首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several stimuli result in glial activation and induce nitric oxide (NO) production in microglial and astroglial cells. The bacterial endotoxin lipopolysaccharide (LPS) has been widely used to achieve glial activation in vitro, and several studies show that both microglial and, to a lesser extent, astroglial cell cultures produce NO after LPS treatment. However, NO production in endotoxin-treated astrocyte cultures is controversial. We characterized NO production in microglial, astroglial and mixed glial cell cultures treated with lipopolysaccharide, measured as nitrite accumulation in the culture media. We also identified the NO-producing cells by immunocytochemistry, using specific markers for the inducible NO synthase (iNOS) isoform, microglial and astroglial cells. Only microglial cells showed iNOS immunoreactivity. Thus, contaminating microglial cells were responsible for NO production in the secondary astrocyte cultures. We then analysed the effect of astrocytes on NO production by microglial cells using microglial-astroglial cocultures, and we observed that this production was clearly enhanced in the presence of astroglial cells. Soluble factors released by astrocytes did not appear to be directly responsible for such an effect, whereas nonsoluble factors present in the cell membrane of LPS-treated astrocytes could account, at least in part, for this enhancement.  相似文献   

2.
Glutamate is the main excitatory neurotransmitter in mammals. However, excessive activation of glutamate receptors is neurotoxic, leading to neuronal degeneration and death. In many systems, including primary cultures of cerebellar neurons, glutamate neurotoxicity is mainly mediated by excessive activation of NMDA receptors, leading to increased intracellular calcium which binds to calmodulin and activates neuronal nitric oxide synthase (NOS), increasing nitric oxide (NO) which in turn activates guanylate cyclase and increases cGMP. Inhibition of NOS prevents glutamate neurotoxicity, indicating that NO mediates glutamate-induced neuronal death in this system. NO generating agents such as SNAP also induce neuronal death. Compounds that can act as “scavengers” of NO such as Croman 6 (CR-6) prevent glutamate neurotoxicity. The role of cGMP in the mediation of glutamate neurotoxicity remain controversial. Some reports indicate that cGMP mediates glutamate neurotoxicity while others indicate that cGMP is neuroprotective. We have studied the role of cGMP in the mediation of glutamate and NO neurotoxicity in cerebellar neurons. Inhibition of soluble guanylate cyclase prevents glutamate and NO neurotoxicity. There is a good correlation between inhibition of cGMP formation and neuroprotection. Moreover 8-Br-cGMP, a cell permeable analog of cGMP, induced neuronal death. These results indicate that increased intracellular cGMP is involved in the mechanism of neurotoxicity. Inhibitors of phosphodiesterase increased extracellular but not intracellular cGMP and prevented glutamate neurotoxicity. Addition of cGMP to the medium also prevented glutamate neurotoxicity. These results are compatible with a neurotoxic effect of increased intracellular cGMP and a neuroprotective effect of increased extracellular cGMP.  相似文献   

3.
Glutamate release from microglial cells may cause neuronal damage. To elucidate the mechanism of glutamate release, we examined the possible regulation by nitric oxide and protein kinase C. Cultured microglia prepared from the whole brains of newborn rats released glutamate by the stimulation with lipopolysaccharide (LPS) dose dependently. The time course study revealed that glutamate release showed a long lag time about 6 h after LPS stimulation, whereas about 3 h lag time was observed in LPS-induced NO production. An inhibitor for NO synthase, N(G)-nitro-L-arginine, could effectively inhibit the glutamate release. Glutamate release induced by LPS was enhanced by 1 nM phorbol myristate acetate (PMA). Furthermore, high concentrations of PMA (>10 nM) induced glutamate release even without LPS stimulation. Glutamate release stimulated either by 100 ng/ml LPS or 100 nM PMA was inhibited by staurosporine, and also by alpha-aminoadipate. These results provide insight into the pathways regulating microglial pathological activation by protein kinase C and may be a base for the protection against microglia-evoked neurotoxicity.  相似文献   

4.
Proinflammatory cytokines produced by activated glial cells may in turn augment the immune/inflammatory reactions of glial cells through autocrine and paracrine routes. The NO/cGMP signaling represents one of the reactions of activated glial cells. We investigated whether the production of proinflammatory cytokines by glial cells is affected by NO-dependent downstream cGMP signaling. In primary cultures of mixed astrocytes and microglial cells, zaprinast (0.1 mM), an inhibitor of cGMP-selective phosphodiesterases, enhanced the basal and LPS (1.0 microg/ml)-induced secretion of TNF-alpha and IL-1beta. Zaprinast also enhanced NO production induced by LPS or IFN-gamma (100 U/ml), and in microglial cell cultures, but not in astrocyte cultures, zaprinast enhanced the basal and the IFN-gamma-induced production of the cytokines, TNF-alpha and IL-1beta, and of NO. This upregulation by zaprinast was partially inhibited by KT5823 (1.0 microM), an inhibitor of protein kinase G. The LPS-induced production of TNF-alpha, IL-1beta, and NO was inhibited by ODQ (50 microM), an inhibitor of soluble guanylyl cyclase, and by KT5823. Immunohistochemical analysis of mixed glial cell cultures showed that LPS/IFN-gamma-induced iNOS expression and the enhanced expression of iNOS by zaprinast were restricted to microglial cells. Zaprinast enhanced the IFN-gamma (200 U/ml)-induced expression of MHC Class II molecules in astrocytes and microglial cells in mixed cultures, but did not enhance this IFN-gamma-induced expression in pure astrocytes, which lacked paracrine TNF-alpha from microglial cells. Summarizing, zaprinast, which is associated with cGMP/protein kinase G signaling, may augment central immune/inflammatory reactions, possibly via the increased production of TNF-alpha and IL-1beta by activated microglial cells.  相似文献   

5.
Pro-inflammatory molecules induce glial activation and the release of potentially detrimental factors capable of generating oxidative damage, such as nitric oxide (NO) and superoxide anion (O2.-). Activated glial cells (astrocytes and microglia) are associated to the inflammatory process in neurodegenerative diseases. A strong inflammatory response could escape endogenous control becoming toxic to neurons and contributing to the course of the disease. We evaluated in a hippocampal cells-microglia co-culture model, if the pro-inflammatory condition induced by lipopolysaccharide + interferon-gamma (LPS+IFN-gamma) promoted damage directly or if damage was secondary to glial activation. In addition, we explored the effect of the anti-inflammatory cytokine transforming growth factor-beta1 (TGF-beta1), and pro-inflammatory cytokines, interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) on the regulation of the inflammatory response of microglia. We found that LPS+IFN-gamma-induced damage on hippocampal cultures was dependent on the presence of microglial cells. In hippocampal cultures exposed to LPS+IFN-gamma, TGF-beta1 was induced whereas in microglial cell cultures LPS+IFN-gamma induced the secretion of IL-1beta. TGF-beta1 and IL-1beta but not TNF-alpha decreased the NO production by 70-90%. PD98059, an inhibitor of MAP kinase (MEK), reduced the IFN-gamma-induced NO production by 40%. TGF-beta and IL-1beta reduced the IFN-gamma induced phosphorylation of ERK1,2 by 60% and 40%, respectively. However, the effect of IL-1beta was observed at 30 min and that of TGF-beta1 only after 24 h of exposure. We propose that acting with different timing, TGF-beta1 and IL-1beta can modulate the extracellular signal-regulated kinase ERK1,2, as a common element for different transduction pathways, regulating the amplitude and duration of glial activation in response to LPS+IFN-gamma. Cross-talk among brain cells may be key for the understanding of inflammatory mechanisms involved in pathogenesis of neurodegenerative diseases.  相似文献   

6.
Nitric oxide (NO) produced by glial cells has been implicated in the neuropathogenesis of various diseases. However, the signaling transduction pathway(s) for the production of NO in these cells is not well understood. To test whether protein tyrosine kinases (PTKs) are required for signaling events of NO production in glial cells, this study examined the effects of genistein and tyrphostin A25, two potent inhibitors of PTKs, on the production of NO in mouse primary mixed glia, microglia-enriched or astrocyte-enriched cultures exposed to lipopolysaccharide (LPS) or a combination of LPS and interferon-γ (IFNγ). LPS induced a dose-dependent increase in NO production from the mixed glia cultures. The LPS-induced NO production was significantly enhanced by stimulating the cells with IFNγ. Genistein or tyrphostin A25 inhibited the production of NO in both LPS- and IFNγ/LPS-stimulated mixed glia cultures. The production of NO in the stimulated microglia-enriched or astrocyte-enriched cultures was also inhibited by tyrphostin A25. To verify the cellular sources of NO, immunocytochemical staining of inducible NO synthase (iNOS) was followed by staining with the microglia marker Mac-1 or the astrocyte marker glial fibrillary acid protein (GFAP) in microglia-enriched or astrocyte-enriched cultures. The expression of iNOS and the production of NO in microglia-enriched cultures were significantly higher than those in the identically stimulated astrocyte-enriched cultures. These results demonstrate that PTKs are involved in the signaling events of LPS-induced NO production in microglia and astrocytes, and that microglia are more responsive than astrocytes to stimuli which induce NO. These results may provide insights into therapeutic interventions in the pathway for NO production in the brain.  相似文献   

7.
The cytokines interleukin (IL)-1 and tumor necrosis factor (TNF)-α, produced by glial cells within the brain, appear to contribute to the neuropathogenesis of several inflammatory neurodegenerative diseases; however, little is known about the mechanism underlying cytokine-induced neurotoxicity. Using human fetal brain cell cultures composed of neurons and glial cells, we investigated the injurious effects of IL-1 β and TNF-α, cytokines which are known to induce nitric oxide (NO) production by astrocytes. Although neither cytokine alone was toxic, IL-1 β and TNF-α in combination caused marked neuronal injury. Brain cell cultures treated with IL-1 β plus TNF-α generated substantial amounts of NO. Blockade of NO production with a NO synthase inhibitor was accompanied by a marked reduction (about 45%) of neuronal injury, suggesting that NO production by astrocytes plays a role in cytokine-induced neurotoxicity. Addition of N-methly-D-aspartate (NMDA) receptor antagonists to brain cell cultures also blocked IL-1 β plus TNF-α-induced neurotoxicity (by 55%), implicating the involvement of NIMDA receptors in cytokine-induced neurotoxicity. Treatment of brain cell cultures with IL-1 β plus TNF-α was found to inhibit [3H]-glutamate uptake and astrocyte glutamine synthetase activity, two major pathways involved in NMDA receptor-related neurotoxicity. These in vitro findings suggest that agents which suppress NO production or inhibit NMDA receptors may protect against neuronal damage in cytokine-induced neurodegenerative diseases.  相似文献   

8.
Tusell JM  Saura J  Serratosa J 《Glia》2005,49(1):52-58
We have studied possible differences in glial activation between cells from wild-type and p21Cip1-/- mice. We compared the effect of serum mitogenic stimulation on proliferation rate and on the total number of glial cells after 7 days of culture. No differences between wild-type and p21Cip1-/- glial cells were observed. We also compared the effect of lipopolysaccharide (LPS) from Escherichia coli, an agent widely used to induce glial activation. Nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) release, and nuclear factor kappa-B (NF-kappaB) activation were evaluated as indicators of glial activation. We observed an attenuation of NO release and NF-kappaB activation in p21Cip1-/- glial cells when compared with glial cells from wild-type mice. In contrast, TNF-alpha release was enhanced in p21Cip1-/- glia. These results suggest that the cell cycle inhibitor p21Cip1 plays a role in the inflammatory response induced by LPS.  相似文献   

9.
Domoic acid-induced neurotoxicity in the hippocampus of adult rats   总被引:1,自引:0,他引:1  
Domoic acid (DA), an agonist of non-N-methyl-D-aspartate (non-NMDA) receptor subtype including kainate receptor, was identified as a potent neurotoxin showing involvement in neuropathological processes like neuronal degeneration and atrophy. In the past decade evidence indicating a role for excitatory amino acids in association with neurological disorders has been accumulating. Although the mechanisms underlying the neuronal damage induced by DA are not yet fully understood, many intracellular processes are thought to contribute towards DA-induced excitotoxic injury, acting in combination leading to cell death. In this review article, we report the leading hypotheses in the understanding of DA-induced neurotoxicity, which focus on the role of DA in neuropathological manifestations, the formation of the retrograde messenger molecule nitric oxide (NO) for the production of free radicals in the development of neuronal damage, the activation of glial cells (microglia and astrocytes) in response to DA-induced neuronal damage and the neuroprotective role of melatonin as a free radical scavenger or antioxidant in DA-induced neurotoxicity. The possible implications of molecular mechanism underlying the neurotoxicity in association with necrosis, apoptosis, nitric oxide synthases (nNOS and iNOS) and glutamate receptors (NMDAR1 and GluR2) related genes and their expression in DA-induced neuronal damage in the hippocampus have been discussed.  相似文献   

10.
Excitotoxic neuronal cell death is characterized by an overactivation of glutamate receptors, in particular of the NMDA subtype, and the stimulation of the neuronal nitric oxide synthase (nNOS), which catalyses the formation of nitric oxide (NO) from l-arginine (L-Arg). At low L-Arg concentrations, nNOS generates NO and superoxide (O2(.)(-)), favouring the production of the toxin peroxynitrite (ONOO-). Here we report that NMDA application for five minutes in the absence of added L-Arg induces neuronal cell death, and that the presence of L-Arg during NMDA application prevents cell loss by blocking O2(.)(-) and ONOO- formation and by inhibiting mitochondrial depolarization. Because L-Arg is transferred from glial cells to neurons upon activation of glial glutamate receptors, we hypothesized that glial cells play an important modulator role in excitotoxicity by releasing L-Arg. Indeed, as we further show, glial-derived L-Arg inhibits NMDA-induced toxic radical formation, mitochondrial dysfunction and cell death. Glial cells thus may protect neurons from excitotoxicity by supplying L-Arg. This potential neuroprotective mechanism may lead to an alternative approach for the treatment of neurodegenerative diseases involving excitotoxic processes, such as ischemia.  相似文献   

11.
De A  Krueger JM  Simasko SM 《Brain research》2005,1053(1-2):54-61
Tumor necrosis factor-alpha (TNFalpha) affects several CNS functions such as regulation of sleep, body temperature, and feeding during pathology. There is also evidence for TNFalpha involvement in physiological sleep regulation, e.g., TNFalpha induces sleep and brain levels of TNFalpha increase during prolonged wakefulness. The immediate cause of enhanced TNFalpha production in brain is unknown. We investigated whether glutamate could signal TNFalpha production because glutamate is a neurotransmitter associated with cell activation and wakefulness. We used primary cultures of fetal rat hypothalamic cells to examine the expression and release of TNFalpha. Immunostaining for neuron specific enolase revealed that the cultures were 50-60% neuronal and 40-50% non-neuronal cells. TNFalpha was detected in both the media and cells under basal conditions. Stimulation of the cells with 1 mM glutamate for 2 h produced an increase in media content of TNFalpha, whereas cell content was elevated at earlier time points. Using trypan blue exclusion and MTT assays, there was no evidence of cell toxicity with this stimulation protocol. Immunocytochemical staining revealed that TNFalpha was expressed by approximately 25% of the neurons and approximately 75% of the glial cell in the culture. Stimulation of the cultures with glutamate did not increase the percentage of cells expressing TNFalpha. We conclude that TNFalpha is constitutively expressed and released by healthy cultures of hypothalamic cells and that activation of the cells with a non-toxic challenge of glutamate increases TNFalpha production. These findings support the hypothesis that TNFalpha can participate in normal physiological regulation of sleep and feeding.  相似文献   

12.
We have characterized lipopolysaccharide (LPS) preconditioning-induced neuroprotective mechanisms against nitric oxide (NO) toxicity. Pretreatment of rat cortical cultures with LPS attenuated neurotoxicity of NO donors, including sodium nitroprusside (SNP) and diethylamine NONOate (NONOate). A transiently increased expression of endothelial nitric oxide synthase (eNOS) accompanied by an increase in NO production was observed during LPS preconditioning. Application of NOS inhibitors including L-N(5)-(1-iminoethyl)-ornithine (L-NIO) and L-nitroarginine methylester (L-NAME) abolished LPS-dependent protection against SNP toxicity. The LPS effect was also blocked by KT5823, an inhibitor of cGMP-dependent protein kinase (PKG). Consistently, application of 8-bromo-cyclic GMP (8-Br-cGMP), a slowly degradable cGMP analogue capable of PKG activation, was neuroprotective. LPS preconditioning resulted in a heightened neuronal expression of Bcl-2 protein that was abolished by L-NAME and KT5823, the respective inhibitors of NOS and PKG. Together, our results reveal the signaling cascade of "LPS --> eNOS --> NO --> cGMP/PKG --> Bcl-2" that might have contributed to the LPS protective effects in cortical neurons.  相似文献   

13.
14.
In mixed glial cell cultures from cerebral cortices of newborn rats, endotoxin induces nitric oxide (NO) production in microglial cells. Earlier we demonstrated that endotoxin induced NO production by microglial cells is inhibited in the presence of astroglial cells by transforming growth factor β (TGFβ). Both microglial and astroglial cells produce TGFβ in a biologically inactive form, which can be activated by plasmin generated by plasminogen activators (PA). In the present paper we describe studies on the mechanism by which glial cells may activate inactive TGFβ and its potential inhibitory effect on NO production by microglial cells. Inhibition of plasmin increased NO production in endotoxin-treated mixed glial cell cultures. Subsequently, antibodies against tissue-type plasminogen activator (tPA) increased NO production in endotoxin-treated mixed glial cell cultures while amiloride, an inhibitor for urokinase (uPA), had no effect. We hereby concluded that tPA is the crucial PA involved in plasmin production resulting in inhibition of NO production in mixed glial cell cultures. Zymography and Northern blot analysis of purified astroglial, microglial, and mixed glial cell cultures demonstrated that astroglial cells produce tPA and a plasminogen activator inhibitor (PAI-1) and are thereby responsible for the production of plasmin which may activate the inactive TGFβ in these cultures. In conclusion, astroglial-derived tPA plays a major role in the inhibition of NO production by endotoxin-treated microglial cells through enhanced plasmin production and possible subsequent TGFβ activation. GLIA 22:130–137, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
The brains of Alzheimer's disease (AD) patients present activated glial cells, amyloid plaques and dystrophic neurites. The core of amyloid plaques is composed of aggregated amyloid peptide (Abeta), a peptide known to activate glial cells and to have neurotoxic effects. We evaluated the capability of glial cells to mediate Abeta(1-42) cytotoxicity in hippocampal cultures. Conditioned media obtained from microglial cultures exposed to Abeta induced apoptosis of hippocampal cells. This pro-apoptotic effect was not observed in hippocampal cultures exposed to conditioned media obtained from mixed glial (astrocytes and microglia) cultures that had been exposed to Abeta. Microglia exposed to Abeta responded with reactive morphological changes, induction of iNOS, elevated nitric oxide production and decreased reductive metabolism. All these responses were attenuated by the presence of astrocytes. This astrocyte modulation was however, not observed when glial cells were exposed to proinflammatory factors (LPS+Interferon-gamma) alone or in combination with Abeta. Our results suggest that astrocytes and proinflammatory molecules are determining factors in the response of microglia to Abeta.  相似文献   

16.
P K Sher  S X Hu 《Glia》1990,3(5):350-357
To examine the neurochemical effects of chronic hypoxia on immature nervous tissue in vitro, mixed neuronal-glial cell cultures derived from fetal mice were exposed to 5% O2 for 24 or 48 h. Those cultures subjected to longer hypoxia manifested improved neuronal survival compared to those with the shorter insult, both with respect to neuronal morphology and also cell counts. Neurochemical assays were performed on living cells in situ to determine the possible basis for differential cell survival. After both exposure conditions. Ro5-4864-displaceable benzodiazepine (BDZ) binding, reflecting nonneuronal BDZ binding sites, was either not reduced or was elevated. Although initially reduced, binding of the excitatory amino acid (EAA) glutamate was progressively increased after both insults and, within 2 days after return to normoxia, was increased relative to control values (121 and 128% of controls, P less than 0.05). The most impressive neurochemical differences between the two conditions related to changes in the predominantly or exclusively glial functions of glutamate uptake and glutamine synthetase activity. In those cultures with relatively preserved neuronal morphology: 1) high affinity uptake of glutamate was elevated compared to the shorter hypoxic insult by 3 days of recovery (104 vs 70%, P less than 0.001) and 2) glutamine synthetase, an enzyme localized primarily within astrocytes, was significantly elevated even when compared to absolute control values (148%, P less than 0.001). These data suggest that longer periods of hypoxia may be less deleterious to neurons than shorter hypoxic events because of a time-dependent stimulation of specific glial cell functions which relate to increased metabolism of potentially neurotoxic EAAs such as glutamate.  相似文献   

17.
The brain of Alzheimer's disease patients shows abundant dystrophic neurites in close proximity to fibrillar beta-amyloid (A beta) plaques, and activated glial cells. We evaluated the influence of pro-inflammatory molecules (LPS + IFN-gamma) on A beta(1-42) neurotoxicity. 2 microM A beta(1-42) induced apoptosis of hippocampal cells and LPS + IFN-gamma reduced the apoptosis induced by A beta. However, LPS + IFN-gamma prevented apoptosis only in hippocampal cultures containing astrocytes. Also, LPS + IFN-gamma induced the secretion of TGF beta, a cytokine having neuroprotective effects, only in hippocampal cultures that contained astrocytes. Astrocytes had a regulatory effect over microglial and neuronal responses to A beta. The results suggest that LPS + IFN-gamma, traditionally considered as pro-apoptotic, reduced apoptosis induced by A beta through the activation of neuroprotective mechanisms mediated by astrocytes. We propose that astrocytes are pivotal in the modulation of inflammation of the CNS. The impairment of the regulatory functions performed by activated astrocytes could represent an important pathogenic mechanism for neurodegenerative diseases.  相似文献   

18.
Reduction of extracellular pH from 7.4 to 6.5 attenuated glutamate neurotoxicity in murine cortical neuronal and glial cultures, but if maintained for 24 h, resulted in morphological evidence of selective glial injury. Acid-induced gliotoxicity was examined quantitatively in cortical astrocyte cultures, using lactate dehydrogenase efflux as an index of cell damage. An exposure time of 9 h to pH 6.4 was sufficient to destroy about one third of the glia, whether or not 25 mM lactate was present. Furthermore, such acidosis increased the vulnerability of glia to injury by combined oxygen and glucose deprivation. These observations support the suggestion that the acidosis which accompanies ischemia in vivo may contribute to glial injury.  相似文献   

19.
Intracellular glutathione (GSH) levels determine whether nitric oxide (NO) is neurotrophic for dopamine neurons or triggers a cell death cascade in primary midbrain cultures. We have investigated herein the role of the extracellular-signal regulated protein kinase (ERK) 1/2 pathway in this GSH switching effect. The short-lived NO donor DEA/NO induces a transient activation of ERK-1/2 that totally disappears 2 h after NO administration. The depletion of GSH increases and the supplementation of GSH suppresses ERK-1/2 activation in response to NO treatment. More interestingly, GSH depletion changes the kinetic of phosphorylation leading to a second prolonged phase of ERK-1/2 activation from 2 to 16 h after NO addition. This change of kinetic is ultimately responsible for NO toxicity under GSH-depleted conditions, because selective blockade of the second and persistent phase of activation prevents cell death. In addition, the only transient ERK activation, induced by NO under normal GSH conditions, did not cause ERK-dependent cell death. Immunocytochemical colocalization studies demonstrate that ERK activation takes place exclusively in glial cells, mainly in astrocytes and less frequently in oligodendrocytes and glial progenitors. Furthermore, glial cell elimination or inactivation in the culture, by gliotoxic drugs, abrogates NO-induced ERK activation. Our results indicate that neurotrophism of NO switches into neurotoxicity after GSH depletion due to persistent activation of the ERK-1/2 signaling pathway in glial cells. The implication of these results in pathological conditions like Parkinson's disease, where GSH depletion and NO overproduction have been documented, are discussed.  相似文献   

20.
Both ionotropic and metabotropic glutamate receptors have been implicated in the pathogenesis of neuronal injury. Activation of group I metabotropic glutamate receptors (mGluR) exacerbates neuronal cell death, whereas inhibition is neuroprotective. However, the mechanisms involved remain unknown. Activation of group I mGluR modulates multiple signal transduction pathways including stimulation of phosphoinositide hydrolysis, potentiation of NMDA receptor activity, and release of arachidonic acid. Here we demonstrate that whereas activation of group I mGluR by (S)-3,5-dihydroxyphenylglycine (DHPG) potentiates NMDA-induced currents and intracellular calcium increases in rat cortical neuronal cultures, partial effects of group I mGluR activation or inhibition on neuronal injury induced by oxygen-glucose deprivation remain despite NMDA receptor blockade. DHPG stimulation also increases basal arachidonic acid release from rat neuronal-glial cultures and potentiates injury-induced arachidonic acid release in these cultures. Thus, activation of group I mGluR may exacerbate neuronal injury through multiple mechanisms, which include positive modulation of NMDA receptors and enhanced release of arachidonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号