首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
BACKGROUND: The CD40-CD154 receptor-ligand pair plays a critical role in allograft rejection by mediating the activation of endothelial cells, antigen-presenting cells, and T cells. Blockade of this interaction prevents acute allograft rejection and leads to prolonged allograft survival in numerous experimental models, but in most cases indefinite graft survival is not achieved due to evolving transplant arteriosclerosis. In this study, we have used a model of transplant arteriosclerosis to investigate whether CD4+ and CD8+ T cells are differentially affected by CD154 blockade. METHODS: BALB/c (H2d) aortic grafts were transplanted into C57BL/6 (H2b) recipients treated with anti-CD154 monoclonal antibody in the presence or absence of CD8+ T-cell depletion. Histology and morphometric measurements were performed on day 30 after transplantation. RESULTS: Only combined treatment with anti-CD154 and anti-CD8 monoclonal antibodies resulted in a significant reduction of intimal proliferation (33 +/-10% vs. 67+/-14%; untreated control). Administration of either antibody alone did not produce this effect. Thymectomy did not alter the degree of intimal proliferation observed in any of the treatment groups. CONCLUSIONS: Our data provide direct evidence that CD8+ T cells are not targeted effectively by CD154 blockade and that the transplant arteriosclerosis seen after CD154 blockade is not due to recent thymic emigrant T cells.  相似文献   

2.
4-1BB (CD137) is a T-cell co-stimulatory molecule that promotes T cell activation. Using a skin transplantation model, we observed that simultaneous administration of monoclonal antibodies (mAb) targeting CD45RB and CD40L prolonged skin allograft in co-stimulation blockade (CTLA4-Ig and anti-CD40L mAb)-resistant mice, because of reducing CD8(+) T cells and CD4(+) CD45RB(high) T cells. Anti-CD45RB mAb (45RB) blocks the activation of T helper 1 (Th1) cells and generates regulatory T cells (T(reg)). The experimental design included five groups: group 1, control; group 2, 45RB-MR1; group 3, 45B-MR1 + 4-IBBL; group 4, anti-CD4 mAb plus group 3 treatment; group 5, anti-CD8 mAb plus group 3 treatment. In this study we highlight the involvement of 4-1BB/4-1BBL in the development of T-cell responses. C57BL/6 recipients of BALB/c skin grafts were treated with 45RB, anti-CD40L mAb (MR1), and antagonistic anti-4-1BBL mAb (4-1BBL) on days 0, 2, 4, 6, and 8 posttransplantation. Additional 4-1BBL further prolonged skin graft survival, although the percentage of splenocyte-derived CD8(+) T cells was reduced similarly in both groups. Use of 4-1BBL seems to have additive effects on T(reg) cells, which play a major role in the maintenance of tolerance. Even after immunosuppressive therapy in combination with CD4(+) T-cell depletion, we did not achieve prolonged graft survival, possibly because of the absense of T(reg) cells, which require CD4-independent CD8(+) T cells, based on the observation of increasing proportion of CD8(+) T cells in similar degree as the control group.  相似文献   

3.
Flt3 ligand (FL) administration markedly increases bone marrow (BM) stem cells and immature dendritic cells. We investigated the influence of CD40-CD40Ligand (CD154) pathway blockade on antidonor immunity, cytokine production, microchimerism and heart graft survival in BALB/c (H2d) recipients of fully allogeneic C57BL/10 (H2b) FL-mobilized BM (FL-BM) or normal BM. Anti-CD40L mAb strongly suppressed anti-donor T-cell proliferative responses in recipients of either normal or FL-BM, but was less efficient in inhibiting antidonor cytolytic T-cell (CTL) activity, especially in recipients of FL-BM. Interestingly, CD40L blockade was more effective in recipients of multiple compared with single donor BM infusions. Anti-donor cytokine responses revealed complete impairment of IFN-gamma, IL-4 and IL-10 production in recipients of normal BM and CD40L mAb. By contrast, and in agreement with the CTL data, mice given FL-BM retained ability to produce IFN-gamma CD40-CD40L blockade did not promote microchimerism, as evidenced by immunohistology and real time polymerase chain reaction. Nevertheless, anti-CD40L mAb enhanced heart allograft survival in recipients of FL-BM, but the effect was inferior to that achieved with normal BM. These data provide insight into the influence of growth factor-expanded donor BM and costimulation blockade on antidonor immune reactivity and transplant outcome. The comparatively poor outcome obtained using FL-BM plus anti-CD40L mAb in this model may be ascribed to the failure of effectively interdicting antidonor CTL activity.  相似文献   

4.
Depletion of CD4+ T lymphocytes with monoclonal antibodies (mAbs) has been shown to prolong allograft survival in mice. In this study, two rat anti-CD4 mAbs, H129.19 and GK1.5, were administered either alone or in combination with cyclosporine (CsA) to recipients of MHC-mismatched (H-2k to H-2d) cultured fetal pancreas allografts to determine their effect on graft survival. When compared with control mice, splenic CD4+ cells of GK1.5-treated mice were depleted by greater than 95%, but in H129.19-treated mice no depletion of CD4+ cells occurred. Instead, rat Ig was present on the surface of CD4+ cells in H129.19-treated mice. Anti-CD4 therapy with either H129.19 or GK1.5 prolonged fetal pancreas allograft survival to a similar extent, but did not lead to indefinite survival. Blockade of the CD4 antigen by the mAb H129.19 was as effective as the depletion of CD4+ cells by GK1.5 in prolonging allograft survival. Rejection of grafts by day 28 posttransplantation occurred in the absence of CD4+ cells, as determined by both flow cytometric examination of spleen cells and immunoperoxidase staining of the graft site. CsA alone did not prolong graft survival, but its addition to either H129.19 or GK1.5 mAb treatment significantly increased the survival rate of grafts at 28 days compared with mAb treatment alone. These results suggest that CD4+ cell depletion is not essential for effective anti-CD4 mAb therapy--and, further, that CsA may have a direct inhibitory effect on CD8+ cells during allograft rejection.  相似文献   

5.
BACKGROUND: Donor-specific transfusion (DST) and a brief course of anti-CD154 monoclonal antibody (mAb) induces permanent islet and prolonged skin allograft survival in mice. Induction of skin allograft survival requires the presence of CD4 cells and deletion of alloreactive CD8 cells. The specific roles of CD4 and CD4CD25 cells and the mechanism(s) by which they act are not fully understood. METHODS: We used skin and islet allografts, a CD8 T cell receptor (TCR) transgenic model system, and in vivo depleting antibodies to analyze the role of CD4 cell subsets in regulating allograft survival in mice treated with DST and anti-CD154 mAb. RESULTS: Deletion of CD4 or CD25 cells during costimulation blockade induced rapid rejection of skin but only minimally shortened islet allograft survival. Deletion of CD4 or CD25 cells had no effect upon survival of healed-in islet allografts, and CD25 cell deletion had no effect upon healed-in skin allograft survival. In the TCR transgenic model, DST plus anti-CD154 mAb treatment deleted alloreactive CD8 T cells, and anti-CD4 mAb treatment prevented that deletion. In contrast, injection of anti-CD25 mAb did not prevent alloreactive CD8 T cell deletion. CONCLUSIONS: These data document that (1) both CD4CD25 and CD4CD25 cells are required for induction of skin allograft survival, (2) CD4CD25 T cells are not required for alloreactive CD8 T cell deletion, and (3) CD4CD25 regulatory cells are not critical for islet allograft tolerance. It appears that skin and islet transplantation tolerance are mediated by different CD4 cell subsets and different mechanisms.  相似文献   

6.
Anti-CD2 monoclonal antibodies (mAb) were used to influence graft survival in two transplantation models. Xenogeneic rat islets were transplanted intraportally into mice. Anti-CD2 mAb prolonged xenograft survival and was synergistic with UVB irradiation in prolonging survival. Anti-CD2 mAb was also more potent than an anti-CD4 mAb in this model. Allogeneic cardiac grafts were transplanted across an entire H-2 difference and anti-CD2 mAb prolonged allograft survival in a dose-dependent fashion. Kinetic experiments revealed that anti-CD2 mAb was most potent when administered at the time of allografting. A delay in administration of mAb markedly reduced its immunosuppressive effects. Furthermore, additional doses of mAb given after the initial doses provided no increased immunosuppression and anti-CD2 mAbs did not delay rejection of second-set allografts. These findings support the notion that anti-CD2 mAbs interfere with afferent immunity and that CD2 is most important during the initial steps of an immune response. Investigation of the effect of anti-CD2 mAb on cellular immune functions demonstrated, in agreement with previous results, that it caused antigenic down-modulation of CD2 with relative sparing of CD3, CD4, and CD8 cell surface expression. Concomitantly the MLR, CTL, and NK responses were suppressed.  相似文献   

7.
BACKGROUND: Fas ligand (FasL)-Fas and tumor necrosis factor alpha (TNFalpha)-tumor necrosis factor receptor (TNFR) interactions regulate immune responses and contribute to self-tolerance by mediating antigen-driven T cell apoptosis. It is not known whether FasL and TNFalpha, expressed by the recipient's lymphoid or nonlymphoid cells, are essential for the apoptosis of alloreactive T lymphocytes and the induction of allograft acceptance. METHODS: We compared the survival of fully allogeneic vascularized cardiac allografts between wild-type (wt) and FasL-mutant (gld) recipient mice. In addition, we studied cardiac allograft survival in gld mice injected with TNFalpha-neutralizing antibody. Allograft acceptance (graft survival >100 days) was induced by treating the recipients with CTLA4Ig, a recombinant fusion protein that blocks B7-CD28 T cell costimulation. In vivo alloantigen-driven apoptosis of mature CD4+ and CD8+ T lymphocytes was analyzed in mice repeatedly stimulated with allogeneic splenocytes. RESULTS: We found that CTLA4Ig induces 100% long-term acceptance of cardiac allografts in wt and gld mice. Similarly, CTLA4Ig induced 100% allograft acceptance in gld recipients injected with TNFalpha-neutralizing antibody. In vivo alloantigen-driven apoptosis of mature CD4+ and CD8+ T cells was significantly reduced in gld mice and in wt mice treated with anti-TNFalpha antibody. However, neutralizing TNFalpha activity in gld mice failed to abrogate alloantigen-driven T cell apoptosis. CONCLUSIONS: These data indicate that: (1) FasL and TNFalpha expression are not obligatory for the induction of long-term allograft acceptance by CTLA4Ig and (2) FasL- and TNFalpha-independent death pathways contribute to alloantigen-driven T cell apoptosis.  相似文献   

8.
INTRODUCTION: The purpose of the current study was to investigate the capacity of CD4+, CD8+, or non-T cells to independently initiate acute rejection of allogeneic hepatocytes using reconstituted SCID, CD4 or CD8 knockout (KO) recipient mice. METHODS: Allogeneic hepatocytes (FVB/N, H-2q) were transplanted into C57BL/6.SCID (H-2b), CD4 KO (H-2b), CD8 KO (H-2b), or beige/beige (H-2b) mice. SCID mice with functioning hepatocellular allografts subsequently received purified non-T cells (NTC), CD4+, or CD8+ splenocytes. Some mice were treated with anti-CD4, anti-CD8, and/or anti-nkl.1 mAb. Recipient mice were also assessed for donor-reactive delayed-type hypersensitivity (DTH) responses and donor-reactive alloantibody production. RESULTS: Median hepatocellular allograft survival time (MST) was 28 days in CD4+ reconstituted SCID mice and 14 days in CD8+ reconstituted SCID mice. SCID hosts reconstituted with NTC demonstrated indefinite hepatocellular allograft survival (>120 days). MST was 10 days in untreated beige/beige (NK cell deficient) mice. MST was 14 days in untreated, 35 days in anti-CD4 mAb treated, and 10 days in anti-nkl.1 mAb treated CD8 KO mice. MST was 10 days in untreated, 35 days in anti-CD8 mAb treated, and 7 days in anti-nk1.1 mAb treated CD4 KO mice. Donor-reactive DTH responses were not detected in reconstituted SCID mice, were minimal in CD4 KO mice, and were prominent in CD8 KO mice after rejection of allogeneic hepatocytes. Similarly, donor-reactive alloantibody, was not detected in CD4 KO hosts, but was readily detected in CD8 KO hosts. CONCLUSIONS: These studies show that both CD4+ and CD8+ T cells (but not host NTC) can independently initiate the rejection of allogeneic hepatocytes. While hepatocyte rejection by isolated CD4+ T cells is not surprising, rejection by CD8+ T cells (in the absence of CD4+ T cells) was unusual, and may explain the failure of "standard" immunosuppressive regimens to suppress acute rejection of allogeneic hepatocytes, as noted in prior studies. Furthermore, NK cells do not appear to be required for either CD4+ T cell or CD8+ T cell initiated hepatocyte rejection.  相似文献   

9.
BACKGROUND: Treatment with anti-CD154 monoclonal antibody (mAb) plus a donor-specific transfusion (DST) of spleen cells prolongs skin allograft survival in mice through a mechanism involving deletion of host alloreactive CD8(+) T cells. It is unknown if other lymphohematopoietic cell populations can be used as a DST. METHODS: Murine recipients of allogeneic skin grafts on day 0 were either untreated or given a DST on day -7 plus 4 doses of anti-CD154 mAb on days -7, -4, 0, and +4. Deletion of CD8(+) alloreactive cells was measured using "synchimeric" CBA recipients, which circulate trace populations of TCR transgenic alloreactive CD8(+) T cells. RESULTS: Transfusion of splenocytes, thymocytes, lymph node cells, or buffy coat cells led to prolonged skin allograft survival in recipients treated with anti-CD154 mAb. In contrast, bone marrow DST failed to delete host alloreactive CD8(+) T cells and was associated with brief skin allograft survival. Transfusions consisting of bone marrow-derived dendritic cells or a mixture of splenocytes and bone marrow cells were also ineffective. CONCLUSIONS: Donor-specific transfusions of splenocytes, thymocytes, lymph node cells, or buffy coat cells can prolong skin allograft survival in recipients treated with costimulation blockade. Bone marrow cells fail to serve this function, in part by failing to delete host alloreactive CD8(+) T cells, and they may actively interfere with the function of a spleen cell DST. The data suggest that transplantation tolerance induction protocols that incorporate bone marrow cells to serve as a DST may not be effective.  相似文献   

10.
INTRODUCTION: This is the first in a series of reports that characterizes immune responses evoked by allogeneic hepatocytes using a functional model of hepatocyte transplantation in mice. METHODS: "Donor" hepatocytes expressing the transgene human alpha-1-antitrypsin (hA1AT-FVB/N, H2q) were transplanted into C57BL/6 (H2b) or MHC II knockout (H2b) hosts treated with anti-CD4, anti-CD8, or a combination of anti-CD4 and anti-CD8 monoclonal antibodies (mAbs). Hepatocyte rejection was determined as a loss of circulating ELISA-detectable transgene product (hA1AT). In addition, some C57BL/6 mice underwent transplantation with FVB/N heterotopic cardiac allografts and were treated with anti-CD4 mAb. Cardiac allograft rejection was determined by palpation. Graft recipients were tested for donor-reactive alloantibodies and donor-reactive delayed-type hypersensitivity (DTH) responses. RESULTS: The median survival time (MST) of allogeneic hepatocytes in normal C57BL/6 mice was 10 days (no treatment), 10 days (anti-CD4 mAb), 14 days (anti-CD8 mAb), and 35 days (anti-CD4 and anti-CD8 mAbs). The MST of hepatocytes in B6 MHC class II knockout mice was 10 days (no treatment) and 21 days (anti-CD8 mAb). The MST of cardiac allografts was 11 days (no treatment) and >100 days (anti-CD4 mAb). Donor-reactive DTH responses were readily detected in both untreated and mAb-treated recipients. Donor-reactive alloantibody was barely detectable in untreated hosts. CONCLUSIONS: These studies demonstrate that allogeneic hepatocytes are highly immunogenic and stimulate strong cell-mediated immune responses by both CD4+ and CD8+ T cells, even when treated with agents that can cause acceptance of cardiac allografts. Indeed, CD4+ or CD8+ T cells seem to independently cause hepatocellular allograft rejection. Allogeneic hepatocytes evoked strong donor-reactive DTH responses but were poor stimuli for donor-reactive antibody production. This is an unusual pattern of immune reactivity in allograft recipients.  相似文献   

11.
BACKGROUND: Treatment with a donor-specific transfusion (DST) and a brief course of anti-mouse CD154 (anti-CD40-ligand) monoclonal antibody (mAb) prolongs the survival of both allografts and rat xenografts in mice. The mechanism by which allograft survival is prolonged is incompletely understood, but depends in part on the presence of CD4+ cells and the deletion of alloreactive CD8+ T cells. Less is known about the mechanism by which this protocol prolongs xenograft survival. METHODS: We measured rat islet and skin xenograft survival in euthymic and thymectomized mice treated with combinations of DST, anti-CD154 mAb, anti-CD4 mAb, and anti-CD8 mAb. Recipients included C57BL/6, C57BL/6-scid, C57BL/6-CD4null, and C57BL/6-CD8null mice. RESULTS: Pretreatment with a depleting anti-CD4 mAb markedly prolonged the survival of both skin and islet xenografts in mice given DST plus anti-CD154 mAb. Comparable prolongation of xenograft survival was obtained in C57BL/6-CD4null recipients treated with DST and anti-CD154 mAb. In contrast, anti-CD8 mAb did not prolong the survival of either islet or skin xenografts in mice treated with DST and anti-CD154 mAb. Thymectomy did not influence xenograft survival in any treatment group. Adoptive transfer of splenocytes from C57BL/6-CD4null recipients treated with DST and anti-CD154 mAb and bearing long-term skin xenografts revealed the presence of residual xenoreactive cells. CONCLUSIONS: These data suggest that treatment with DST and anti-CD154 mAb induces a state of "functional" transplantation tolerance. They also support the hypothesis that both the induction and maintenance of graft survival based on this protocol depend on different cellular mechanisms in allogeneic and xenogeneic model systems.  相似文献   

12.
Donor-specific transfusion (DST) and CD40/CD154 costimulation blockade is a powerful immunosuppressive strategy which prolongs survival of many allografts. The efficacy of DST and anti-CD154 mAb for prolongation of hepatocellular allograft survival was only realized in C57BL/6 mice that have both CD4- and CD8-dependent pathways available (median survival time, MST, 82 days). Hepatocyte rejection in CD8 KO mice which is CD4-dependent was not suppressed by DST and anti-CD154 mAb treatment (MST, 7 days); unexpectedly DST abrogated the beneficial effects of anti-CD154 mAb for suppression of hepatocyte rejection (MST, 42 days) and on donor-reactive alloantibody production. Hepatocyte rejection in CD4 KO mice which is CD8-dependent was suppressed by treatment with DST and anti-CD154 mAb therapy (MST, 35 days) but did not differ significantly from immunotherapy with anti-CD154 mAb alone (MST, 32 days). Induction of hepatocellular allograft acceptance by DST and anti-CD154 mAb immunotherapy was dependent on host CD8(+) T cells, as demonstrated by CD8 depletion studies in C57BL/6 mice (MST, 14 days) and CD8 reconstitution of CD8 KO mice (MST, 56 days). These studies demonstrate that both CD4(+) and CD8(+) T-cell subsets contribute to induction of hepatocellular allograft acceptance by this immunotherapeutic strategy.  相似文献   

13.
The generation of GT-Ko mice has provided unique opportunities to study allograft and xenograft rejection in the context of anti-alpha1,3-Gal antibody (anti-Gal Ab) responses. In this study we used the allotransplantation model of C3H hearts into galactosyltransferase-deficient (GT-Ko) mice and the xenotransplantation model of baby Lewis rat hearts into GT-Ko mice to investigate the ability of CTLA-41g in combination with anti-CD40L mAb to control graft rejection and anti-Gal Ab production. Murine CTLA-41g or anti-CD40L monotherapy prolonged allograft survival, and the combination of these reagents was most immunosuppressive. However short-term treatment with murine cytotoxic T lymphocyte associated antigen-4 (muCTLA-41g) and/or CD40 ligand (CD154) monoclonal antibodies (anti-CD40L mAbs) was unable to induce indefinite allograft survival. CTLA-4-immunoglobulin fusion protein (CTLA-41g) or anti-CD40L monotherapy only marginally prolonged xenograft survival; the combination of human CTLA-41g and anti-CD40L significantly prolonged xenograft survival (74days), while the combination of murine CTLA-41g and anti-CD40L resulted in graft survival of >120days. CTLA-41g or anti-CD40L monotherapy or the combination of these agents inhibited the production of alloAbs, including anti-Gal Abs. CTLA-41g or anti-CD40L monotherapy partially controlled xenoAb and anti-Gal Ab production, while the combination was more effective. These observations corroborate our previous observations that humoral, including anti-Gal Ab, responses and rejection following allograft or concordant xenograft transplantation in GT-Ko mice are T-cell dependent and can be controlled by costimulation blockade.  相似文献   

14.
BACKGROUND: Transferrin receptor (TfR) expression follows the induction of interleukin 2 receptor (IL-2R) expression in a sequence that is necessary to initiate cell proliferation in quiescent T lymphocytes. Therefore, we tested the hypothesis that simultaneous blockade of TfR and IL-2R would be more effective in prolonging allograft survival and suppressing T-cell responses to alloantigen than single receptor blockade by modifying T-cell effectors to alloantigen. METHODS: Neonatal C57BL/6 hearts were transplanted to CBA/J recipients in a heterotopic, nonvascularized cardiac allograft model. Anti-TfR and/or anti-IL-2R or isotype-matched control monoclonal antibodies (mAbs) were administered at 100 microg intravenously on days 0 and 1 of transplantation. RESULTS: Anti-TfR mAb (25.7+/-0.9 days) significantly (P<0.01) prolonged cardiac allograft survival compared with anti-IL-2R mAb (12.5+/-0.9 days) or the isotype control (15.7+/-1.2 days, P<0.01, Wilcoxon rank-sum). Anti-TfR plus anti-IL-2R mAbs significantly (P<0.01) prolonged cardiac allograft survival to 50.7+/-2.0 days compared with the isotype control or either agent alone. These agents in combination down-regulated the intragraft T helper (Th)-1 cytokines, IL-2, interferon-gamma, and IL-15, while up-regulating the Th2 cytokine, IL-4, and completely abrogating the antigen-presenting cell IL-12p40 mRNA expression. CONCLUSIONS: Anti-TfR and anti-IL-2R mAbs are potent immunosuppressants. Combined blockade of TfR and IL-2R at the time of antigen presentation seems to be the most effective by shifting the intragraft Th cytokine paradigm.  相似文献   

15.
BACKGROUND: Dendritic cells can mount immune response as competent antigen presenting cells. Recently, it has been reported that immature dendritic cells induce prolongation of allograft survival. However, the ability of mature dendritic cells to induce operational tolerance is unclear. Therefore, in this study, we examined the ability of splenic mature dendritic cells to induce operational tolerance to fully allogeneic antigens using mouse heterotopic heart transplantation model. METHODS: CBA (H2k) mice received i.v. injections with donor splenic dendritic cells or B cells in the absence or presence of monoclonal antibody (mAb) specific for CD40 ligand or CD80/CD86 2 weeks before transplantation of a C57BL/10 (H2b) heart. RESULTS: When donor dendritic cells were injected i.v. 2 weeks before transplantation, rejection response was accelerated compared with that of naive mice [median survival time (MST) = 7 and 8 days, respectively]. However, when CD40 pathway was blocked by anti-CD40 ligand mAb, i.v. injection of donor dendritic cells but not B cells induced indefinite graft survival (MST >100 and 20 days, respectively). Mice treated with anti-CD40 ligand mAb alone rejected their grafts with a MST of 18 days. Intravenous injection of donor dendritic cells and B cells in combination with anti-CD80/CD86 mAbs was less effective to induce graft prolongation (MST = 9.5 and 13 days, respectively). CONCLUSIONS: Therefore, under blockade of CD40 pathway, mature dendritic cells were tolerogens in vivo independent of CD80/86 pathways.  相似文献   

16.
CD28-/- mice have been utilized to study the role of B7/CD28 and B7-CTLA4 interactions. There is evidence that CTLA4 ligation may be critical for tolerance induction. The aim of the current study is to further investigate rejection responses of CD28-/- mice and to define the role of B7-CTLA4 interactions in the absence of the CD40 and CD28 pathways. Balb/c skin allografts were transplanted onto C57BL/6 (B6) wild type or CD28-/- mice treated with anti-CD40L, CTLA4-Ig, or combination blockade. To investigate the cellular mechanism of rejection in CD28-/- recipients, mice were treated with anti-CD4 or anti-CD8 antibodies prior to treatment with costimulation blockade. The fluoroscein dye CFSE was utilized to study T cell expansion in vivo. Surprisingly, treatment of B6 CD28-/- mice with CTLA4-Ig alone (MST 12d), anti-CD40L alone (MST 13d), or combined blockade (MST 13d) had no effect on allograft survival compared to untreated B6 CD28 mice (MST 11d). CD28-/- recipients depleted of CD4+ cells and treated with CTLA4-Ig, anti-CD40L, or combination blockade also did not have prolonged survival compared with untreated mice (MST 10d). In contrast, CD28-/- recipients depleted of CD8+ cells had markedly prolonged allograft survival when treated with either anti-CD40L alone (MST 49d) or with combination blockade (MST 57d). Studies utilizing CFSE demonstrated that CD28-/- CD8+ T cells are not defective in in vivo proliferation responses compared with wild type CD8 cells. Thus, CD28-/- CD8+ T cells are responsible for aggressive rejection responses of CD28-/- mice independent of the CD40 pathway. In addition, CD40L blockade does not result in CD4+ T cell tolerance in CD28 recipients, despite an intact B7-CTLA4 pathway.  相似文献   

17.
BACKGROUND: 2C mice bearing the cytotoxic TCR for class I L(d) on a C57BL/6 (B6) background have a preponderance of 1B2+CD8+ T cells directed against L(d). These naive CD8+ T cells are not directly cytotoxic without prior in vivo or in vitro activation. However, after in vitro sensitization, they become highly cytotoxic and will acutely and specifically reject a tolerant L(d+) BALB/c heart graft. Anti-lymphocyte serum (ALS) treatment eliminates CD4+ and CD8+ cells and a large double negative (CD4-CD8-) 1B2+ non-cytotoxic transgenic cell population remains. The immunological function of this unique peripheral population of T cells is investigated in the 2C transgenic mouse. MATERIALS AND METHODS: To determine the activation characteristics of the 2C CD4-CD8- T cells, 2C peripheral T cells were analyzed for 1B2+, CD8+, and CD4+ marker by FACS before and 48-h after 0.5 cc ALS i.p. Similarly, in vitro, the response of these 2C CD4-CD8- T cells remaining after deletion of mature CD4+ and CD8+ T cells with ALS plus complement were evaluated by mixed lymphocyte culture and cytotoxic T lymphocyte after 7 days culture with BALB/c, IL-2, or BALB/c + IL-2. Parallel experiments were performed with control non-transgenic B6 mice. Following in vitro culture with BALB/c + IL-2, 2C CD4-CD8- T cells were injected into B6 mice with a tolerant BALB/c heart (tolerization via anti-CD4 mAb and intrathymic BALB/c) to determine their immunogenicity. RESULTS: While peripheral T cells in control B6 mice have <5% CD4-CD8- cells, transgenic 2C mice have a significantly increased percentage at 29 to 35% (P < 0.01). After the deletion of CD4+ and CD8+ T cells with either in vivo or in vitro ALS, 2C CD4-CD8- T cells increased to 96 to 99%. After 7-day culture, the 2C CD4-CD8- T cells decreased again to 33 to 38%. Simultaneously, 2C CD8+ T cells decreased from 56 to 62% to 0.1 to 3% after ALS treatment, but again increased to 61 to 70% after in vitro culture. Untreated 2C cells responded to IL-2 or BALB/c antigen equally well. However, after ALS treatment, CD4-CD8- T cells responded to IL-2 and IL-2 plus antigen, but not BALB/c antigen alone. Finally, CD4-CD8- T cells cultured for 7 days with BALB/c + IL-2 rejected the tolerant BALB/c heart in 5.3 +/- 0.3 days. CONCLUSION: In the periphery of transgenic 2C mice is a unique CD4-CD8- population of T cells bearing the transgenic specific marker 1B2. These non-cytotoxic cells can be optimally stimulated to develop marked specific L(d) cytotoxicity in parallel with the expression of the CD8+ epitope.  相似文献   

18.
Long-term survival of fetal pig thymus (FP THY) grafts and efficient repopulation of mouse CD4+ T cells is achieved in thymectomized (ATX) B6 mice that receive T and NK cell depletion by injection of a cocktail of mAbs (GK1.5, 2.43, 30-H12, and PK136) and fetal pig thymus/liver (FP THY/LIV) grafts. The requirement for each mAb in this conditioning regimen in order to avoid the rejection of FP THY grafts has not yet been defined. In our present studies, CD4 cell-depleted ATX B6 mice and euthymic MHC class II-deficient (IIKO) mice were employed to investigate the role of mouse CD4+ cells in the rejection of FP THY grafts in vivo. After grafting FP THY/LIV to CD4+ cell-depleted ATX B6 mice, efficient repopulation of mouse CD4+ T cells was observed in the periphery. However, only two of four mice had remaining FP THY grafts by 17 weeks post-implantation, and these were of poor quality, whereas four of four T and NK cell-depleted ATX B6 mice had well-developed FP THY grafts. Furthermore, three of four FP THY/LIV-grafted, CD4+ cell-depleted ATX B6 mice rejected donor MHC-matched pig skin grafts. In contrast, three of three FP THY/LIV grafted, T and NK cell-depleted, ATX B6 mice accepted donor MHC-matched pig skin grafts, suggesting that optimal tolerance to xenogeneic pig antigens was not achieved in mice conditioned only with anti-CD4 mAb. ATX B6 mice treated with only anti-CD8 mAb rejected FP THY completely by 6 weeks post-grafting, a time when CD4+ cell-depleted ATX B6 mice had well-vascularized FP THY grafts. In addition, when euthymic IIKO mice were pre-treated with the standard conditioning regimen that includes four different mAbs, FP THY grafts survived and supported the repopulation of mouse CD4+ T cells in the periphery, while high levels of mouse CD8+ T cells developed in host thymi. These studies suggest that mouse CD4+ T cells play a critical role in the acute rejection of xenogeneic FP THY grafts. Without help from CD4+ cells, mouse CD8+ cells, NK, NK/T, and TCR(gamma/delta)+ T cells do not mediate acute rejection of FP THY grafts. Furthermore, our results suggest that other cell subsets besides CD4+ T cells play a role in the delayed rejection of highly disparate xenogeneic FP THY grafts.  相似文献   

19.
Abstract  The CD2 receptor is an important costimulatory molecule in T cell activation. Its ligand CD48 in rodents is supposed to be a homo-logue of human CD58, because of its similarities in structure and distribution. We evaluated the immuno-suppressive activity of CD2/CD48-directed therapy in vitro and in vivo for the efficacy in prolonging rat heart allograft survival in a high re-sponder transplant model. CD2-di-rected monoclonal antibody (mAb) therapy significantly prolonged median survival time to 45 days (P < 0.001). Suppression was mediated by down-modulation of CD2 below 20 % on lymph node cells without considerable cell depletion. In contrast, CD48 mAb could not prolong graft survival. Rejection occurred in the presence of complete CD48 modulation and, therefore, despite disruption of the CD2-CD48 interaction. CD48 mAb failed to inhibit lymphocyte activation via a mitogenic pair of CD2 mAbs and inhibited mixed lymphocyte reaction (MLR) only by an unspecific mechanism. In conclusion, our results suggest a negative regulatory signal transduction by inhibitory CD2 mAbs and argue against a pivotal role of mere disruption of the CD2-CD48 interaction in CD2-me-diated immunosuppression.  相似文献   

20.
Memory T cells are known to play a key role in prevention of allograft tolerance in alloantigen‐primed mice. Here, we used an adoptively transferred memory T cell model and an alloantigen‐primed model to evaluate the abilities of different combinations of monoclonal antibodies (mAb) to block key signaling pathways involved in activation of effector and memory T cells. In the adoptively transferred model, the use of anti‐CD134L mAb effectively prevented activation of CD4+ memory T cells and significantly prolonged islet survival, similar to the action of anti‐CD122 mAb to CD8+ memory T cells. In the alloantigen‐primed model, use of anti‐CD134L and anti‐CD122 mAbs in addition to co‐stimulatory blockade with anti‐CD154 and anti‐LFA‐1 prolonged secondary allograft survival and significantly reduced the proportion of memory T cells; meanwhile, this combination therapy increased the proportion of regulatory T cells (Tregs) in the spleen, inhibited lymphocyte infiltration in the graft, and suppressed alloresponse of recipient splenic T cells. However, we also detected high levels of alloantibodies in the serum which caused high levels of damage to the allogeneic spleen cells. Our results suggest that combination of four mAbs can significantly suppress the function of memory T cells and prolong allograft survival in alloantigen primed animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号