首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During peripheral nerve transposition repair, if the diameter difference between transposed nerves is large or multiple distal nerves must be repaired at the same time, traditional epineurial neurorrhaphy has the problem of high tension at the suture site, which may even lead to the failure of nerve suture. We investigated whether a small gap bio-sleeve suture with different inner diameters at both ends can be used to repair a 2-mm tibial nerve defect by proximal transposition of the common peroneal nerve in rats and compared the results with the repair seen after epineurial neurorrhaphy. Three months after surgery, neurological function, nerve regeneration, and recovery of nerve innervation muscle were assessed using the tibial nerve function index, neuroelectrophysiological testing, muscle biomechanics and wet weight measurement, osmic acid staining, and hematoxylin-eosin staining. There was no obvious inflammatory reaction and neuroma formation in the tibial nerve after repair by the small gap bio-sleeve suture with different inner diameters at both ends. The conduction velocity, muscle strength, wet muscle weight, cross-sectional area of muscle fibers, and the number of new myelinated nerve fibers in the biosleeve suture group were similar to those in the epineurial neurorrhaphy group. Our findings indicate that small gap bio-sleeve suture with different inner diameters at both ends can achieve surgical suture between nerves of different diameters and promote regeneration and functional recovery of injured peripheral nerves.  相似文献   

2.
Multiple regeneration of axonal buds has been shown to exist during the repair of peripheral nerve injury, which confirms a certain repair potential of the injured peripheral nerve. Therefore, a systematic nerve transposition repair technique has been proposed to treat severe peripheral nerve injury. During nerve transposition repair, the regenerated nerve fibers of motor neurons in the anterior horn of the spinal cord can effectively grow into the repaired distal nerve and target muscle tissues, which is conducive to the recovery of motor function. The aim of this study was to explore regeneration and nerve functional recovery after repairing a long-segment peripheral nerve defect by transposition of different donor nerves. A long-segment(2 mm) ulnar nerve defect in Sprague-Dawley rats was repaired by transposition of the musculocutaneous nerve, medial pectoral nerve, muscular branches of the radial nerve and anterior interosseous nerve(pronator quadratus muscle branch). In situ repair of the ulnar nerve was considered as a control. Three months later, wrist flexion function, nerve regeneration and innervation muscle recovery in rats were assessed using neuroelectrophysiological testing, osmic acid staining and hematoxylin-eosin staining, respectively. Our findings indicate that repair of a long-segment ulnar nerve defect with different donor nerve transpositions can reinnervate axonal function of motor neurons in the anterior horn of spinal cord and restore the function of affected limbs to a certain extent.  相似文献   

3.
End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve.It involves suturing the distal stump of the disconnected nerve(recipient nerve) to the side of the intimate adjacent nerve(donor nerve).However,the motor-sensory specificity after end-to-side neurorrhaphy remains unclear.This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy.Thirty rats were randomized into three groups:(1) end-to-side neurorrhaphy using the ulnar nerve(mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve;(2) the sham group:ulnar nerve and cutaneous antebrachii medialis nerve were just exposed;and(3) the transected nerve group:cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied.At 5 months,acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group,and none of the myelinated axons were stained in either the sham or transected nerve groups.Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%.In contrast,no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment.These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy.  相似文献   

4.
During nerve reconstruction,nerves of different thicknesses are often sutured together using end-to-side neurorrhaphy and end-to-end neurorrhaphy techniques.In this study,the effect of the type of neurorrhaphy on the number and diameter of regenerated axon fibers was studied in a rat facial nerve repair model.An inflow-type end-to-side and end-to-end neurorrhaphy model with nerve stumps of different thicknesses(2:1 diameter ratio) was created in the facial nerve of 14 adult male Sprague-Dawley rats.After 6 and 12 weeks,nerve regeneration was evaluated in the rats using the following outcomes:total number of myelinated axons,average minor axis diameter of the myelinated axons in the central and peripheral sections,and axon regeneration rate.End-to-end neurorrhaphy resulted in a significantly greater number of regenerated myelinated axons and rate of regeneration after 6 weeks than end-to-side neurorrhaphy;however,no such differences were observed at 12 weeks.While the regenerated axons were thicker at 12 weeks than at 6 weeks,no significant differences in axon fiber thickness were detected between end-to-end and end-toside neurorrhaphy.Thus,end-to-end neurorrhaphy resulted in greater numbers of regenerated axons and increased axon regeneration rate during the early postoperative period.As rapid reinnervation is one of the most important factors influencing the restoration of target muscle function,we conclude that end-to-end neurorrhaphy is desirable when suturing thick nerves to thin nerves.  相似文献   

5.
Multiple-bud regeneration, i.e., multiple amplification, has been shown to exist in peripheral nerve regeneration. Multiple buds grow towards the distal nerve stump during proximal nerve fiber regeneration. Our previous studies have verified the limit and validity of multiple amplification of peripheral nerve regeneration using small gap sleeve bridging of small donor nerves to repair large receptor nerves in rodents. The present study sought to observe multiple amplification of myelinated nerve fiber regeneration in the primate peripheral nerve. Rhesus monkey models of distal ulnar nerve defects were established and repaired using muscular branches of the right forearm pronator teres. Proximal muscular branches of the pronator teres were sutured into the distal ulnar nerve using the small gap sleeve bridging method. At 6 months after suture, two-finger flexion and mild wrist flexion were restored in the ulnar-sided injured limbs of rhesus monkey. Neurophysiological examination showed that motor nerve conduction velocity reached 22.63 ± 6.34 m/s on the affected side of rhesus monkey. Osmium tetroxide staining demonstrated that the number of myelinated nerve fibers was 1,657 ± 652 in the branches of pronator teres of donor, and 2,661 ± 843 in the repaired ulnar nerve. The rate of multiple amplification of regenerating myelinated nerve fibers was 1.61. These data showed that when muscular branches of the pronator teres were used to repair ulnar nerve in primates, effective regeneration was observed in regenerating nerve fibers, and functions of the injured ulnar nerve were restored to a certain extent. Moreover, multiple amplification was subsequently detected in ulnar nerve axons.  相似文献   

6.
We investigated nerve regeneration following the repair of a segmental nerve defect induced by direct end-to-end neurorrhaphy after simultaneous gradual lengthening of both proximal and distal nerve stumps in rats. A 15-mm-long nerve segment was resected from the sciatic nerve of each rat. The proximal and distal nerve stumps, respectively, were directly lengthened at a rate of 1 mm/day using a custom-made external nerve-lengthening device. After being lengthened for 14 days, both nerve stumps were refreshed, and direct end-to-end neurorrhaphy was performed. For a control, 15-mm nerve grafting was performed immediately after nerve resection. Nerve regeneration was evaluated by motor nerve conduction velocity, muscle contraction force, and histological studies at 6, 8, and 14 weeks after initial nerve resection in both groups. As a result, at 8 and 14 weeks, the motor nerve conduction velocity was significantly higher in the nerve-lengthening group than in the autografting group. In addition, at 14 weeks, the tetanic force and wet weight of the gastrocnemius muscle were significantly higher in the nerve-lengthening group than in the autografting group. Histologically, the mean axonal diameter of myelinated nerve fibers and the total number of myelinated nerve fibers were also significantly higher in the nerve-lengthening group than in the autografting group for each evaluation period. It appears that the simultaneous gradual lengthening of both proximal and distal nerve stumps might have potential application in the repair of peripheral nerve defects.  相似文献   

7.
Spinal anterior horn and ventral roots from C6 of spinal cord 6 patients with motor neuron disease (MND) and those from 6 controls were studied morphologically and biochemically, using microscopic observation, morphometry and microdensitophotometry. Spinal anterior horns in MND showed various kinds of morphological changes in nerve cells, and a significant decrease in cellular, nuclear and nucleolar cross-sectional areas in normal and abnormal cells. Microdensitophotometry revealed a significant decrease in the cellular RNA content, of both large cells and small cells, and also of histologically normal appearing cells and abnormal cells. Those findings point to an abnormality of RNA synthesis which precedes the earliest light microscopic changes seen in nerve cells. The cross-sectional areas of myelinated fibers and axons of spinal ventral roots in MND cases showed a significant decrease in the numbers of both total myelinated fibers and large axons. The abnormalities in myelinated fibers and axons of spinal ventral roots in MND cases might be secondary to those in both large nerve cells and small ones of spinal anterior horns in most MND cases and/or primary in some cases.  相似文献   

8.
Zhu QT  Zhu JK  Chen GY 《Muscle & nerve》2008,38(5):1506-1509
Various studies have demonstrated collateral regeneration of the donor nerve following end-to-side neurorrhaphy, but the location of collateral sprouting remains controversial. In a rat end-to-side neurorrhaphy model we isolated nerve fibers from the donor nerve at the neurorrhaphy site utilizing a micro-tease technique. We found that axons sprouted collaterally from a myelinated nerve fiber at the node of Ranvier. Based on this preliminary result we conclude that myelinated nerve fibers could sprout collateral branches at the node of Ranvier at an end-to-side neurorrhaphy site. These findings show that end-to-side neurorrhaphy may be an alternative for peripheral nerve repair.  相似文献   

9.
This study is concerned with numerical parameters of axonal regeneration in peripheral nerves. Our first finding is that the number of axons that regenerate into the distal stump of a somatic nerve at a particular time after transection is partially dependent on the type of lesion used to interrupt the axons. The second question concerns the proportion of axons that regenerate into the distal stump of a parent nerve compared to the proportions that regenerate into tributary nerves that arise from the parent. The proportions of regenerated myelinated axons in the nerve to the medial gastrocnemius muscle and myelinated and unmyelinated axons in the sural nerve are the same as the proportions of myelinated and unmyelinated axons that regenerate into the distal stump of the sciatic nerve for the crush, 0 and 4 mm gap transections. Proportionally fewer axons regenerate into the tributary nerves following the 8 mm gap transection, however. This implies that the length of the gap has an influence on whether or not axons in tributary nerves regenerate in concert with axons in the distal stump of the parent nerve. The unmyelinated fibers in the nerve to the medial gastrocnemius muscle are different because they do not regenerate in proportion to those in the distal stump of the sciatic nerve. We also provide evidence to indicate that myelinated axons branch whereas unmyelinated fibers end blindly when they enter the distal stump after crossing a sciatic nerve transection. Finally the normal arrangement of perineurial cells seems to be disrupted after the sciatic nerve regenerates across a gap.  相似文献   

10.
Motoneuron death leads to muscle denervation and atrophy. Transplantation of embryonic neurons into peripheral nerves results in reinnervation and provides a strategy to rescue muscles from atrophy independent of neuron replacement in a damaged or diseased spinal cord. But the count of regenerating axons always exceeds the number of motor units in this model, so target-derived trophic factor levels may limit reinnervation. Our aim was to examine whether long-term infusion of fibroblast growth factor-6 (FGF-6) into denervated medial gastrocnemius muscles improved the function of muscles reinnervated from neurons transplanted into nerve of adult Fischer rats. Factor delivery (10 microg, 4 weeks) began after sciatic nerve transection. After a week of nerve degeneration, 1 million embryonic day 14-15 ventral spinal cord cells were transplanted into the distal tibial stump as a neuron source. Ten weeks later, neurons that expressed motoneuron markers survived in the nerves. More myelinated axons were in nerves to saline-treated muscles than in FGF-6-treated muscles. However, each group showed comparable reductions in muscle fiber atrophy because of reinnervation. Mean reinnervated fiber area was 43%-51% of non-denervated fibers. Denervated fiber area averaged 11%. FGF-6-treated muscles were more fatigable than other reinnervated muscles but had stronger motor units and fewer type I fibers than did saline-treated muscles. FGF-6 thus influenced function by changing the type of fiber reinnervated by transplanted neurons. Deficits in FGF-6 may also contribute to the increase in type I fibers in muscles reinnervated from peripheral axons, suggesting that the effects of FGF-6 on fiber type are independent of the neuron source used for reinnervation.  相似文献   

11.
Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 m A and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers.  相似文献   

12.
The clinical presentation of motor neuropathy often resembles that of motor neuron disease, sometimes leading to an erroneous diagnosis. Moreover, the underlying pathological process in motor neuropathy has been rarely investigated and there are no systematic studies of the affected motor nerves. We describe a new motor nerve biopsy procedure, performed in 15 patients: 6 with motor neuropathy and 9 with motor neuron disease. The motor branch from the anterior division of the obturator nerve to the gracilis muscle in the thigh was biopsied. In both groups of patients the motor nerves exhibited depletion of myelinated nerve fibers. In motor neuropathy there was a significantly higher density of regenerative clusters of small myelinated fibers in comparison to motor nerves from patients with motor neuron disease. In addition, in 3 patients with motor neuropathy there was evidence for demyelination with thinly myelinated axons and small onion bulb formations. These pathological studies of motor nerve biopsies can help to differentiate motor neuropathy from motor neuron disease. © 1997 John Wiley & Sons, Inc.  相似文献   

13.
The distribution of fast migrating [3H]leucine-labelled proteins was studied in transected and repaired rabbit hypoglossal nerves. The nerves were repaired 90 days earlier with mesothelial chamber or epineurial suture technique. Fast migrating radiolabelled proteins were transported into the distal nerve segment and neurophysiological recordings from the tongue as well as the presence of myelinated axons in the distal nerve segment verified successful regeneration. The total amount of radioactivity was increased in repaired nerves as compared to contralateral nerves. In both groups there was a significant accumulation of radiolabelled proteins at the site of lesion. Nerves repaired with mesothelial chambers showed significantly more radioactivity in the distal nerve segment as compared to sutured nerves. The present study indicates long-standing effects on axonal transport system after both types of nerve repair. It is our opinion that axonal transport studies are a valuable complement when evaluating experimental nerve repair.  相似文献   

14.
The functional outcome of microsurgical repair of divided nerves is disappointing since many regenerating axons fail to reach appropriate targets. Sorting of regenerating axons according to target tissue might be used to improve functional regeneration. The aim of the present study is to see if regenerating axons can be sorted into functionally different bundles with target-derived molecules. The proximal stump of the adult rat sciatic nerve was sutured into the inlet of a silicon Y-tube. The two branches of the Y-tube were filled with agarose primed with filtrates prepared from skin and muscle homogenates from the operated rat. The tibial and sural nerves were inserted in the two branches of the Y-tube. Six weeks later the sciatic nerve axons showed vigorous regeneration into both branches. Electron microscopic examination of regenerated nerve segments showed numerous myelinated and unmyelinated axons. The proportion of myelinated axons was significantly larger in the muscle-gel branch than in the skin-gel branch. Retrograde tracing from the nerve regenerates with Fast Blue and Fluoro-Ruby showed that ventral horn neurons at L4-L5 segmental levels were preferentially labeled from the muscle-gel branch. Neurons in corresponding dorsal root ganglia were labeled from both Y-tube branches (no significant numerical difference). A few neurons of both types contained both tracers. Measurements revealed that sensory neurons labeled from the muscle-gel branch were significantly larger (mean perikaryal area 870 microm(2)) than neurons labeled from the skin-gel branch (mean area 580 microm(2)). We conclude that regenerating motor and sensory axons can be sorted with target-derived molecules.  相似文献   

15.
Morphometric studies of the pathologic changes were carried out on the peripheral nerves, spinal roots, and different levels of the Goll's tract in rats given isoniazid and killed 1, 2, 3, 4, 5, 6, 7, 14, and 30 days after intoxication. In teased fiber preparations, axonal degeneration was the main change present, and this was seen as early as day 2 in the peroneal and distal sural nerves. The frequency of myelinated fibers showing axonal degeneration was higher in the distal than the proximal sural nerve, and in the ventral than the dorsal root. In the group of rats killed on 5, 6, 7, and 14 days, a significant decrease of the myelinated fiber density was observed in the distal and proximal sural nerves, ventral root, and at the third cervical level of the Goll's tract. The degree of fiber degeneration was more severe in the distal than in the proximal sural nerve and in the third cervical than the fifth thoracic level of the Goll's tract. Preferential decrease of large myelinated fibers was noted in all the affected nerves. No definite abnormalities, however, were seen in nerve cells of the 6th lumbar spinal ganglia and anterior horn cells of the lumbar spinal cord on light microscopy. On 30 days, regeneration at varying degrees was discerned in all the affected nerves with significant increase of small myelinated fibers, particularly in the ventral root. The findings indicate that both centrally and peripherally directed myelinated axons are more affected in the distal than in the proximal segments while the neuronal cell bodies are spared. The spatio-temporal evolution of this pattern of change is compatible with the concept of the "dying back" process or central-peripheral distal axonopathy.  相似文献   

16.
The end-to-side nerve-repair technique, i.e., when the distal end of an injured nerve is attached end-to-side to an intact nerve trunk in an attempt to attract nerve fibers by collateral sprouting, has been used clinically. The technique has, however, been questioned. The aim of the present study was to investigate end-to-side repair in the upper extremity of rats with emphasis on functional recovery, source, type, and extent of regenerating fibers. End-to-side repair was used in the upper limb, and the radial or both median/ulnar nerves were attached end-to-side to the musculocutaneous nerve. Pawprints and tetanic muscle force were used to evaluate functional recovery during a 6-month recovery period, and double retrograde labeling was used to detect the source of the regenerated nerve fibers. The pawprints showed that, in end-to-side repair of either one or two recipient nerves, there was a recovery of toe spreading to 60-72% of the preoperative value (lowest value around 47%). Electrical stimulation of the end-to-side attached radial or median/ulnar nerves 6 months after repair resulted in contraction of muscles in the forearm innervated by these nerves (median tetanic muscle force up to 70% of the contralateral side). Retrograde labeling showed that both myelinated (morphometry) sensory and motor axons were recruited to the end-to-side attached nerve and that these axons emerged from the motor and sensory neuronal pool of the brachial plexus. Double retrograde labeling indicated that collateral sprouting was one mechanism by which regeneration occurred. We also found that two recipient nerves could be supported from a single donor nerve. Our results suggest that end-to-side repair may be one alternative to reconstruct a brachial plexus injury when no proximal nerve end is available.  相似文献   

17.
Summary Clinical, electrophysiological, and the nerve and muscle biopsy findings from a case treated with amiodarone are reported. Marked distal motor and sensory impairment and distal muscular atrophy were observed clinically. The electrophysiological examination revealed normal motor and sensory conduction velocities in the median nerve; the sensory action potentials were polyphasic and reduced in amplitude. Electromyography revealed denervation potentials and severe loss of motor units in the M. extensor digitorum brevis and in the M. tibialis anterior. The light and electronmicroscopical study of a N. suralis biopsy displayed total loss of large myelinated fibers and an almost total reduction of small myelinated fibers. The number of unmyelinated axons was markedly reduced. Fibrocytes and degenerative axons polymorphous inclusion bodies were present in Schwann cells. The muscle biopsy revealed both neurogenic and myopathic changes. Lipid storage was also present in the muscle fibers. Physical and chemical analysis of the nerve and muscle biopsy revealed the content of iodine to be more than 40 times increased. The findings indicate damage of axons, schwann cells and muscle fibers. It is suggested that the lipid storage in nerve and muscle tissue might be related to the accumulation of the drug or its metabolites.Cordarone®, Labaz Laboratoires  相似文献   

18.
The number of large myelinated axons was markedly decreased in almost all the intramuscular nerve bundles included in 32 muscle biopsies from patients with Werdnig-Hoffmann disease compared to that in normals. The morphometric analysis of peripheral nerves in 5 epon-embedded sections also showed a selective loss of larger myelinated fibers. The ultrastructural findings of the nerves were similar to those seen in Wallerian degeneration including axonal degeneration, myelin breakdown with phagocytosis, Schwann cell proliferation forming Schwann cell columns, axonal sprouting and probable remyelination. The earlier and more striking peripheral nerve involvement than that previously believed was not different from that seen in amyotrophic lateral sclerosis (ALS). The earlier damage to the peripheral nerves probably resulted from a degeneration of the anterior horn cells or anterior spinal roots as in ALS rather than from a dying-back process.  相似文献   

19.
End-to-side (ETS) nerve repair, in which the distal stump of a transected nerve is coapted to the side of an uninjured donor nerve, offers a technique for repair of peripheral nerve injuries where the proximal nerve stump is unavailable or a significant nerve gap exists. Details of animal models are explored including motor and sensory regeneration to further clarify the mechanism of collateral sprouting while eliminating false positive results from contaminating axons. Some experimental studies support the conclusion that sensory or motor reinnervation may be derived from collateral sprouting while others suggest that reinnervation requires an injury to the donor nerve. Clinical experience with ETS neurorrhaphy includes management of upper extremity nerve injury, facial reanimation, reconstruction following tumor ablation, and the prevention of neuroma formation. Our interpretation of the ETS literature suggests that sensory axons may sprout without deliberately attempting to injure them, while motor axons regenerate only in response to a deliberate injury. Experimental and clinical experience with ETS neurorrhaphy has rendered mixed results. Our interpretation of the literature suggests that the success of this technique is dependent upon axonal injury of motor and possibly sensory nerves. While continued clinical and laboratory experimentation with ETS nerve repair is warranted, it should not yet replace more established techniques of nerve repair.  相似文献   

20.
The evolution of motor nerve degeneration was examined in gracile axonal dystrophy (GAD) mutant mice, which develop initial sensory ataxia and subsequent motor paresis. Using the anterior gracilis (AG) muscle, which is innervated at two discrete and well-separated end-plate zones, we demonstrated that axonal degeneration occurred first at motor nerve terminals in the distal end-plate zone, and then extended gradually from the distal to the more proximal parts of affected axons in the intramuscular nerve trunk. In contrast to the degeneration in the distal zone, active degeneration was less marked in the proximal endplate zone and, furthermore, most terminal axons had begun to produce regenerating sprouts. Ventral horn cells were histologically normal, even at advanced stages. These results indicate that, as previously observed in sensory nerves, dying back degeneration progresses later in the lower motor neuron system, even within one muscle. The mechanism(s) influencing the activation of axonal regeneration are discussed. This mutant mouse will be a useful model for the study of regenerating phenomena in dying back degeneration of genetically compromised motor neurons, as well as for the study of the pathogenesis of hereditary sensory and motor neuropathies in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号