/0 Ca(2+)(o) solution to inhibit Na/Ca exchange. SR in non-paced human, dog, rabbit, and mouse ventricular myocytes could be readily loaded with Ca(2+) under our experimental conditions with a pipette [Ca(2+)] = 100 nM. Resting [Ca(2+)](i) was similar in four types of ventricular myocytes. Activation of the Ca(2+)-release channel with a 100-ms caffeine pulse produced a rise in [caffeine](i) to slightly above 2 mM, the threshold for caffeine activation of Ca(2+) release. This caused a similar initial rate of rise and peak [Ca(2+)](i) in the four types of ventricular myocytes. However, there were significant differences in the duration of the plateau (top 10%) [Ca(2+)](i) transients and the time constant of the [Ca(2+)](i) decline (reflecting activity of the SR Ca(2+)-ATPase), with values for human > dog > rabbit > mouse. In paced myocytes under physiologic conditions, SR Ca(2+) content was greater in mouse than in rabbit myocytes, while peak I(Ca,L) was smaller in mouse. These findings confirm substantial species difference in SR Ca(2+)-ATPase activity, and suggest that the smaller the animal and the more rapid the heart rate, greater the activity of the SR Ca(2+)-ATPase. In addition, it appears that substantial species differences exist in the degree of SR Ca(2+) loading and I(Ca,L) under physiologic conditions.  相似文献   

11.
Measurements of electrical activity and intracellular Ca(2+) levels were performed in perforated-patch clamped GH(3) cells to determine the contribution of large-conductance calcium-activated K(+) (BK) channels to action potential repolarization and size of the associated Ca(2+) oscillations. By examining the dependence of action potential (AP) duration on extracellular Ca(2+) levels in the presence and the absence of the specific BK channel blocker paxilline, it is observed that plateau-like action potentials are associated to low densities of paxilline-sensitive currents. Extracellular Ca(2+) increases or paxilline additions are not able to largely modify action potential duration in cells showing a reduced expression of BK currents. Furthermore, specific blockade of these currents with paxilline systematically elongates AP duration, but only under conditions in which short APs and/or prominent BK currents recorded under voltage-clamp mode are present in the same cells. Our data indicate that in GH(3) cells, BK channels act primarily ending the action potential and suggest that by contributing to fine-tuning cellular electrical properties and hence intracellular Ca(2+) variations, BK channels may play an important role on time- and cell-dependent modulation of physiological outputs in adenohypophyseal cells.  相似文献   

12.
Vasoconstrictors that bind to phospholipase C-coupled receptors elevate inositol-1,4,5-trisphosphate (IP(3)). IP(3) is generally considered to elevate intracellular Ca(2+) concentration ([Ca(2+)](i)) in arterial myocytes and induce vasoconstriction via a single mechanism: by activating sarcoplasmic reticulum (SR)-localized IP(3) receptors, leading to intracellular Ca(2+) release. We show that IP(3) also stimulates vasoconstriction via a SR Ca(2+) release-independent mechanism. In isolated cerebral artery myocytes and arteries in which SR Ca(2+) was depleted to abolish Ca(2+) release (measured using D1ER, a fluorescence resonance energy transfer-based SR Ca(2+) indicator), IP(3) activated 15 pS sarcolemmal cation channels, generated a whole-cell cation current (I(Cat)) caused by Na(+) influx, induced membrane depolarization, elevated [Ca(2+)](i), and stimulated vasoconstriction. The IP(3)-induced I(Cat) and [Ca(2+)](i) elevation were attenuated by cation channel (Gd(3+), 2-APB) and IP(3) receptor (xestospongin C, heparin, 2-APB) blockers. TRPC3 (canonical transient receptor potential 3) channel knockdown with short hairpin RNA and diltiazem and nimodipine, voltage-dependent Ca(2+) channel blockers, reduced the SR Ca(2+) release-independent, IP(3)-induced [Ca(2+)](i) elevation and vasoconstriction. In pressurized arteries, SR Ca(2+) depletion did not alter IP(3)-induced constriction at 20 mm Hg but reduced IP(3)-induced constriction by approximately 39% at 60 mm Hg. [Ca(2+)](i) elevations and constrictions induced by endothelin-1, a phospholipase C-coupled receptor agonist, were both attenuated by TRPC3 knockdown and xestospongin C in SR Ca(2+)-depleted arteries. In summary, we describe a novel mechanism of IP(3)-induced vasoconstriction that does not occur as a result of SR Ca(2+) release but because of IP(3) receptor-dependent I(Cat) activation that requires TRPC3 channels. The resulting membrane depolarization activates voltage-dependent Ca(2+) channels, leading to a myocyte [Ca(2+)](i) elevation, and vasoconstriction.  相似文献   

13.
A hallmark of hypertension is an increase in arterial myocyte voltage-dependent Ca(2+) (Ca(V)1.2) currents that induces pathological vasoconstriction. Ca(V)1.2 channels are heteromeric complexes composed of a pore-forming Ca(V)1.2α(1) with auxiliary α(2)δ and β subunits. Molecular mechanisms that elevate Ca(V)1.2 currents during hypertension and the potential contribution of Ca(V)1.2 auxiliary subunits are unclear. Here, we investigated the pathological significance of α(2)δ subunits in vasoconstriction associated with hypertension. Age-dependent development of hypertension in spontaneously hypertensive rats was associated with an unequal elevation in α(2)δ-1 and Ca(V)1.2α(1) mRNA and protein in cerebral artery myocytes, with α(2)δ-1 increasing more than Ca(V)1.2α(1). Other α(2)δ isoforms did not emerge in hypertension. Myocytes and arteries of hypertensive spontaneously hypertensive rats displayed higher surface-localized α(2)δ-1 and Ca(V)1.2α(1) proteins, surface α(2)δ-1:Ca(V)1.2α(1) ratio, Ca(V)1.2 current density and noninactivating current, and pressure- and depolarization-induced vasoconstriction than those of Wistar-Kyoto controls. Pregabalin, an α(2)δ-1 ligand, did not alter α(2)δ-1 or Ca(V)1.2α(1) total protein but normalized α(2)δ-1 and Ca(V)1.2α(1) surface expression, surface α(2)δ-1:Ca(V)1.2α(1), Ca(V)1.2 current density and inactivation, and vasoconstriction in myocytes and arteries of hypertensive rats to control levels. Genetic hypertension is associated with an elevation in α(2)δ-1 expression that promotes surface trafficking of Ca(V)1.2 channels in cerebral artery myocytes. This leads to an increase in Ca(V)1.2 current-density and a reduction in current inactivation that induces vasoconstriction. Data also suggest that α(2)δ-1 targeting is a novel strategy that may be used to reverse pathological Ca(V)1.2 channel trafficking to induce cerebrovascular dilation in hypertension.  相似文献   

14.
OBJECTIVE: The aim of this study was to characterize the spatio-temporal dynamics of [Ca(2+)](i) in rat heart in the fetal and neonatal periods. METHODS: Using confocal scanning laser microscopy and the Ca(2+) indicator fluo-3, we investigated Ca(2+) transients and Ca(2+) sparks in single ventricular myocytes freshly isolated from rat fetuses and neonates. T-tubules were labeled with a membrane-selective dye (di-8-ANEPPS). Spatial association of dihydropyridine receptors (DHPR) and ryanodine receptors (RyR) was also examined by double-labeling immunofluorescence. RESULTS: Ca(2+) transients in the fetal myocytes were characterized by slower upstroke and decay of [Ca(2+)](i) compared to those in adult myocytes. The magnitude of fetal Ca(2+) transients was decreased after application of ryanodine (1 microM) or thapsigargin (1 microM). However, Ca(2+) sparks were rarely detected in the fetal myocytes. Frequent ignition of Ca(2+) sparks was established in the 6-9-day neonatal period, and was predominantly observed in the subsarcolemmal region. The developmental change in Ca(2+) sparks coincided with development of the t-tubule network. The immunofluorescence study revealed colocalization of DHPR and RyR in the postnatal period, which was, however, not observed in the fetal period. In the adult myocytes, Ca(2+) sparks disappeared after disruption of t-tubules by glycerol incubation (840 mM). CONCLUSIONS: The sarcoplasmic reticulum (SR) of rat ventricular myocytes already functions early in the fetal period. However, ignition of Ca(2+) sparks depends on postnatal t-tubule formation and resultant colocalization of DHPR and RyR.  相似文献   

15.
16.
OBJECTIVE: Previous work suggests that modification of sarcoplasmic reticulum (SR) function may contribute to the cardioprotective effect of halothane during ischaemia and reperfusion. The aim of this study was to investigate the effects of halothane on spontaneous Ca(2+) release from the sarcoplasmic reticulum (Ca(2+) sparks and waves). METHODS: Rat atrial myocytes were permeabilized with saponin and perfused with solutions approximating to the intracellular milieu and containing fluo-3. SR Ca(2+) release was detected using confocal microscopy. RESULTS: In the presence of 5 mM ATP, halothane (0.25-2 mM) had no significant effect on the amplitude or frequency of spontaneous Ca(2+) waves. However, in the presence of 0.05 mM ATP, halothane (0.25-2 mM) induced a concentration-dependent decrease in the amplitude and an increase in the frequency of spontaneous Ca(2+) waves, e.g., 1 mM halothane decreased the amplitude by 34.7+/-3.5% (n=9) and increased the frequency by 67+/-19.9% (n=7). In the presence of 5 mM ATP, 1 mM halothane had no significant effect on the amplitude or frequency of Ca(2+) sparks. When [ATP] was reduced to 0.05 mM, Ca(2+) spark frequency decreased by 67.9+/-14% and the amplitude increased by 27.5+/-4.9% (n=13). Subsequent introduction of halothane (0.5-1 mM) induced a transient burst of Ca(2+) sparks, consistent with ryanodine receptor (RyR) activation. Further experiments showed that the decrease in Ca(2+) spark frequency following ATP depletion was associated with a progressive increase in the SR Ca(2+) content over 1-2 min. This rise in SR Ca(2+) content did not occur when 1 mM halothane was present during ATP depletion. CONCLUSIONS: These data suggest that the sensitivity of the RyR to activation by halothane increases at low [ATP]. In metabolically impaired cells, halothane would be expected to lessen any rise in SR Ca(2+) content and to reduce the amplitude of spontaneous Ca(2+) release. These effects of halothane are considered in relation to the events that occur during ischaemia and reperfusion.  相似文献   

17.
Hu XQ  Xiao D  Zhu R  Huang X  Yang S  Wilson S  Zhang L 《Hypertension》2011,58(6):1132-1139
Uterine vascular tone significantly decreases whereas uterine blood flow dramatically increases during pregnancy. However, the complete molecular mechanisms remain elusive. We hypothesized that increased Ca(2+)-activated K(+) (BK(Ca)) channel activity contributes to the decreased myogenic tone of uterine arteries in pregnancy. Resistance-sized uterine arteries were isolated from nonpregnant and near-term pregnant sheep. Electrophysiological studies revealed a greater whole-cell K(+) current density in pregnant compared with nonpregnant uterine arteries. Tetraethylammonium and iberiotoxin inhibited K(+) currents to the same extent in uterine arterial myocytes. The BK(Ca) channel current density was significantly increased in pregnant uterine arteries. In accordance, tetraethylammonium significantly increased pressure-induced myogenic tone in pregnant uterine arteries and abolished the difference in myogenic responses between pregnant and nonpregnant uterine arteries. Activation of protein kinase C produced a similar effect to tetraethylammonium by inhibiting BK(Ca) channel activity and increasing myogenic tone in pregnant uterine arteries. Chronic treatment of nonpregnant uterine arteries with physiologically relevant concentrations of 17β-estradiol and progesterone caused a significant increase in the BK(Ca) channel current density. Western blot analyses demonstrated a significant increase of the β1, but not α, subunit of BK(Ca) channels in pregnant uterine arteries. In accordance, steroid treatment of nonpregnant uterine arteries resulted in an upregulation of the β1, but not α, subunit expression. The results indicate that the steroid hormone-mediated upregulation of the β1 subunit and BK(Ca) channel activity may play a key role in attenuating myogenic tone of the uterine artery in pregnancy.  相似文献   

18.
This study compared Ca(2+) homeostasis in ventricular myocytes from 8-month-old female C57BL/6J mice that had either a bilateral ovariectomy (OVX) or a sham surgery at 3 weeks of age. Cells were loaded with fura-2 and field-stimulated or voltage-clamped with steps to membrane potentials between -40 and +80 mV (37°C). Peak Ca(2+) transients increased by two-fold in OVX myocytes when compared to sham, and Ca(2+) transient rates of rise and decay were faster in OVX cells. In contrast, Ca(2+) current densities were similar in sham and OVX cells. Sarcoplasmic reticulum (SR) Ca(2+) content, assessed by caffeine, also was higher in OVX compared to sham cells (111.7 ± 11.9 vs. 61.2 ± 10.4 nM; p<0.05). Furthermore, the gain of Ca(2+) release (Ca(2+) release/Ca(2+) current) was significantly greater in OVX than in sham cells (16.3 ± 2.5 vs. 7.7 ± 2.0 nM/pApF(-1) at 0 mV; p<0.05). As changes in unitary Ca(2+) release might account for the increased gain in OVX cells, spontaneous Ca(2+) sparks were compared in fluo-4-loaded myocytes (37°C). Spark frequency was higher in OVX cells than in sham cells. In addition, spark amplitudes were greater in OVX than in sham myocytes (ΔF/F(0)=0.379 ± 0.006 vs. 0.342 ± 0.006; p<0.05). However, spark widths and time courses were similar in the two groups. These data suggest that the size of individual SR Ca(2+) release units is larger and the SR Ca(2+) content is greater in myocytes of OVX mice, producing augmented gain and SR Ca(2+) release. These observations show that OVX disrupts intracellular Ca(2+) homeostasis and suggest that sex steroid hormones modulate unitary Ca(2+) release in individual cardiac myocytes.  相似文献   

19.
In the present study, we examined the effect of interleukin-2 (IL-2) on cardiomyocyte Ca(2+) handling. The effects of steady-state and transient changes in stimulation frequency on the intracellular Ca(2+) transient were investigated in isolated ventricular myocytes by spectrofluorometry. In the steady state (0.2 Hz) IL-2 (200 U/ml) decreased the amplitude of Ca(2+) transients induced by electrical stimulation and caffeine. At 1.25 mM extracellular Ca(2+) concentration ([Ca(2+)](o)), when the stimulation frequency increased from 0.2 to 1.0 Hz, diastolic Ca(2+) level and peak intracellular Ca(2+) concentration ([Ca(2+)](i)), as well as the amplitude of the transient, increased. The positive frequency relationships of the peak and amplitude of [Ca(2+)](i) transients were blunted in the IL-2-treated myocytes. The effect of IL-2 on the electrically induced [Ca(2+)](i) transient was not normalized by increasing [Ca(2+)](o) to 2.5 mM. IL-2 inhibited the frequency relationship of caffeine-induced Ca(2+) release. Blockade of sarcoplasmic reticulum (SR) Ca(2+)-ATPase with thapsigargin resulted in a significant reduction of the amplitude-frequency relationship of the transient similar to that induced by IL-2. The restitutions were not different between control and IL-2 groups at 1.25 mM [Ca(2+)](o), which was slowed in IL-2-treated myocytes when [Ca(2+)](o) was increased to 2.5 mM. There was no difference in the recirculation fraction (RF) between control and IL-2-treated myocytes at both 1.25 and 2.5 mM [Ca(2+)](o). The effects of IL-2 on frequency relationship, restitution, and RF may be due to depressed SR functions and an increased Na(+)-Ca(2+) exchange activity, but not to any change in L-type Ca(2+) channels.  相似文献   

20.
We have previously described a cardiomyopathy induced by culturing ventricular myocytes from normal adult rats in a medium containing high concentrations of glucose, which recapitulates cellular changes associated with early onset diabetic cardiomyopathy. This investigation was designed to evaluate cellular mechanisms that could contribute to slowed cytosolic Ca(2+) removal and myocyte relaxation in glucose-induced cardiomyopathy. Isolated ventricular myocytes were cultured overnight in medium containing normal glucose (n=5.5mM) or high glucose (HG=25.5mM). Cytosolic Ca(2+) removal was monitored with fluo-3 and myocyte mechanics with video-edge detection. Electrically stimulated Ca(2+) transients were prolonged in HG cells (A(T/PK)=215+/-7ms, n=41) compared to N myocytes (A(T/PK)=173+/-5ms, n=34). By pharmacological and ionic manipulations, Ca(2+) removal attributable to SERCA was slower in the HG group (A(D/PK)=290+/-17ms,n =41) compared to N (A(D/PK)=219+/-10, n=34), whereas NCX function was similar in both groups of cells. Total PKA activity was depressed in HG myocytes by 56% compared to N cells. beta-adrenergic receptor stimulation with ISO (10(-7)M) normalized myocyte relaxation, Ca(2+) transients and PKA activity in HG myocytes. Furthermore, inhibition of PKA with H89 (10(-5)M) depressed peak fractional shortening (PS) and slowed relengthening (A(R/PK)) to a greater extent in N (-50% for PS and 92% for A(R/PK)) than in HG cells (-25% for PS and 48% A(R/PK)). Depressed cytosolic Ca(2+) removal was not, however, associated with changes in basal levels of phosphorylated PLB, nor levels of SERCA, NCX or PLB proteins. We conclude that cellular mechanisms associated with the early onset glucose-induced cardiomyocyte dysfunction involves alterations in Ca(2+) regulation, which may be a common manifestation of other forms of cardiomyopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号