首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectrum of the anti-human immunodeficiency virus (HIV) neutralizing immune response has been analyzed by the production and characterization of monoclonal antibodies (mAbs) to the viral envelope glycoproteins, gp41 and gp120. Little is known, however, about the neutralization mechanism of these antibodies. Here we show that the binding of a group of neutralizing mAbs that react with regions of the gp120 molecule associated with and including the V2 and V3 loops, the C4 domain and supporting structures, induce the dissociation of gp120 from gp41 on cells infected with the T cell line-adapted HIV-1 molecular clone Hx10. Similar to soluble receptor-induced dissociation of gp120 from gp41, the antibody-induced dissociation is dose- and time- dependent. By contrast, mAbs binding to discontinuous epitopes overlapping the CD4 binding site do not induce gp120 dissociation, implying that mAb induced conformational changes in gp120 are epitope specific, and that HIV neutralization probably involves several mechanisms.  相似文献   

2.
Recently, sinusitis has been recognized as a frequent clinical problem in human immunodeficiency virus (HIV-1)-infected individuals. We hypothesized that quantitative defects in immune cells in the nasal mucosa of HIV-positive subjects might mirror those in the peripheral blood and explain a predisposition to sinus disease in this population. Nasal mucosa biopsies were obtained from three different groups of patients—HIV-1 seropositive with sinusitis, HIV-1 seronegative with sinusitis, and HIV-1 seronegative without sinusitis (normal volunteer)—and phenotyped for cluster of differentiation antigen (CD) markers. In this study, we found patients with HIV-1 and sinus disease to have significantly lower numbers of both CD3 and CD4 nasal mucosa lymphocytes than seronegative controls in the nasal mucosa (P<0.05, P<0.01, respectively). A correlation between nasal mucosal CD4 cells and peripheral-blood CD4 cells was noted (R = 0.67, P ≤ 0.01). No deficiency in the number of nasal mucosa T or TC type mast cells was noted for the HIV-1-positive sinusitis group. Further study is warranted to define more completely the pathophysiology and microbiology of, and therapy for, this important clinical problem. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Human immunodeficiency virus 1 (HIV-1) produced in the human T lymphoblastoid H9 cell line infected cells of that line more readily than cells of the human monocytoid U937 line. While both cell lines expressed detectable levels of the CD4 molecule on their surfaces, the H9 and U937 cell lines differed in expression of major histocompatibility complex class I and class II antigens. Both H9 and U937 cells were infected initially with HIV-1 derived from H9 cells. Cell-free culture supernatants were harvested after the cells had been infected for at least 1 month. Culture supernatant from HIV-infected H9 cells was used to infect H9 and U937 cells. Conversely, culture supernatant from HIV-infected U937 cells was used to infect H9 and U937 cells. The percentages of cells infected at each of several time points during the first few days after infection were determined by flow cytometric analysis of cell-associated HIV-1 major core protein p24. Infection of each cell line was more efficient when the cell type infected was identical to that in which the infecting supernatant was produced. However, this difference in tropism was not generated early after infection of each cell line, as might have been expected if this effect were mediated by cell surface molecules acquired during the process of budding through the cell membrane.  相似文献   

4.
Capsid assembly during virus replication is a potential target for antiviral therapy. The Gag polyprotein is the main structural component of retroviral particles, and in human immunodeficiency virus type 1 (HIV-1), it contains the sequences for the matrix, capsid, nucleocapsid, and several small polypeptides. Here, we report that at a concentration of 100 micro M, 7 of 83 tripeptide amides from the carboxyl-terminal sequence of the HIV-1 capsid protein p24 suppressed HIV-1 replication (>80%). The three most potent tripeptides, glycyl-prolyl-glycine-amide (GPG-NH(2)), alanyl-leucyl-glycine-amide (ALG-NH(2)), and arginyl-glutaminyl-glycine-amide (RQG-NH(2)), were found to interact with p24. With electron microscopy, disarranged core structures of HIV-1 progeny were extensively observed when the cells were treated with GPG-NH(2) and ALG-NH(2). Furthermore, nodular structures of approximately the same size as the broad end of HIV-1 conical capsids were observed at the plasma membranes of treated cells only, possibly indicating an arrest of the budding process. Corresponding tripeptides with nonamidated carboxyl termini were not biologically active and did not interact with p24.  相似文献   

5.
6.
Treatment of acutely infected human brain cell and enriched microglial cell cultures with diazepam inhibited human immunodeficiency virus type 1 (HIV-1) p24 antigen expression. Similarly, diazepam suppressed HIV-1 expression in chronically infected promonocytic (U1) cells and acutely infected monocyte-derived macrophages, and this antiviral activity was associated with decreased activation of nuclear factor kappa B.  相似文献   

7.
Freshly isolated B lymphocytes from patients infected with human immunodeficiency virus (HIV), in contrast to B cells from normal controls, were shown to induce viral expression in two cell lines: ACH-2, a T cell line, and U1, a promonocytic cell line, which are chronically infected with HIV, as well as in autologous T cells. In 10 out of 10 HIV-infected individuals with hypergammaglobulinemia, spontaneous HIV-inductive capacity was found with highly purified peripheral blood B cells, whereas peripheral blood or tonsillar B cells from six healthy, HIV-negative donors did not induce HIV expression unless the cells were stimulated in vitro. The induction of HIV expression was observed in direct coculture experiments of B lymphocytes and HIV-infected cells, and could also be mediated by supernatants from cultures of B cells. Significantly higher amounts of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) were detected in the B cell culture supernatants from HIV-infected patients with hypergammaglobulinemia (IL-6: mean = 536 pg/ml; TNF-alpha: mean = 493 pg/ml), as compared with normal uninfected controls (IL-6: mean = 18 pg/ml; TNF-alpha: mean = 23 pg/ml). Antibodies against these cytokines abolished the HIV-inductive capacity of B cells. We conclude that in vivo activated B cells in HIV-infected individuals can upregulate the expression of virus in infected cells by secreting cytokines such as TNF-alpha and IL-6, and, therefore, may play a role in the progression of HIV infection.  相似文献   

8.
The human immunodeficiency virus (HIV-1) infects T lymphocytes via an interaction between the virus envelope glycoprotein gp120 and the CD4 antigen of T helper cells. Previous studies demonstrated that mutations in various regions of CD4 domain 1 lead to the loss of gp120 binding. In the present study the gp120 binding site was constructed in rat CD4 by replacing rat with human CD4 sequence. A series of mutants was constructed the best of which bound gp120 with an affinity only twofold less than that of human CD4. The data indicate that the gp120 binding site of human CD4 is constituted by residues 33-58 of domain 1.  相似文献   

9.
There is increasing evidence that sera from HIV-1-infected individuals contain antibodies that enhance infection by HIV-1 in vitro. Previous work has demonstrated that complement receptors on T lymphoid cells and Fc receptors for IgG (Fc gamma R) on monocytic cells are required for enhanced infection by antibody-complexed HIV-1. Characterization of such infection-enhancing antibodies is essential because immunogenic epitopes which induce enhancing antibodies should be excluded from HIV-1 vaccines. This study was conducted to identify enhancing antibodies involved in Fc R-mediated enhancement of HIV-1 infection employing IgG human monoclonal antibodies (HMAbs) reactive against gp120 of HIV-1, which were produced by B cell lines derived from an HIV-1-infected individual. A potent neutralizing HMAb N70-1.5e did not enhance infection by HIV-1 (IIIB and MN strains), whereas HMAb N70-2.3a mediated enhancement of HIV-1 infection, but had little neutralizing activity. A competition radio immunoassay demonstrated that the two antibodies bind to distinct epitopes. These results indicated that enhancing and neutralizing antibodies can be induced by different epitopes on gp120, suggesting the potential for development of safe vaccines against HIV-1 by exclusion of immunogenic epitopes for enhancing antibodies. We made attempts to identify the epitope on gp120 that is recognized by the enhancing antibody N70-2.3a by using recombinant HIV-1 proteins and found that the antibody binds to a conformational site of nonvariable sequences in the carboxyl half (aa 272-509) of gp120.  相似文献   

10.
CD4 is the primary receptor for the human immunodeficiency virus type 1 (HIV-1). Early mutational studies implicated a number of residues of CD4, centered in the region 41-59, in binding to gp120. However, further mutational analyses, together with studies using inhibitory antibodies or CD4-derived peptides, have suggested that other regions of CD4 are also involved in binding or postbinding events during infection. To resolve these ambiguities, we used rat CD4 mutants in which particular regions were replaced with the corresponding sequence of human CD4. We have previously shown that some of these are able to bind HIV-1 gp120, and here we test their ability to act as functional receptors. We find that the presence of human CD4 residues 33-62 is enough to confer efficient receptor function to rat CD4, and we conclude that it is unlikely that regions of CD4 outside this sequence are involved in specific interactions with HIV-1 during either infection or syncytium formation.  相似文献   

11.
The surface of the human immunodeficiency virus (HIV-1), a causative agent for acquired immunodeficiency syndrome (AIDS), is covered with the major envelope glycoprotein gp120, of which the carbohydrate moiety accounted for 50% of the molecular mass. There is evidence that glycosylation of gp120 is prerequisite to the various stages of HIV infection. The oligosaccharide structures of gp120 have been determined using recombinant gp120 of HIV-1 (IIIB) produced in chinese hamster ovary cells and virus-derived gp120 isolated from H9 lymphocytes chronically infected with HIV-1 (IIIB). Three oligosaccharides have been suggested to be involved in the HIV-infection process. Occurrence of infection process which is independent of CD4 recognition and mediated by gp120 oligosaccharides, mannose-binding protein, and complement system has been suggested.  相似文献   

12.
L-731,988 inhibits human immunodeficiency virus (HIV) replication through integrase. In this study, approximately 600 nM L-731,988 inhibited the replication of 12 HIV type 1 isolates from multiple clades, including primary isolates and cloned viruses. These data suggest that diketo acids or their derivatives may prove useful on a worldwide basis in treating HIV infection.  相似文献   

13.
We have evaluated the anti-human immunodeficiency virus (HIV) activity of a series of natural and synthetic porphyrins to identify compounds that could potentially be used as microbicides to provide a defense against infection by sexually transmitted virus. For assays we used an epithelial HeLa-CD4 cell line with an integrated long terminal repeat-beta-galactosidase gene. For structure-activity analysis, we divided the porphyrins tested into three classes: (i) natural porphyrins, (ii) metallo-tetraphenylporphyrin tetrasulfonate (metallo-TPPS4) derivatives, and (iii) sulfonated tetra-arylporphyrin derivatives. None of the natural porphyrins studied reduced infection by more than 80% at a concentration of 5 micro g/ml in these assays. Some metal chelates of TPPS4 were more active, and a number of sulfonated tetra-aryl derivatives showed significantly higher activity. Some of the most active compounds were the sulfonated tetranaphthyl porphyrin (TNapPS), sulfonated tetra-anthracenyl porphyrin (TAnthPS), and sulfonated 2,6-difluoro-meso-tetraphenylporphine [TPP(2,6-F2)S] and its copper chelate [TPP(2,6-F2)S,Cu], which reduced infection by 99, 96, 94, and 96%, respectively. Our observations indicate that at least some of these compounds are virucidal, i.e., that they render the virus noninfectious. The active compounds were found to inhibit binding of the HIV type 1 gp120 to CD4 and also to completely inhibit the ability of Env proteins expressed from recombinant vectors to induce cell fusion with receptor-bearing target cells. These results support the conclusion that modified porphyrins exhibit substantial activity against HIV and that their target is the HIV Env protein.  相似文献   

14.
15.
16.
17.
18.
Human immunodeficiency virus (HIV) Tat and gp120 intriguingly share the feature of being basic peptides that, once released by HIV(+) cells, bind to polyanionic heparan sulfate proteoglycans (HSPGs) on target uninfected cells, contributing to the onset of AIDS-associated pathologies. To identify multitarget anti-HIV prodrugs, we investigated the gp120 and Tat antagonist potentials of a series of polyanionic synthetic sulfonic acid polymers (SSAPs). Surface plasmon resonance revealed that SSAPs inhibit with a competitive mechanism of action the binding of Tat and gp120 to surface-immobilized heparin, an experimental condition that resembles binding to cellular HSPGs. Accordingly, SSAPs inhibited HSPG-dependent cell internalization and the transactivating activity of Tat. Little is known about the binding of free gp120 to target cells. Here, we identified two classes of gp120 receptors expressed on endothelial cells, one of which was consistent with an HSPG-binding, low-affinity/high-capacity receptor that is inhibited by free heparin. SSAPs inhibited the binding of free gp120 to endothelial cells, as well as its capacity to induce apoptosis in the same cells. In all the assays, poly(4-styrenesulfonic acid) (PSS) proved to be the most potent antagonist of Tat and gp120. Accordingly, PSS bound both proteins with high affinity. In conclusion, SSAPs represent an interesting class of compounds that bind both gp120 and Tat and inhibit their HSPG-dependent cell surface binding and pathological effects. As these activities contribute to both AIDS progression and associated pathologies, SSAPs can be considered prototypic molecules for the development of multitarget drugs for the treatment of HIV infection and AIDS-associated pathologies.  相似文献   

19.
Betulinic acid (BA) derivatives can inhibit human immunodeficiency virus type 1 (HIV-1) entry or maturation depending on side chain modifications. While BA derivatives with antimaturation activity have attracted considerable interest, the anti-HIV-1 profile and molecular mechanism of BA derivatives with anti-HIV-1 entry activity (termed BA entry inhibitors) have not been well defined. In this study, we have found that two BA entry inhibitors, IC9564 and A43D, exhibited a broad spectrum of anti-HIV-1 activity. Both compounds inhibited multiple strains of HIV-1 from clades A, B, and C at submicromolar concentrations. Clade C viruses were more sensitive to the compounds than clade A and B viruses. Interestingly, IC9564 at subinhibitory concentrations could alter the antifusion activities of other entry inhibitors. IC9564 was especially potent in increasing the sensitivity of HIV-1 YU2 Env-mediated membrane fusion to the CCR5 inhibitor TAK-779. Results from this study suggest that the V3 loop of gp120 is a critical determinant for the anti-HIV-1 activity of IC9564. IC9564 escape viruses contained mutations near the tip of the V3 loop. Moreover, IC9564 could compete with the binding of V3 monoclonal antibodies 447-52D and 39F. IC9564 also competed with the binding of gp120/CD4 complexes to chemokine receptors. In summary, these results suggest that BA entry inhibitors can potently inhibit a broad spectrum of primary HIV-1 isolates by targeting the V3 loop of gp120.  相似文献   

20.
Myeloperoxidase is virucidal to human immunodeficiency virus type 1 (HIV-1) in the persistently infected CEM human T-cell line or in acutely infected human peripheral blood mononuclear cells, as judged by viral infectivity and P24 radioimmunoassay. HIV-1 was specifically inactivated by low doses of the human myeloperoxidase (1.4 to 14.3 mU/ml) and the cells were spared. A higher enzyme concentration (143 mU/m) was cytotoxic, but uninfected CEM cells and normal lymphocytes were resistant to > or = 143 mU of myeloperoxidase per ml. The enzyme was virucidal with the Cl- present in medium and did not require exogenous H2O2. Catalase, an antioxidant enzyme, partially inhibited the virucidal effect of myeloperoxidase. Hence, the H2O2 probably came from the HIV-infected cells themselves. These in vitro findings indicate that the myeloperoxidase system is capable of inactivating HIV-1 of infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号