首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Most fast inhibitory neurotransmission in the brain is mediated by GABAA receptors, which are mainly postsynaptic and consist of diverse alpha and beta subunits together with the gamma 2 subunit. Although the gamma 2 subunit is not necessary for receptor assembly and translocation to the cell surface, we show here that it is required for clustering of major postsynaptic GABAA receptor subtypes. Loss of GABAA receptor clusters in mice deficient in the gamma 2 subunit, and in cultured cortical neurons from these mice, is paralleled by loss of the synaptic clustering molecule gephyrin and synaptic GABAergic function. Conversely, inhibiting gephyrin expression causes loss of GABAA receptor clusters. The gamma 2 subunit and gephyrin are thus interdependent components of the same synaptic complex that is critical for postsynaptic clustering of abundant subtypes of GABAA receptors in vivo.  相似文献   

2.
We compared gamma-aminobutyric acid (GABA)-activated currents and their modulation by benzodiazepines in cultured human cells transfected with complementary desoxyribonucleic acid (cDNA) encoding different GABAA receptor subunits. Flunitrazepam, a benzodiazepine agonist which potentiates GABA responses in both neurons and astrocytes was only effective in receptors containing the gamma 2 subunit (alpha 1 beta 1 gamma 2 and alpha 5 beta 1 gamma 2). The beta-carboline methyl-4-ethyl-6,7-dimethoxy-beta-carboline-3-carboxylate (DMCM) decreased GABA-activated currents in receptors composed of alpha 1 beta 1 gamma 1 and alpha 1 beta 1 gamma 2 subunits but increased GABA-activated currents in receptors containing the alpha 5 subunit (alpha 5 beta 1 gamma 1 and alpha 5 beta 1 gamma 2). These results strongly suggest that flunitrazepam and DMCM do not act on isosteric sites and that differences in the responsiveness of GABAA receptors to these compounds are based on different subunit compositions of GABAA receptors.  相似文献   

3.
4.
Summary In situ hybridization histochemistry was used to detect cell bodies expressing mRNA encoding for the phosphoprotein GAP-43 in the lumbosacral spinal cord of the adult rat, cat and monkey under normal conditions and, in the cat and rat, also after different types of lesions. In the normal spinal cord, a large number of neurons throughout the spinal cord gray matter were found to express GAP-43 mRNA. All neurons, both large and small, in the motor nucleus (Rexed's lamina IX) appeared labeled, indicating that both alpha and gamma motoneurons express GAP-43 mRNA under normal conditions. After axotomy by an incision in the ventral funiculus or a transection of ventral roots or peripheral nerves, GAP-43 mRNA was clearly upregulated in axotomized motoneurons, including both alpha and gamma motoneurons. An increase in GAP-43 mRNA expression was already detectable 24 h postoperatively in lumbar motoneurons both after a transection of the sciatic nerve at knee level and after a transection of ventral roots. At this time, a stronger response was seen in the motoneurons which had been subjected to the distal sciatic nerve transection than was apparent for the more proximal ventral root lesion. An upregulation of GAP-43 mRNA could also be found in intact motoneurons located on the side contralateral to the lesion, but only after a peripheral nerve transection, indicating that the concomitant influence of dorsal root afferents may play a role in GAP-43 mRNA regulation. However, a dorsal root transection alone did not seem to have any detectable influence on the expression of GAP-43 mRNA in spinal motoneurons, while the neurons located in the superficial laminae of the dorsal horn responded with an upregulation of GAP-43 mRNA. The presence of high levels of GAP-43 in neurons has been correlated with periods of axonal growth during both development and regeneration. The role for GAP-43 in neurons under normal conditions is not clear, but it may be linked with events underlying remodelling of synaptic relationships or transmitter release. Our findings provide an anatomical substrate to support such a hypothesis in the normal spinal cord, and indicate a potential role for GAP-43 in axon regeneration of the motoneurons, since GAP-43 mRNA levels was strongly upregulated following both peripheral axotomy and axotomy within the spinal cord. The upregulation of GAP-43 mRNA found in contralateral, presumably uninjured motoneurons after peripheral nerve transection, as well as in dorsal horn neurons after a dorsal root transection, indicates that GAP-43 levels are altered not only as a direct consequence of a lesion, but also after changes in the synaptic input to the neurons.  相似文献   

5.
The distribution and levels of messenger RNAs encoding the alpha 1, beta 1, beta 2, beta 3, and gamma 2 subunits of the GABAA receptor in the developing and adult rat brain were investigated using quantitative in situ hybridization histochemistry and subunit-specific probes. Regional localization of the subunit messenger RNAs was determined with film autoradiography and expression in identified neuronal cell populations was examined using higher resolution techniques. Each of the GABAA receptor subunit messenger RNAs exhibits a distinct pattern of localization in the developing and adult brain. Of the subunits examined, the alpha 1, beta 2, and gamma 2 are the most abundant and are found in many brain regions, including the olfactory bulb, cortex, hippocampus, thalamic nuclei, and inferior colliculus. In addition, these subunit messenger RNAs are prominent in the cerebellum where virtually all cells of the deep cerebellar nuclei and Purkinje cell layer are labeled. The levels of most of the subunit messenger RNAs, with the exception of that encoding the beta 1 subunit, increase during postnatal development. While the alpha 1, beta 2, and gamma 2 subunit messenger RNAs rise in parallel in many regions and identified cell populations, different subsets of receptor subunit messenger RNAs are co-ordinately expressed at other sites. The greatest increases in subunit messenger RNA levels occur in the cerebellar cortex during the second postnatal week, a period coincident with cerebellar maturation. The co-distribution of different GABAA receptor subunit messenger RNAs in various regions of the developing and adult nervous systems supports the hypothesis that multiple receptor compositions exist. Moreover, that different subunit messenger RNAs exhibit coordinate changes in expression in different regions and cell populations suggests that receptor gene expression is modulated by cell type-specific signals. The temporal changes in subunit messenger RNA levels in the cerebellum raise the possibility that synaptogenesis may play a role in receptor gene regulation in this brain region.  相似文献   

6.
The nicotinic cholinergic system is known to be important in the processing of nociceptive information. In the spinal cord, nicotinic receptors are expressed on primary afferent terminals, inhibitory interneurons and descending noradrenergic and serotoninergic fibers. Following peripheral nerve injury, the expression of numerous receptors involved in nociceptive processing is altered in the superficial dorsal horn of the spinal cord. However, the expression of nicotinic acetylcholine receptor subunits in the lumbar spinal cord following peripheral nerve injury has not been investigated. We examined the expression of the alpha3, alpha4, alpha5, alpha7, beta2, beta3 and beta4 nicotinic subunits in the spinal cord of normal and spinal nerve ligated rats using immunocytochemistry. Two nicotinic subunits were found to have an increased expression following spinal nerve ligation. The number of cells expressing the alpha3 subunit in the dorsal horn increased bilaterally following spinal nerve injury. Also, the number of alpha5 immunoreactive fibers increased significantly ipsilateral to ligation. The expression of the alpha4, alpha7, beta2, beta3 and beta4 subunits was unchanged.We propose that the increased expression of the alpha3 and alpha5 nicotinic subunits may contribute to the mechanical hypersensitivity observed following spinal nerve ligation.  相似文献   

7.
T Araki  H Kiyama  M Tohyama 《Neuroscience》1992,51(3):583-591
Developmental changes of the expression of various GABAA receptor subunits (alpha 1, alpha 3, alpha 4, beta 1-3, and gamma 2) were examined in the fetal rat cerebral cortex using in situ hybridization histochemistry. The subunits showed three main patterns of development. The alpha 1 subunit showed the first pattern, in which no expression was observed during embryonic development. The alpha 4 and beta 1 subunits showed the second pattern, in which expression was observed in both the undifferentiated neuroepithelium and the developing cortical layers. The alpha 3, beta 2, beta 3, and gamma 2 subunits showed the third pattern, in which expression was only seen in the developing cortical layers. These findings strongly suggest the following: (i) the alpha 1 subunit is involved in GABAergic transmission in the mature cerebral cortex; (ii) the alpha 4 and beta 1 subunits are involved in both the differentiation of the neuroepithelium and the development of the cortical plate, and (iii) the alpha 3, beta 2, beta 3, and gamma 2 subunits are involved in the development of the cortical plate. Subunits already expressed on embryonic day 13 (beta 1, beta 3, and gamma 2) appear especially likely to have a special role in neuronal development.  相似文献   

8.
Inhibition by GABA is important for auditory processing, but any adaptations of the ionotropic type A receptors are unknown. Here we describe, using in situ hybridization, the subunit expression patterns of GABA(A) receptors in the rat cochlear nucleus, superior olivary complex, and dorsal and ventral nuclei of the lateral lemniscus. All neurons express the beta3 and gamma2L subunit messenger RNAs, but use different alpha subunits. In the dorsal cochlear nucleus, fusiform (pyramidal) and giant cells express alpha1, alpha3, beta3 and gamma2L. Dorsal cochlear nucleus interneurons, particularly vertical or tuberculoventral cells and cartwheel cells, express alpha3, beta3 and gamma2L. In the ventral cochlear nucleus, octopus cells express alpha1, beta3, gamma2L and delta. Spherical cells express alpha1, alpha3, alpha5, beta3 and gamma2L. In the superior olivary complex, the expression profile is alpha3, alpha5, beta3 and gamma2L. Both dorsal and ventral cochlear nucleus granule cells express alpha1, alpha6, beta3 and gamma2L; unlike their cerebellar granule cell counterparts, they do not express beta2, gamma2S or the delta subunit genes. The delta subunit's absence from cochlear nucleus granule cells may mean that tonic inhibition mediated by extrasynaptic GABA(A) receptors is less important for this cell type. In both the dorsal and ventral nuclei of the lateral lemniscus, alpha1, beta3 and gamma2L are the main subunit messenger RNAs; the ventral nucleus also expresses the delta subunit. We have mapped, using in situ hybridization, the subunit expression patterns of the GABA(A) receptor in the auditory brainstem nuclei. In contrast to many brain regions, the beta2 subunit gene and gamma2S splice forms are not highly expressed in auditory brainstem nuclei. GABA(A) receptors containing beta3 and gamma2L may be particularly well suited to auditory processing, possibly because of the unique phosphorylation profile of this subunit combination.  相似文献   

9.
To compare the expression of GABAA receptor subunits in the normal substantia nigra and in fetal mesencephalic neurons ectopically transplanted into the dopamine-depleted striatum, we have employed single and double immunocytochemical approaches using tyrosine hydroxylase (TH) and alpha 1, alpha 2, alpha 3, and beta 2/3 GABAA receptor subunit specific antibodies. In the substantia nigra, alpha 1 and beta 2/3 GABAA receptor subunits were labeled in processes in the pars compacta (SNc) and, more intensely, in both somata and processes in the pars reticulata (SNr). There was no clear TH and alpha 1 or beta 2/3 colocalization, with the exception of some TH-immunoreactive (-ir) neurons that showed a weak immunoreactivity for beta 2/3. Sections immunolabeled for alpha 2 showed a faint diffuse labeling for this subunit both in the SNr and in the SNc. Scattered somata were immunopositive for alpha 2, and some of them were also TH-ir. The labeling for alpha 3 and TH showed that TH-positive neurons expressed intense alpha 3 immunoreactivity, although some TH-negative somata in the SNr expressed weak alpha 3 immunoreactivity. In the transplants, double immunostaining procedures showed that the labeling for alpha 1 or beta 2/3 appeared particularly concentrated in patches of intensely immunoreactive neuronal processes that surrounded TH-ir cells, but these processes were not TH-ir. In the case of alpha 2, diffuse immunostaining was observed all over the graft, with some scattered positive somata. Only a few of them were also TH positive. Sections immunoreacted for alpha 3 and TH revealed that TH-ir neurons expressed intense alpha 3 immunoreactivity, and that only a few TH-negative neurons were weakly positive for alpha 3. These results show that mesencephalic tissue ectopically grafted into the striatum develops a pattern of GABAA receptor expression similar to that normally expressed in situ, and particularly that the grafted dopaminergic neurons express similar GABAA receptors, including the alpha 3 subunit. This might be due to the similarity of GABAergic afferents to these neurons in the SNc and the graft, or that at the time of transplantation this expression had already been determined.  相似文献   

10.
GABA(A) receptors are ligand-operated chloride channels assembled from five subunits in a heteropentameric manner. Using immunocytochemistry, we investigated the distribution of GABA(A) receptor subunits deriving from 13 different genes (alpha1-alpha6, beta1-beta3, gamma1-gamma3 and delta) in the adult rat brain. Subunit alpha1-, beta1-, beta2-, beta3- and gamma2-immunoreactivities were found throughout the brain, although differences in their distribution were observed. Subunit alpha2-, alpha3-, alpha4-, alpha5-, alpha6-, gamma1- and delta-immunoreactivities were more confined to certain brain areas. Thus, alpha2-subunit-immunoreactivity was preferentially located in forebrain areas and the cerebellum. Subunit alpha6-immunoreactivity was only present in granule cells of the cerebellum and the cochlear nucleus, and subunit gamma1-immunoreactivity was preferentially located in the central and medial amygdaloid nuclei, in pallidal areas, the substantia nigra pars reticulata and the inferior olive. The alpha5-subunit-immunoreactivity was strongest in Ammon's horn, the olfactory bulb and hypothalamus. In contrast, alpha4-subunit-immunoreactivity was detected in the thalamus, dentate gyrus, olfactory tubercle and basal ganglia. Subunit alpha3-immunoreactivity was observed in the glomerular and external plexiform layers of the olfactory bulb, in the inner layers of the cerebral cortex, the reticular thalamic nucleus, the zonal and superficial layers of the superior colliculus, the amygdala and cranial nerve nuclei. Only faint subunit gamma3-immunoreactivity was detected in most areas; it was darkest in midbrain and pontine nuclei. Subunit delta-immunoreactivity was frequently co-distributed with alpha4 subunit-immunoreactivity, e.g. in the thalamus, striatum, outer layers of the cortex and dentate molecular layer. Striking examples of complementary distribution of certain subunit-immunoreactivities were observed. Thus, subunit alpha2-, alpha4-, beta1-, beta3- and delta-immunoreactivities were considerably more concentrated in the neostriatum than in the pallidum and entopeduncular nucleus. In contrast, labeling for the alpha1-, beta2-, gamma1- and gamma2-subunits prevailed in the pallidum compared to the striatum. With the exception of the reticular thalamic nucleus, which was prominently stained for subunits alpha3, beta1, beta3 and gamma2, most thalamic nuclei were rich in alpha1-, alpha4-, beta2- and delta-immunoreactivities. Whereas the dorsal lateral geniculate nucleus was strongly immunoreactive for subunits alpha4, beta2 and delta, the ventral lateral geniculate nucleus was predominantly labeled for subunits alpha2, alpha3, beta1, beta3 and gamma2; subunit alpha1- and alpha5-immunoreactivities were about equally distributed in both areas. In most hypothalamic areas, immunoreactivities for subunits alpha1, alpha2, beta1, beta2 and beta3 were observed. In the supraoptic nucleus, staining of conspicuous dendritic networks with subunit alpha1, alpha2, beta2, and gamma2 antibodies was contrasted by perykarya labeled for alpha5-, beta1- and delta-immunoreactivities. Among all brain regions, the median emminence was most heavily labeled for subunit beta2-immunoreactivity. In most pontine and cranial nerve nuclei and in the medulla, only subunit alpha1-, beta2- and gamma2-immunoreactivities were strong, whereas the inferior olive was significantly labeled only for subunits beta1, gamma1 and gamma2. In this study, a highly heterogeneous distribution of 13 different GABA(A) receptor subunit-immunoreactivities was observed. This distribution and the apparently typical patterns of co-distribution of these GABA(A) receptor subunits support the assumption of multiple, differently assembled GABA(A) receptor subtypes and their heterogeneous distribution within the adult rat brain.  相似文献   

11.
The upper cervical esophagus is exerted on swallowing and peristalsis by somatic and visceral motoneurons, whereas the lower esophagus is exerted on only peristalsis by visceral motoneurons. We examined the origin of the esophageal motoneurons and whether there were any differences between the distributions of the upper and the lower esophageal motoneurons in the medulla and the spinal cord using cholera toxin subunit b (CTb) as the retrograde tracer. Following injection of CTb into the cervical esophagus resulted in heavy labeling of the neurons in the nucleus ambiguus including the compact (AmC), semicompact (AmS) and loose (AmL) formations, and the medial column of lamina IX at the C1-C5 levels of the cervical spinal cord corresponding to the spinal accessory nucleus. A few labeled neurons were found in the inferior salivatory nucleus, the rostral division of the dorsal motor nucleus of the vagus (DMX), the accessory facial nucleus and the lateral column of lamina IX at the C2 and C3 levels. All these labeled neurons showed ChAT immunoreactivity. When CTb was injected into the cut end of the unilateral recurrent laryngeal nerve, many labeled neurons were found in the ipsilateral AmC, the AmL, and the bilateral medial column at the C1 and C2 levels. Following injection of CTb into the subdiaphragmatic esophagus resulted in heavy labeling of the neurons only in the AmC and the DMX. When CTb was injected into the sternomastoid muscle, many labeled neurons were found in the medullary reticular formation, the facial nucleus, the medial column at the C1-C3, C5 and C6 levels, and the lateral column at the C2, C3, C5 and C6 levels. Injections of a Fluoro-Gold into the cervical esophagus and a CTb into the sternomastoid muscle or the subdiaphragmatic esophagus in the same animal showed many double labeled neurons in the medial column of the accessory nucleus at the C1 and C2 levels, but no double labeled neurons in the AmC. These results indicated that the upper cervical esophagus is innervated by the visceral medullary vagal motoneurons as well as the somatic spinal accessory motoneurons. The lower esophagus is innervated only by the visceral medullary vagal motoneurons.  相似文献   

12.
The transient receptor potential cation channel, vanilloid family, type 2 (TRPV2) is a member of the TRPV family of proteins and is a homologue of the capsaicin/vanilloid receptor (transient receptor potential cation channel, vanilloid family, type 1, TRPV1). Like TRPV1, TRPV2 is expressed in a subset of dorsal root ganglia (DRG) neurons that project to superficial laminae of the spinal cord dorsal horn. Because noxious heat (>52 degrees C) activates TRPV2 in transfected cells this channel has been implicated in the processing of high intensity thermal pain messages in vivo. In contrast to TRPV1, however, which is restricted to small diameter DRG neurons, there is significant TRPV2 immunoreactivity in a variety of CNS regions. The present report focuses on a subset of neurons in the brainstem and spinal cord of the rat including the dorsal lateral nucleus (DLN) of the spinal cord, the nucleus ambiguus, and the motor trigeminal nucleus. Double label immunocytochemistry with markers of motoneurons, combined with retrograde labeling, established that these cells are, in fact, motoneurons. With the exception of their smaller diameter, these cells did not differ from other motoneurons, which are only lightly TRPV2-immunoreactive. As for the majority of DLN neurons, the densely-labeled populations co-express androgen receptor and follow normal DLN ontogeny. The functional significance of the very intense TRPV2 expression in these three distinct spinal cord and brainstem motoneurons groups remains to be determined.  相似文献   

13.
14.
N-methyl-D-aspartate (NMDA) responsiveness of motoneurons declines during the initial 2 postnatal weeks due to increasing Mg2+ block of NMDA receptors. Using gene chip analyses, RT-PCR, and immunochemistry, we have shown that the NR2D subunit of the NMDA receptor (NMDAR), known to confer resistance to Mg2+ block, also declines in motoneurons during this period. We injected a viral construct (HSVnr2d) into the lumbar spinal cord on postnatal day 2 in an attempt to restore NMDAR function in motoneurons during the second postnatal week. Following HSVnr2d injection, we detected elevated levels of NR2D mRNA in spinal cord samples and NR2D protein specifically in motoneurons. These molecular changes were associated with marked functional alterations whereby NMDAR-mediated responses in motoneurons associated with both dorsal root (DR) and ventrolateral funiculus (VLF) inputs returned to values observed at E18 due to decreased Mg2+ blockade. Viruses carrying the beta-galactosidase gene did not induce these effects. NT-3 is known to potentiate AMPA-kainate responses in motoneurons if the response has an NMDAR-mediated component and thus is normally ineffective during the second postnatal week. Restoration of NMDAR-mediated responsiveness in the second postnatal week was accompanied by a return of the ability of neurotrophin-3 (NT-3) to potentiate the AMPA-kainate responses produced by both DR and VLF synaptic inputs. We conclude that delivery of the gene for a specific NMDA subunit can restore properties characteristic of younger animals to spinal cord motoneurons. This approach might be useful for enhancing the function of fibers surviving in the damaged spinal cord.  相似文献   

15.
Immunocytochemical expression of the low-affinity nerve growth factor receptor was studied in human fetal and adult tissues using the monoclonal antibody ME20.4. In dorsal root ganglia, a few immunoreactive neurons were first detected in nine-week-old fetuses and many more were found in the following weeks of gestation. However, none was present in adult ganglia. The ME20.4-positive cells were larger than neurons immunostained by substance P, calcitonin gene-related peptide or galanin antibodies. In the spinal cord, fibres immunostained by ME20.4 appeared in a characteristic pattern that differed from the spatial and temporal distributions of synaptophysin- and neurofilament-immunoreactive fibres. Those expressing the low-affinity nerve growth factor receptor were only detected in regions containing collaterals of primary sensory axons: (i) in the dorsal funiculus between seven and 18 weeks of gestation; (ii) in a ventrodorsal bundle reaching the ventral horn from weeks 12-14; (iii) in the medial region of the dorsal horn between weeks 12 and 20; (iv) in the superficial layers and lateral portion of the dorsal horn after the 14th week of gestation and also in adult spinal cord. During the fetal period, ME20.4 immunoreactivity was also found in motoneurons and peripheral nerve fibres in the skin, myotomes and gut. Sheaths of peripheral nerves and the adventitia of blood vessels were stained both in fetal and adult tissues. Thus, the low-affinity nerve growth factor receptor is: (i) strongly expressed in the developing human nervous system; (ii) transiently associated with a subset of large primary sensory neurons and with motoneurons; (iii) transiently and sequentially expressed by various groups of sensory afferents to the spinal cord; (iv) permanently expressed by fibres in the superficial layers of the dorsal horn, Clarke's column, nerve sheaths and the adventitia of blood vessels.  相似文献   

16.
17.
In this study, we found that a certain motor branch of glossopharyngeal (IX) motor nerves stably exhibits not only inspiratory activity but also expiratory activity with pons removal in neonatal rat brainstem-spinal cord preparations in vitro. Because this finding indicates that IX expiratory activity is masked by an inhibitory mechanism operating in the pons, we sought to determine the candidate neurons that exert an inhibitory effect on IX expiratory activity. IX expiratory activity was observed when only the pons was perfused with noradrenaline (NA) or clonidine (alpha2 adrenergic receptor agonist), but not when NA and yohimbine (alpha2 adrenergic receptor antagonist) were perfused together. IX expiratory activity was also observed following the removal of the dorsal pons but not the ventral pons. The local administration of clonidine into the bilateral locus coeruleus (LC) evoked burst discharges during the expiratory phase in the IX motor rootlet. These results suggest that neurons in the LC that possess an alpha2 adrenergic receptor on the membrane surface exert a tonic inhibitory effect on IX expiratory activity in neonatal rat brainstem-spinal cord preparations.  相似文献   

18.
Voltage-dependent persistent inward currents (PICs) which underlie the plateau potentials are an important intrinsic property of spinal motoneurons. Electrophysiological experiments have indicated that a subtype of the low threshold L-type calcium channel, CaV1.3, mediates this current. In mouse and turtle lumbar spinal cord it has been shown that these channel proteins are mainly found on motoneuron dendrites. In the present study we have used immunohistochemistry to locate these channels in lumbar spinal neurons, especially motoneurons, of the cat. The results indicate that CaV1.3 immunoreactivity was unevenly distributed among the laminae of the spinal grey matter. The small neurons in superficial dorsal horn (laminae I–III) were sparsely and weakly labelled, while large neurons in ventral horn were frequently and densely labelled. Groups of motoneurons in lamina IX that were immunoreactive to choline acetyltransferase also co-expressed CaV1.3. The immmunoreactivity was mainly associated with neuronal somata and proximal dendrites. Double staining with antibodies against CaV1.3 and MAP2 (a dendritic marker) showed that some fine fibres, which may include distal dendrites, were also labelled. These results in the cat spinal cord show some differences from studies in mouse and turtle motoneurons where the immunoreactivity against this channel was mainly localized to the dendrites.  相似文献   

19.
Neuropathic pain is thought to arise from ectopic discharges at the site of injury within the peripheral nervous system, and is manifest as a general increase in the level of neuronal excitability within primary afferent fibres and their synaptic contacts within the spinal cord. Voltage-activated Na+ channel blockers such as lamotrigine have been shown to be clinically effective in the treatment of neuropathic pain. Na+ channels are structurally diverse comprising a principal a subunit (of which there are variable isoforms) and two auxiliary subunits termed beta1 and beta2. Both beta subunits affect the rates of channel activation and inactivation, and can modify alpha subunit density within the plasma membrane. In addition, these subunits may interact with extracellular matrix molecules to affect growth and myelination of axons. Using in situ hybridization histochemistry we have shown that the expression of the beta1 and beta2 subunits within the dorsal horn of the spinal cord of neuropathic rats is differentially regulated by a chronic constrictive injury to the sciatic nerve. At days 12-15 post-neuropathy, beta1 messenger RNA levels had increased, whereas beta2 messenger RNA levels had decreased significantly within laminae I, II on the ipsilateral side of the cord relative to the contralateral side. Within laminae III-IV beta2 messenger RNA levels showed a small but significant decrease on the ipsilateral side relative to the contralateral side, whilst expression of beta1 messenger RNA remained unchanged. Thus, differential regulation of the individual beta subunit types may (through their distinct influences on Na+ channel function) contribute to altered excitability of central neurons after neuropathic injury.  相似文献   

20.
The localization of the neuropeptide tyrosine Y1 receptor was studied with immunohistochemistry in parasagittal and transverse, free-floating sections of the rat lumbar spinal cord. At least seven distinct Y1 receptor-positive populations could tentatively be recognized: Type 1) abundant small, fusiform Y1 receptor-positive neurons in laminae I-II, producing a profuse neuropil; Type 2) Y1 receptor-positive projection neurons in lamina I; Type 3) small Y1 receptor-positive neurons in lamina III, similar to Type 1 neurons, but less densely packed; Type 4) a number of large, multipolar Y1 receptor-positive neurons in the border area between laminae III-IV, with dendrites projecting toward laminae I-II; Type 5) a considerable number of large, multipolar Y1 receptor-positive neurons in laminae V-VI; Type 6) many large Y1 receptor-positive neurons around the central canal (area X); and Type 7) a small number of large Y1 receptor-positive neurons in the medial aspect of the ventral horns (lamina VIII). Many of the neurons present in laminae V-VI and area X produce craniocaudal processes extending for several hundred micrometers. Retrograde tracing using cholera toxin B subunit injected at the 9th thoracic spinal cord level shows that several Type 5 neurons in laminae V-VI, and at least a few Type 2 in lamina I and Type 6 in area X have projections extending to the lower segments of the thoracic spinal cord (and perhaps to supraspinal levels). The present results define distinct subpopulations of neuropeptide tyrosine-sensitive neurons, localized in superficial and deep layers of the dorsal, in the ventral horns and in area X. The lamina II neurons express somatostatin [The neuropeptide Y Y1 receptor is a somatic receptor on dorsal root ganglion neurons and a postsynaptic receptor on somatostatin dorsal horn neurons. Eur J Neurosci 11:2211-2225] and are presumably glutamatergic [Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ (2003) The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 17:13-27], that is they are excitatory interneurons under a Y1 receptor-mediated inhibitory influence. The remaining Y1 receptor-positive spinal neurons need to be phenotyped, for example if the large Y1 receptor-positive laminae III-IV neurons (Type 5) are identical to the neurokinin (NK)1R-positive neurons previously shown to receive neuropeptide tyrosine positive dendritic contacts [Polgár E, Shehab SA, Watt C, Todd AJ (1999) GABAergic neurons that contain neuropeptide Y selectively target cells with the NK1 receptor in laminae III and IV of the rat spinal cord. J Neurosci 19:2637-2646]. If so, neuropeptide tyrosine could have an antinociceptive action not only via Y1 receptor-positive interneurons (Type 1) but also projection neurons. The present results show neuropeptide tyrosine-sensitive neuron populations virtually in all parts of the lumbar spinal cord, suggesting a role for neuropeptide tyrosine signaling in many spinal functions, including pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号