首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular matrix molecules such as elastin and collagens provide mechanical support to the vessel wall. In addition to its structural role, elastin is a regulator that maintains homeostasis through biologic signaling. Genetically determined minor modifications in elastin and collagen in the aorta could influence the onset and evolution of arterial pathology, such as hypertension and its complications. We previously demonstrated that the inbred Brown Norway (BN) rat shows an aortic elastin deficit in both abdominal and thoracic segments, partly because of a decrease in tropoelastin synthesis when compared with the LOU rat, that elastin gene polymorphisms in these strains do not significantly account for. After a genome-wide search for quantitative trait loci (QTL) influencing the aortic elastin, collagen, and cell protein contents in an F2 population derived from BN and LOU rats, we identified on chromosomes 2 and 14, 3 QTL specifically controlling elastin levels, and a further highly significant QTL on chromosome 17 linked to the level of cell proteins. We also mapped 3 highly significant QTL linked to body weight (on chromosomes 1 and 3) and heart weight (on chromosome 1) in the cross. This study demonstrates the polygenic control of the content of key components of the arterial wall. Such information represents a first step in understanding possible mechanisms involved in dysregulation of these parameters in arterial pathology.  相似文献   

2.
OBJECTIVE: Collagen-induced arthritis (CIA) in the mouse is one of the most widely used autoimmune experimental models, with many features similar to rheumatoid arthritis. This study sought to identify potential genetic regulatory mechanisms of CIA in major histocompatibility complex-matched (H2-q) F(2) hybrid mice. METHODS: We used 126 polymorphic markers to perform simple sequence-length polymorphism analysis on 290 F(2) hybrids of arthritis-susceptible (DBA/1J) and arthritis-resistant (FVB/N) inbred mouse strains. The major clinical traits (disease severity and onset) were assessed, and serum antibodies specific to type II collagen (CII) were determined by enzyme-linked immunosorbent assay in 270 F(2) mice. Lymph nodes from 94 F(2) mice were used to test the ratio of CD4 to CD8 by fluorescence-activated cell sorter analysis, and cell proliferation was determined by XTT test. RESULTS: Two quantitative trait loci (QTLs) identified in previous studies were confirmed; these were severity-controlling Cia2 and onset-controlling Cia4 on chromosome 2. Moreover, we identified 5 new QTLs, 1 for CII-specific IgG2a antibodies on chromosome 5, 2 controlling the CII-specific IgG1 antibody response on chromosomes 10 and 13, 1 for the CD4:CD8 ratio on chromosome 2, and 1 for cell proliferation (measured by XTT test) on chromosome 16. Complement component C5 was identified as the probable main candidate gene for the QTLs Cia2 and Cia4. F(2) mice carrying a 2-basepair deletion of C5, the FVB/N allele, had low incidence and less severe disease as compared with those carrying the DBA/1J allele. CONCLUSION: This genome scan provides additional evidence confirming the role of C5 as a probable candidate gene for Cia2 and Cia4 loci, and identifies new QTLs controlling new traits in autoimmune arthritis.  相似文献   

3.
4.
Gravimetric analysis and dual energy x-ray absorptiometry densitometry were used to determine lean, fat, and bone tissue traits in a F(2) mouse population from a C57BL/6J and CASA/Rk intercross (B6CASAF2). These traits were used in a linkage analysis to identify quantitative trait loci that affect body composition. Linkage mapping showed that body weight (BW) loci on proximal chromosome 2 occurred in the same region as body length, lean tissue mass, and bone mineral content and on chromosome 13 in the same region as lean tissue mass, bone mineral density, and bone mineral content. Fat-related loci occurring on mid-chromosome 2 near 60 cM, proximal chromosome 6, and mid-chromosome 10 were distinct from BW, lean tissue, and bone tissue loci. In B6CASAF2 females, heterozygotes and CASA/Rk homozygotes at the chromosome 6 locus marker had higher body fat percentages, and this locus was responsible for 11% of the variance for body fat percentage. Female heterozygotes and C57BL/6J homozygotes at the chromosome 15 locus marker had higher bone mineral densities, and this locus could explain 8% of that trait's variance. A survey of the literature did not reveal any previous reports of fat-specific loci in the chromosomal 10 region near 42 cM reported in this study. The results of this study indicate that BW and BMI have limited usefulness as phenotypes in linkage or association studies when used as obesity phenotypes.  相似文献   

5.
OBJECTIVE: To describe genetic loci that differentiate blood pressures in two genetically hypertensive strains, the Dahl salt-sensitive (S) rat and the Albino Surgery (AS) rat. METHODS: A genome scan was performed using 222 genetic markers on an F2 population derived from two hypertensive strains, S and AS. The F2 rats were fed 8% NaCl for 5 weeks before blood pressure measurements were taken. RESULTS: Three blood pressure quantitative trait loci (QTL) were detected, one on each of rat chromosomes (RNO) 2, 4 and 8. The QTL on RNO4, unlike those on RNO2 and RNO8, was not detected in any of the previous seven linkage analyses reported with the S rat as one of the parental strains. Interactions between genetic loci throughout the genome were sought and interactions involving RNO4 with RNO8 and RNO4 with RNO14 were found. Including the new RNO4 locus identified in the present study, 16 distinct regions of the S rat genome have been demonstrated, by linkage analyses, to harbour loci that control blood pressure in the S rat. CONCLUSIONS: Increased blood pressure in two hypertensive strains, S and AS, is differentially regulated by genetic factors present on RNOs 2, 4 and 8. Therefore, of the 16 distinct genomic regions known to harbour blood pressure QTL in S rats, 13 are likely to contain blood pressure alleles that function similarly in the S rat and the AS rat, whereas three regions differentiate the two strains.  相似文献   

6.

Objective

Collagen‐induced arthritis (CIA) in the mouse is one of the most widely used autoimmune experimental models, with many features similar to rheumatoid arthritis. This study sought to identify potential genetic regulatory mechanisms of CIA in major histocompatibility complex–matched (H2‐q) F2 hybrid mice.

Methods

We used 126 polymorphic markers to perform simple sequence‐length polymorphism analysis on 290 F2 hybrids of arthritis‐susceptible (DBA/1J) and arthritis‐resistant (FVB/N) inbred mouse strains. The major clinical traits (disease severity and onset) were assessed, and serum antibodies specific to type II collagen (CII) were determined by enzyme‐linked immunosorbent assay in 270 F2 mice. Lymph nodes from 94 F2 mice were used to test the ratio of CD4 to CD8 by fluorescence‐activated cell sorter analysis, and cell proliferation was determined by XTT test.

Results

Two quantitative trait loci (QTLs) identified in previous studies were confirmed; these were severity‐controlling Cia2 and onset‐controlling Cia4 on chromosome 2. Moreover, we identified 5 new QTLs, 1 for CII‐specific IgG2a antibodies on chromosome 5, 2 controlling the CII‐specific IgG1 antibody response on chromosomes 10 and 13, 1 for the CD4:CD8 ratio on chromosome 2, and 1 for cell proliferation (measured by XTT test) on chromosome 16. Complement component C5 was identified as the probable main candidate gene for the QTLs Cia2 and Cia4. F2 mice carrying a 2‐basepair deletion of C5, the FVB/N allele, had low incidence and less severe disease as compared with those carrying the DBA/1J allele.

Conclusion

This genome scan provides additional evidence confirming the role of C5 as a probable candidate gene for Cia2 and Cia4 loci, and identifies new QTLs controlling new traits in autoimmune arthritis.
  相似文献   

7.
We develop a mixed model approach of quantitative trait locus (QTL) mapping for a hybrid population derived from the crosses of two or more distinguished outbred populations. Under the mixed model, we treat the mean allelic value of each source population as the fixed effect and the allelic deviations from the mean as random effects so that we can partition the total genetic variance into between- and within-population variances. Statistical inference of the QTL parameters is obtained by using the Bayesian method implemented by Markov chain Monte Carlo (MCMC). This unified QTL mapping algorithm treats the fixed and random model approaches as special cases of the general mixed model methodology. Utility and flexibility of the method are demonstrated by using a set of simulated data.  相似文献   

8.
The stroke-prone spontaneously hypertensive rat (SHRSP) has been reported to show significantly lower levels of serum total cholesterol than the normotensive control strain Wistar-Kyoto rat (WKY). Because selective inbreeding was conducted for stroke proneness, this concomitantly inherited characteristic of SHRSP may play some pathophysiological role in stroke. We evaluated the genetic determinants of the cholesterol trait by estimating heritability and subsequently by undertaking a genome-wide screen with 161 genetic markers in F(2) progeny involving SHRSP and WKY (104 male and 106 female rats). Three quantitative trait loci (QTLs) were detected on rat chromosomes 5, 7, and 15. Markers from the linked region on chromosome 15 indicated significant evidence of linkage with a maximal log of the odds (LOD) score of 7.7, whereas those on chromosomes 5 and 7 cosegregated with the trait in a sex-specific manner (the QTL close to genetic marker D5 Mit5 reached an LOD score of 7.3 in males, and that close to D7 Mit10 reached an LOD score of 3.2 in females). The male-specific QTL on chromosome 5 appeared to overlap with previously reported QTLs for stroke-associated phenotypes, but an identical gene (or genes) appeared unlikely to control these and the cholesterol traits simultaneously. In the present study, serum cholesterol levels were shown to be highly genetically determined in SHRSP (the heritability estimates are 76% in males and 83% in females), and 3 QTLs with substantial effects were identified. Further work, however, is required to clarify whether the cholesterol trait is related to the etiology of stroke or has been retained by chance through the inbreeding process in SHRSP.  相似文献   

9.
Polymorphisms in the prion protein gene are known to affect prion disease incubation times and susceptibility in humans and mice. However, studies with inbred lines of mice show that large differences in incubation times occur even with the same amino acid sequence of the prion protein, suggesting that other genes may contribute to the observed variation. To identify these loci we analyzed 1,009 animals from an F2 intercross between two strains of mice, CAST/Ei and NZW/OlaHSd, with significantly different incubation periods when challenged with RML scrapie prions. Interval mapping identified three highly significantly linked regions on chromosomes 2, 11, and 12; composite interval mapping suggests that each of these regions includes multiple linked quantitative trait loci. Suggestive evidence for linkage was obtained on chromosomes 6 and 7. The sequence conservation between the mouse and human genome suggests that identification of mouse prion susceptibility alleles may have direct relevance to understanding human susceptibility to bovine spongiform encephalopathy (BSE) infection, as well as identifying key factors in the molecular pathways of prion pathogenesis. However, the demonstration of other major genetic effects on incubation period suggests the need for extreme caution in interpreting estimates of variant Creutzfeldt-Jakob disease epidemic size utilizing existing epidemiological models.  相似文献   

10.
The haematopoietic system is a complex organised tissue with a hierarchical structure. Identification of organisational pathways within the haematopoietic system is relevant for a better understanding of haematopoiesis in health and disease. We have analysed numerous haematopoietic parameters in two panels of a total of 157 genetically distinct B6AKRF2 mice, derived from an intercross between AKR and C57Bl/6 mice, strains known to differ in various stem cell traits. The major objective of our study was to assess the extent to which various haematopoietic parameters, such as stem cell numbers, progenitor cell cycling, progenitor cell mobilisation and neutrophil numbers in blood and bone marrow are coregulated. The genotypes of these mice were used to search for genetic loci that regulate these parameters. We found significant quantitative trait loci (QTL) associated with the number of stem cells (CAFC-35) in the bone marrow and the number of neutrophils in the blood. However, most haematopoietic parameters appeared to be controlled by non-heritable (epigenetic) factors, or by multiple QTLs. Our study reveals striking differences in structure of the haematopoietic hierarchy between individual mice. Surprisingly, stem and progenitor cell pool size and proliferation rate, as well as peripheral blood cell counts are all independently regulated.  相似文献   

11.
Rop18是一种通过数量性状遗传位点等分析手段新近发现的弓形虫毒力决定因子,其基因的高表达与强毒I型RH株对实验小鼠模型的急性毒力直接相关。Rop18可通过其丝氨酸/苏氨酸蛋白激酶活性,干扰宿主细胞南IFN-(诱导表达的免疫相关GTP酶IRGs蛋白以及内质网相关转录因子ATF6(的抗弓形体机制,使弓形虫具备强毒力。目前对Rop18的研究已成为棒状体蛋白激酶家族的研究热点。本文综述了Rop18的发现过程、序列和结构特征、作用机制和应用前景等方面的研究进展。  相似文献   

12.
13.
OBJECTIVE: Collagen-induced arthritis (CIA) is a polygenic model of experimentally induced autoimmunity and chronic joint inflammation. This study maps genetic loci that regulate CIA susceptibility in DA/Bkl (DA) and BN/SsNHsd (BN) rats. METHODS: Genome scans covering chromosomes 1-20 and interval mapping techniques using 159 simple sequence-length polymorphism markers were used to identify quantitative trait loci (QTLs) that regulate CIA in (DA x BN)F2 hybrids. Serum antibody titers to type II collagen were determined by enzyme-linked immunosorbent assay. RESULTS: DA rats were high responders to porcine type II collagen (PII) and developed severe CIA (100%). BN rats were low responders to PII and resistant to CIA (0%). BN genes strongly repressed PII-induced CIA. Only 12% of (DA x BN)F1 rats (7 of 60) and 31% of (DA x BN)F2 rats (307 of 1,004) developed CIA. Three new QTLs (Cia11, Cia12, and Cia13) with significant logarithm of odds (LOD) scores of 5.6, 4.6, and 4.5, respectively, plus a suggestive QTL (Cia14*, LOD 3.0) regulating arthritis severity were identified on chromosomes 3, 12, 4, and 19. A new QTL, Ciaa3, associating with anticollagen antibody titer (antibody to PII LOD 6.5; antibody to rat type II collagen LOD 5.2) mapped to chromosome 9. Of 10 CIA QTLs previously identified in (DA x F344) and (DA x ACI) rats, only Cia1 in the major histocompatibility complex and a region coincident to Cia5 on chromosome 10 (LOD >8.0) influenced CIA severity in (DA x BN)F2 rats. CONCLUSION: Since CIA exhibits many of the pathologic features of rheumatoid arthritis, the data indicate that the variety of genetic elements regulating human autoimmune and rheumatic diseases may be much larger and more varied than originally envisioned.  相似文献   

14.
Angiotensin-converting enzyme (ACE) activity is highly heritable and has been associated with cardiovascular disease. We are studying the effects of genes and environmental factors on hypertension and related phenotypes, such as ACE activity, in Mexican-American families. In the current study, we performed multipoint linkage analysis to search for quantitative trait loci (QTLs) that affect ACE activities on data from 793 individuals from 29 pedigrees from the San Antonio Family Heart Study. As expected, we obtained strong evidence (maximum log of the odds [LOD]=4.57, genomic P=0.003) that a QTL for ACE activity is located on chromosome 17 near the ACE structural locus. We subsequently performed linkage analyses conditional on the effect of this QTL and obtained strong evidence (LOD=3.34) for a second QTL on chromosome 4 near D4S1548. We next incorporated the ACEIns/Del genotypes in our analyses and removed the evidence for the chromosome 17 QTL (maximum LOD=0.60); however, we retained our evidence for the QTL on chromosome 4q. We conclude that the QTL on chromosome 17 is tightly linked to ACE and is in strong disequilibrium with the insertion/deletion polymorphism, which is consistent with other reports. We also have evidence that an additional QTL affects ACE activity. Identification of this additional QTL might lead to alternate means of prophylaxis.  相似文献   

15.
16.
17.
弓形虫是一种专性有核细胞内的寄生原虫,可以感染包括人类在内的几乎所有温血动物。弓形虫不同虫株基因组之间存在微小差异,这可能是导致不同虫株对小鼠急性毒力差异的原因。近年来,对弓形虫基因组的研究主要集中在一些编码毒力相关的重要的抗原基因。各分离株基因组之间只有1%。2%的差异,这种差异在各不同虫株间较稳定。弓形虫株大多数属于Ⅰ型、Ⅱ型和Ⅲ型中的一种,只有Ⅰ型是公认的小鼠强毒株,其余两型属弱毒株。目前的观察认为弓形虫基因组的变异度要比表型的变异度小。该文综述了与虫株毒力表型密切相关的基因,如SAG1,SAG2和SAG5等。越来越多的研究表明,造成弓形虫表型差异的因素并非单一的,而是若干基因共同作用的结果。  相似文献   

18.
抗弓形虫主要外膜蛋白单克隆抗体的分析与鉴定   总被引:2,自引:1,他引:2  
用杂交瘤技术制备抗弓形虫单克隆抗体,经蛋白印迹试验证实:12A10、12C4杂交瘤株分泌抗弓形虫主要外膜蛋白P30的单克隆抗体。其免疫球蛋白均为IgG类。  相似文献   

19.
Overdominant quantitative trait loci for yield and fitness in tomato   总被引:2,自引:0,他引:2  
Heterosis, or hybrid vigor, is a major genetic force that contributes to world food production. The genetic basis of heterosis is not clear, and the importance of loci with overdominant (ODO) effects is debated. One problem has been the use of whole-genome segregating populations, where interactions often mask the effects of individual loci. To assess the contribution of ODO to heterosis in the absence of epistasis, we carried out quantitative genetic and phenotypic analyses on a population of tomato (Solanum lycopersicum) introgression lines (ILs), which carry single marker-defined chromosome segments from the distantly related wild species Solanum pennellii. The ILs revealed 841 quantitative trait loci (QTL) for 35 diverse traits measured in the field on homozygous and heterozygous plants. ILs showing greater reproductive fitness were characterized by the prevalence of ODO QTL, which were virtually absent for the nonreproductive traits. ODO can result from true ODO due to allelic interactions of a single gene or from pseudoODO that involves linked loci with dominant alleles in repulsion. The fact that we detected dominant and recessive QTL for all phenotypic categories but ODO only for the reproductive traits indicates that pseudoODO due to random linkage is unlikely to explain heterosis in the ILs. Thus, we favor the true ODO model involving a single functional Mendelian locus. We propose that the alliance of ODO QTL with higher reproductive fitness was selected for in evolution and was domesticated by man to improve yields of crop plants.  相似文献   

20.
Routine serological diagnosis of toxoplasmosis provides high sensitivity, but not high specificity. The high sensivity combined with high specifity offered by PCR-TaqMann as well as the degree of infection led us to investigate the presence and levels of T. gondii DNA in amniotic fluid, maternal and neonatal blood in cases of pregnancy where infection with this agent was suspected. Samples of amniotic fluid and blood were taken from pregnant women. Postnatal blood samples were also taken from their infants. Presence and levels of toxoplasma DNA was investigated using PCR-TaqMann. PCR products were detected by electrophoresis on polyacrylamide gel. The PCR-TaqMann test is highly sensitive, specific and useful method allowing detection of the parasite genome and assessement of its level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号