首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu X  Shaw CC 《Medical physics》2004,31(1):98-110
Amorphous silicon (a-Si:H) flat-panel (FP) imaging systems have recently become commercially available for both chest and mammographic imaging applications. It has been shown that this new detector technology offers better image quality and various operational advantages over the computed radiography (CR) which to date has been the most widely implemented and used digital radiography technique. However, most image quality measurements reported on flat-panel systems have been performed on prototype systems in laboratories while those for CR systems were typically independently performed and reported on in separate studies. To directly compare the two technologies, we have measured the image properties for a commercial amorphous silicon/cesium iodide [a-Si:H/CsI(Tl)] flat-panel based digital chest system and a commercial CR system under clinical imaging conditions. In this paper, measurements of image quality metrics, including the modulation transfer functions (MTFs), noise power spectra (NPSs), and detective quantum efficiencies (DQEs), for the FP and CR systems are presented and compared. Methods and issues related to these measurements are discussed. The results show that the flat-panel system has slightly lower MTF but significantly higher DQEs than the CR system. The DQEs of the flat-panel system were found to increase with the exposure while those of the CR system decrease slightly with the exposure.  相似文献   

2.
Amorphous silicon/cesium iodide (a-Si:H/CsI:Tl) flat-panel (FP)-based full-field digital mammography systems have recently become commercially available for clinical use. Some investigations on physical properties and imaging characteristics of these types of detectors have been conducted and reported. In this perception study, a phantom containing simulated microcalcifications (microCs) of various sizes was imaged with four detector systems: a FP system, a small field-of-view charge coupled device (CCD) system, a high resolution computed radiography (CR) system, and a conventional mammography screen/film (SF) system. The images were reviewed by mammographers as well as nonradiologist participants. Scores reflecting confidence ratings were given and recorded for each detection task. The results were used to determine the average confidence-rating scores for the four imaging systems. Receiver operating characteristics (ROC) analysis was also performed to evaluate and compare the overall detection accuracy for the four detector systems. For calcifications of 125-140 microm in size, the FP system was found to have the best performance with the highest confidence-rating scores and the greatest detection accuracy (Az = 0.9) in the ROC analysis. The SF system was ranked second while the CCD system outperformed the CR system. The p values obtained by applying a Student t-test to the results of the ROC analysis indicate that the differences between any two systems are statistically significant (p<0.005). Differences in microC detectability for the large (150-160 microm) and small (112-125 microm) size microC groups showed a wider range of p values (not all p values are smaller than 0.005, ranging from 0.6 to <0.001) compared to the p values obtained for the medium (125-140 microm) size microC group. Using the p values to assess the statistical significance, the use of the average confidence-rating scores was not as significant as the use of the ROC analysis p value for p value.  相似文献   

3.
In evaluating the image quality of the chest, four different analog and digital methods were compared. For peripheral lung field, the advanced multiple beam equalization radiography (AMBER) system was given the best score, followed in order by the storagephosphor, conventional, and asymmetric film/screen systems. For the mediastinal field, the highest image quality was given to the AMBER system, followed by storage phosphor and asymmetric film/screen system. The best overall image quality, especially with regard to demonstration of pathologic alteration, was given to the AMBER system, followed by the storagephosphor, conventional, and asymmetric film/screen radiography systems. In conclusion, AMBER demonstrated the highest image quality. The storage-phosphor system provided better results in the peripheral and mediastinal fields in comparison with conventional film/screen systems. Other digital systems including selenium chest radiography system and image intensifier digital radiography were also discussed.  相似文献   

4.
The purpose of this study was to evaluate the use of digital x-ray imaging detectors for the measurement of diagnostic x-ray tube focal spot size using a slit camera. Slit camera images of two focal spots for a radiographic x-ray tube were acquired with direct-exposure film (DF) (as specified by the National Electrical Manufacturers Association [NEMA] Standards Publication No. XR 5, 1992), computed radiography (CR) imaging plates, and an a-Si:H/CsI:Tl-based flat-panel (FP) detector. Images obtained with the CR and the FP were acquired over a broad range of detector entrance exposure levels. The DF slit images were evaluated according to NEMA specifications (visually, using a 7x magnifying glass with reticule) by six medical physicists. Additionally, the DF images were digitized and the focal spot sizes obtained from the digital profiles of the slit. The CR and the FP images were analyzed in a manner similar to the digitized DF images. It took less than 20 minutes for a complete CR or FP measurement of focal spot size in two dimensions. In comparison, a typical DF measurement with visual evaluation takes at least 60 minutes, in our experience. In addition to a great reduction in measurement time achieved by using digital detectors, the tube loading requirements were reduced to approximately 20 mAs compared with approximately 1000 mAs when using the DF technique. The calculated focal spot sizes for CR and FP differed from those of digitized DF by -2.4% to +4.8% (sigma=2.5%), far less than the -16.6% to +9.3% (sigma=8.1%) variability introduced by the visual evaluation of the slit image. In addition, the calculated focal spot sizes for the CR and the FP images maintained a coefficient of variation <1.0% over the broad range of exposure levels. Based upon these results, we conclude that (1) FP and CR detectors yield consistent results in measurements of x-ray tube focal spot sizes, (2) compared to DF, CR and FP significantly reduce measurement time and tube loading requirements, (3) CR and FP readily permit digital profile analysis, thereby eliminating observer error, and (4) unlike DF, CR and FP are independent of exposure level.  相似文献   

5.
This study examined whether hard-copy radiographs produced from computed radiography (CR) images show the subtle interstitial pulmonary disease equally well to conventional screen-film radiographs, because a digital radiography should be chosen for introduction of the digital picture archiving and communication system (PACS) for the new Osaka University Hospital.1,2 Eleven radiologists examined 20 abnormal and 20 control chest radiographs presented in each of three groups: conventional screen-film radiographs and two sizes of hard-copy radiographs made from CR images. This study of digital image quality of chest examinations found that some findings on conventional screen-film radiography images are not reproduced by current CR (2,000×2,000×10 bits in matrix), especially when the experienced radiologists were observed. This finding suggested improvements are needed in CR before CR of chest should fully replace conventional screen-film radiography.  相似文献   

6.
The purpose of this study was to evaluate the clinical utility of an investigational flat-panel digital radiography system for low-dose portable neonatal imaging. Thirty image-pairs from neonatal intensive care unit patients were acquired with a commercial Computed Radiography system (Agfa, ADC 70), and with the investigational system (Varian, Paxscan 2520) at one-quarter of the exposure. The images were evaluated for conspicuity and localization of the endings of ancillary catheters and tubes in two observer performance experiments with three pediatric radiologists and three neonatologists serving as observers. The results indicated no statistically significant difference in diagnostic quality between the images from the investigational system and from CR. Given the investigational system's superior resolution and noise characteristics, observer results suggest that the high detective quantum efficiency of flat-panel digital radiography systems can be utilized to decrease the radiation dose/exposure to neonatal patients, although post-processing of the images remains to be optimized. The rapid availability of flat-panel images in portable imaging was found to be an added advantage for timely clinical decision-making.  相似文献   

7.
The purpose of this study was to perform a complete evaluation of three pieces of clinical digital mammography equipment. Image quality was assessed by performing physical characterization and contrast-detail (CD) analysis. We considered three different FFDM systems: a computed radiography unit (Fuji "FCR 5000 MA") and two flat-panel units, the indirect conversion a-Si based GE "Senographe 2000D" and the direct conversion a-Si based IMS "Giotto Image MD." The physical characterization was estimated by measuring the MTF, NNPS, and DQE of the detectors with no antiscatter grid and over the clinical range of exposures. The CD analysis was performed using a CDMAM 3.4 phantom and custom software designed for automatic computation of the contrast-detail curves. The physical characterization of the three digital systems confirms the excellent MTF properties of the direct conversion flat-panel detector (FPD). We performed a relative standard deviation (RSD) analysis, for investigating the different components of the noise presented by the three systems. It turned out that the two FPDs show a significant additive component, whereas for the CR system the statistical noise is dominant. The multiplicative factor is a minor constituent for all the systems. The two FPDs demonstrate better DQE, with respect to the CR system, for exposures higher than 70 microGy. The CD analysis indicated that the three systems are not statistically different for detail objects with a diameter greater than 0.3 mm. However, the IMS system showed a statistically significant different response for details smaller than 0.3 mm. In this case, the poor response of the a-Se detector could be attributed to its high-frequency noise characteristics, since its MTF, NEQ, and DQE are not inferior to those of the other systems. The CD results were independent of exposure level, within the investigated clinical range. We observed slight variations in the CD results, due to the changes in the visualization parameters (window/level and magnification factor). This suggests that radiologists would benefit from viewing images using varied window/level and magnification.  相似文献   

8.
Full-field digital mammography systems are currently available for clinical use. These digital systems offer improved image quality, flexible image processing, display, storage, retrieval, and transmission. These systems employ a variety of different x-ray detectors based on storage phosphors (in computed radiography), charge-coupled devices (CCDs), or amorphous silicon flat panels (FPs). The objective of this study is to compare three different types of mammographic detectors: screenfilm (SF) combination, a CsI-based FP detector, a CCD and x-ray phosphor-based detector for their performance in detection of simulated microcalcifications. Microcalcifications (MCs) were simulated with calcium carbonate grains of various sizes (90-355 microm). They were overlapped with a slab of simulated 50% adipose/50% glandular breast tissue for a uniform background or an anthropomorphic breast phantom for a tissue structure background. Images of the phantoms, acquired with and without magnification, were reviewed by mammographers, physicists, and students. A five-point confidence level rating was given for each MC reviewed. Average ratings from the mammographers were used to compare the performances of the three imaging systems, various MC size groups, and two magnification modes. The results indicate that with uniform background and no magnification, the FP system performed the best while the SF system did slightly better than the CCD system. With magnification added, all detection tasks were improved except for the smallest and largest one or two size groups. In particular, detection in the SF and CCD images was significantly improved over that in the FP images. With tissue structure background and no magnification, the FP system was outperformed by the SF and the CCD systems. With magnification added, the performance of the FP and the CCD systems was improved significantly. With this improvement, the SF and FP systems were outperformed by the CCD system.  相似文献   

9.
A dedicated chest computed radiography (CR) system has an option of energy subtraction (ES) acquisition. Two imaging plates, rather than one, are separated by a copper filter to give a high-energy and low-energy image. This study compares the diagnostic accuracy of conventional computed radiography to that of ES obtained with two radiographic techniques. One soft tissue only image was obtained at the conventional CR technique (s = 254) and the second was obtained at twice the radiation exposure (s = 131) to reduce noise. An anthropomorphic phantom with superimposed low-contrast lung nodules was imaged 53 times for each radiographic technique. Fifteen images had no nodules; 38 images had a total of 90 nodules placed on the phantom. Three chest radiologists read the three sets of images in a receiver operating characteristic (ROC) study. Significant differences in Az were only found between (1) the higher exposure energy subtracted images and the conventional dose energy subtracted images (P = .095, 90% confidence), and (2) the conventional CR and the energy subtracted image obtained at the same technique (P = .024, 98% confidence). As a result of this study, energy subtracted images cannot be substituted for conventional CR images when detecting low-contrast nodules, even when twice the exposure is used to obtain them.  相似文献   

10.
Performance evaluation of computed radiography systems   总被引:6,自引:0,他引:6  
Recommended methods to test the performance of computed radiography (CR) digital radiographic systems have been recently developed by the AAPM Task Group No. 10. Included are tests for dark noise, uniformity, exposure response, laser beam function, spatial resolution, low-contrast resolution, spatial accuracy, erasure thoroughness, and throughput. The recommendations may be used for acceptance testing of new CR devices as well as routine performance evaluation checks of devices in clinical use. The purpose of this short communication is to provide a tabular summary of the tests recommended by the AAPM Task Group, delineate the technical aspects of the tests, suggest quantitative measures of the performance results, and recommend uniform quantitative criteria for the satisfactory performance of CR devices. The applicability of the acceptance criteria is verified by tests performed on CR systems in clinical use at five different institutions. This paper further clarifies the recommendations with respect to the beam filtration to be used for exposure calibration of the system, and the calibration of automatic exposure control systems.  相似文献   

11.
The aim of this study was to compare mammography systems based on three different detectors--a conventional screen-film (SF) combination, an a-Si/CsI flat-panel (FP)-based detector, and a charge-coupled device (CCD)-based x-ray phosphor-based detector--for their performance in detecting simulated microcalcifications (MCs). 112-150 microm calcium carbonate grains were used to simulate MCs and were overlapped with a slab phantom of simulated 50% adipose/50% glandular breast tissue-equivalent material referred to as the uniform background. For the tissue structure background, 200-250 microm calcium carbonate grains were used and overlapped with an anthropomorphic breast phantom. All MC phantom images were acquired with and without magnification (1.8 X). The hardcopy images were reviewed by five mammographers. A five-point confidence level rating was used to score each detection task. Receiver operating characteristic (ROC) analysis was performed, and the areas under the ROC curves (A(z)s) were used to compare the performances of the three mammography systems under various conditions. The results showed that, with a uniform background and contact images, the FP-based system performed significantly better than the SF and the CCD-based systems. For magnified images with a uniform background, the SF and the FP-based systems performed equally well and significantly better than the CCD-based system. With tissue structure background and contact images, the SF system performed significantly better than the FP and the CCD-based systems. With magnified images and a tissue structure background, the SF and the CCD-based systems performed equally well and significantly better than the FP-based system. In the detection of MCs in the fibroglandular and the heterogeneously dense regions, no significant differences were found except that the SF system performed significantly better than the CCD-based system in the fibroglandular regions for the contact images.  相似文献   

12.
Contrast-detail measurements were performed on a computed radiography imaging system as a function of detector entrance air kerma over the dose range from 0.743 microGy (0.085 mR) to 277 microGy (31.8 mR). A theoretical model of contrast-detail behaviour for a photostimulable phosphor computed radiography system has been derived, which is based on a modified version of the Rose theory of threshold detection. Included in the model are both system and x-ray quantum noise terms, as well as the response of the eye. The zero-frequency noise power of the computed film images was measured with a double-beam scanning microdensitometer. For a given detector dose, good agreement was found between the predicted and measured data when this measurement of system noise was included in the model. The contrast-detail results obtained for the computed radiography system were also compared with contrast-detail results for an image intensifier-TV based digital imaging system and a conventional film-screen system.  相似文献   

13.
背景:肺移植后患者床边胸片的质量关系到对肺部病变的评价,对临床具有十分重要的价值。 目的:比较肺移植后患者应用传统屏-片组合和计算机数字化系统进行床边胸部摄片的图像质量,以选择优良方案。 方法:回顾性分析南京医科大学附属无锡市人民医院78例肺移植后患者床边胸片传统屏-片摄影425张和计算机数字化摄影411张的图像资料,提出优质片评估标准,经3位高年资医师、技师读片将其从优质片到废片分为Ⅰ~Ⅳ级,然后分析影响两组床边胸片质量的因素,并计算两组的平均曝光剂量。 结果与结论:肺移植后患者床边胸片,传统屏-片组:Ⅰ级片135张(31.8%)、Ⅱ级片171张(40.2%)、Ⅲ级片107张(25.2%)、Ⅳ级片12张(2.8%);计算机数字化摄影组:Ⅰ级片266张(64.7%)、Ⅱ级片105张(25.5%)、Ⅲ级片37张(9.0%)、Ⅳ级片3张(0.7%),两组床边胸片图像质量分级差异有非常显著性意义( < 0.01)。计算机数字化摄影组平均曝光剂量1.56 mA•s明显小于屏-片组3.27 mA•s(P < 0.01)。提示肺移植后患者计算机数字化摄影系统床边胸片质量明显优于传统屏-片组合床边胸片,应用计算机数字化摄影系统可提高优质片,减少废片,降低X射线照射剂量,可作为肺移植后患者床边胸片的首选。  相似文献   

14.
It is commonly accepted that digital radiography (DR) improves workflow and patient throughput compared with traditional film radiography or computed radiography (CR). DR eliminates the film development step and the time to acquire the image from a CR reader. In addition, the wide dynamic range of DR is such that the technologist can perform the quality-control (QC) step directly at the modality in a few seconds, rather than having to transport the newly acquired image to a centralized QC station for review. Furthermore, additional workflow efficiencies can be achieved with DR by employing tight radiology information system (RIS) integration. In the DR imaging environment, this provides for patient demographic information to be automatically downloaded from the RIS to populate the DR Digital Imaging and Communications in Medicine (DICOM) image header. To learn more about this workflow efficiency improvement, we performed a comparative study of workflow steps under three different conditions: traditional film/screen x-ray, DR without RIS integration (ie, manual entry of patient demographics), and DR with RIS integration. This study was performed at the Cleveland Clinic Foundation (Cleveland, OH) using a newly acquired amorphous silicon flat-panel DR system from Canon Medical Systems (Irvine, CA). Our data show that DR without RIS results in substantial workflow savings over traditional film/screen practice. There is an additional 30% reduction in total examination time using DR with RIS integration.  相似文献   

15.
Wu S  Jin X  Xie C  Cao G 《Medical physics》2005,32(10):3112-3116
The poor image quality of conventional metal screen-film portal imaging system has long been of concern, and various methods have been investigated in an attempt to enhance the quality of portal images. Computed radiography (CR) used in combination with a steel plate displays image enhancement. The optimal thickness of the steel plate had been studied by measuring the modulation transfer function (MTF) characteristics. Portal images of nasopharyngeal carcinoma patients were taken by both a conventional metal screen-film system and this optimal steel and CR plate combination system. Compared with a conventional metal screen-film system, the CR-metal screen system achieves a much higher image contrast. The measured modulation transfer function (MTF) of the CR combination is greater than conventional film-screen portal imaging systems and also results in superior image performance, as demonstrated by receiver operator characteristic (ROC) analysis. This optimal combination steel CR plate portal imaging system is capable of producing high contrast portal images conveniently.  相似文献   

16.
Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat-panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual-energy system used in this study can acquire up to 15 frames of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1-3.0 frames per second). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy.  相似文献   

17.
The physics of computed radiography   总被引:3,自引:0,他引:3  
Cassette-based computed radiography (CR) systems have continued to evolve in parallel with integrated, instant readout digital radiography (DR) systems. The image quality of present day CR systems is approaching its theoretical limits but is significantly inferior to DR. Further improvements in CR image quality require improved concepts. The aim of this review is to identify the fundamental limitations in CR performance. This will provide a background for the development of new approaches to improve photostimulable phosphor CR systems. It will also guide research in designing better CR systems to possibly compete with DR systems in terms of image quality parameters such as detective quantum efficiency and yet maintain CR convenience in being portable and more economical.  相似文献   

18.
This study endeavored to clarify the usefulness of single-exposure dual-energy subtraction computed radiography (CR) of the chest and the ability of soft-copy images to detect low-contrast simulated pulmonary nodules. Conventional and bone-subtracted CR images of 25 chest phantom image sets with a low-contrast nylon nodule and 25 without a nodule were interpreted by 12 observers (6 radiologists, 6 chest physicians) who rated each on a continuous confidence scale and marked the position of the nodule if one was present. Hard-copy images were 7 x 7-inch laser-printed CR films, and soft-copy images were displayed on a 21-inch noninterlaced color CRT monitor with an optimized dynamic range. Soft-copy images were adjusted to the same size as hard-copy images and were viewed under darkened illumination in the reading room. No significant differences were found between hard- and soft-copy images. In conclusion, the soft-copy images were found to be useful in detecting low-contrast simulated pulmonary nodules.  相似文献   

19.
Four standard radiation qualities (from RQA 3 to RQA 9) were used to compare the imaging performance of a computed radiography (CR) system (general purpose and high resolution phosphor plates of a Kodak CR 9000 system), a selenium-based direct flat panel detector (Kodak Direct View DR 9000), and a conventional screen-film system (Kodak T-MAT L/RA film with a 3M Trimax Regular screen of speed 400) in conventional radiography. Reference exposure levels were chosen according to the manufacturer's recommendations to be representative of clinical practice (exposure index of 1700 for digital systems and a film optical density of 1.4). With the exception of the RQA 3 beam quality, the exposure levels needed to produce a mean digital signal of 1700 were higher than those needed to obtain a mean film optical density of 1.4. In spite of intense developments in the field of digital detectors, screen-film systems are still very efficient detectors for most of the beam qualities used in radiology. An important outcome of this study is the behavior of the detective quantum efficiency of the digital radiography (DR) system as a function of beam energy. The practice of users to increase beam energy when switching from a screen-film system to a CR system, in order to improve the compromise between patient dose and image quality, might not be appropriate when switching from screen-film to selenium-based DR systems.  相似文献   

20.
Liu X  Shaw CC  Lai CJ  Altunbas MC  Chen L  Han T  Wang T 《Medical physics》2008,35(6):2391-2402
Anti-scatter grids have been widely used to reject scatter and increase the perceptibility of low-contrast object in chest radiography; however they also attenuate the primary x-rays, resulting in a substantial degradation of primary information. Compensation for this degradation requires the use of higher exposure technique hence higher dose to the patient. A more efficient approach to reject scatter is the slot-scan imaging technique which employs a narrow scanning x-ray fan beam in conjunction with a slit or slot shaped solid state detector or an area detector used with an aft-collimator. With this approach, scatter can be rejected effectively without the need to attenuate primary x-rays. This paper demonstrates an electronic aft-collimation method, referred to as the alternate line erasure and readout (ALER) technique, for implementing the slot-scan digital radiography with a modern flat-panel detector. With this technique, instead of first exposing the detector and then reading the image line by line, the image line on the leading edge of the scanning fan beam is reset to erase the scatter accumulated prior to the arrival of the fan beam x-rays, while the image line on the trailing edge of the scanning fan beam is read out to acquire the image signals following the fan-beam exposure. These reset and readout processes are alternated and repeated as the x-ray fan beam scans across the detector. An anthropomorphic chest phantom was imaged to evaluate the scatter rejection ability and the low-contrast performance for the ALER technique and compare them with those for the anti-scatter grid method in full-field chest imaging. With a projected beam width of 16 mm, the slot-scan/ALER technique resulted in an average reduction of the scatter-to-primary ratios by 81%, 84%, 82%, and 86% versus 65%, 73%, 74%, and 73% with the anti-scatter grid method in the lungs, mediastinum, retrocardium, and subdiaphragm, respectively. The average CNR for the slot-scan/ALER technique was found to improve by 135%, 133%, 176%, and 87% versus 15%, 15%, 38%, and -11% with the anti-scatter grid method in the mediastinum, retrocardium, subdiaphragm, and lungs, respectively. These results demonstrated that the slot-scan/ALER technique can be used to achieve equally effective scatter rejection but substantially higher low-contrast performance than the anti-scatter grid method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号