首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A blood pressure (BP) quantitative trait locus (QTL) was previously located within 117 kb on rat chromosome 9 (RNO9) using hypertensive Dahl salt-sensitive and normotensive Dahl salt-resistant rats. An independent study between two hypertensive rat strains, the Dahl salt-sensitive rat and the spontaneously hypertensive rat (SHR), also detected a QTL encompassing this 117 kb region. Dahl salt-sensitive alleles in both of these studies were associated with increased BP. To map SHR alleles that decrease BP in the Dahl salt-sensitive rat, a panel of eight congenic strains introgressing SHR alleles onto the Dahl salt-sensitive genetic background were constructed and characterized. S.SHR(9)x3B, S.SHR(9)x3A and S.SHR(9)x2B, the congenic regions of which span a portion or all of the 1 logarithm of odds (LOD) interval identified by linkage analysis, did not significantly alter BP. However, S.SHR(9), S.SHR(9)x4A, S.SHR(9)x7A, S.SHR(9)x8A and S.SHR(9)x10A, the introgressed segments of which extend distal to the 1 LOD interval, significantly reduced BP. The shortest genomic segment, BP QTL1, to which this BP-lowering effect can be traced is the differential segment of S.SHR(9)x4A and S.SHR(9)x2B, to which an urinary protein excretion QTL also maps. However, the introgressed segment of S.SHR(9)x10A, located outside of this QTL1 region, represented a second BP QTL (BP QTL2) having no detectable effects on urinary protein excretion. In summary, the data suggest that there are multiple RNO9 alleles of the SHR that lower BP of the Dahl salt-sensitive rat with or without detectable effects on urinary protein excretion and that only one of these BP QTLs, QTL1, overlaps with the 117 kb BP QTL region identified using Dahl salt-sensitive and Dahl salt-resistant rats.  相似文献   

2.
Genetic dissection of the rat genome for identifying alleles that cause abnormalities in blood pressure (BP) resulted in the mapping of a significant number of BP quantitative trait loci (QTLs). In this study we mapped at least one such BP QTL on rat chromosome 10 (RNO10) as being within the introgressed segment of a S.LEW congenic strain S.LEWx12x2x3x8 spanning 1.34 Mb from 70,725,437 bp to 72,063,232 bp. BP of 3 congenic strains that span shorter segments of this region was additionally examined. Results obtained indicate that LEW alleles that comprise a 375-kb introgressed segment of the congenic strain S.LEWx12x2x3x5 (70,725,437 bp to 71,100,513 bp) increase BP. The magnitude of change in BP exhibited by the 2 strains, S.LEWx12x2x3x8 and S.LEWx12x2x3x5, is the net phenotypic effect of the underlying genetic determinants of BP. In this respect, the current data are superior to previous QTL localization of BP QTL1, which was hypothesized based on differential congenic segments. Genetic dissection using these 2 congenic strains as tools is expected to facilitate further dissection of the regions. Meanwhile, differential congenic segments were used to predict and thereby prioritize regions for candidate gene analysis. Using this approach, 2 distinct regions of 401 kb and 409 kb within S.LEWx12x2x3x8 and a 104 kb region within S.LEWx12x2x3x5 were prioritized for further consideration. Because all of these genetic elements are located within a 1.06-Mb region of RNO10, our study has revealed a remarkable insight into a genomic module comprising very closely-linked, opposing genetic determinants of BP.  相似文献   

3.
Aquantitative trait locus (QTL) for blood pressure was previously detected on rat chromosome 10 (RNO10) by linkage analysis and confirmed by the construction of congenic strains that encompass large regions of RNO10. In the present study, the rat RNO10 blood pressure QTL was dissected by the further construction of congenic substrains. The original congenic region was shown to contain 2 blood pressure QTLs (QTL 1 and QTL 2) approximately 24 cM apart. These were localized to a <2.6-cM region between markers D10Rat27 and D10Rat24 for QTL 1 and to a <3.2-cM region between D10Rat12 and D10Mco70 for QTL 2. Comparative mapping suggests that the rat RNO10 QTL 2 could be localized very close to a blood pressure QTL described by sib-pair analysis on human chromosome 17, but this is not definitively established because of multiple and complex chromosomal rearrangements between rodents and humans.  相似文献   

4.
Candidate gene(s) for multiple blood pressure (BP) quantitative trait loci (QTL) were sought by analysis of differential gene expression patterns in the kidneys of a panel of eight congenic strains, each of which carries a different low-BP QTL allele with a genetic composition that is otherwise similar to that of the hypertensive Dahl salt-sensitive (S) rat strain. First, genes differentially expressed in the kidneys of one-month-old Dahl S and salt-resistant (R) rats were identified. Then, Northern filter hybridization was used to examine the expression patterns of these genes in a panel of congenic strains. Finally, their chromosomal location was determined by radiation hybrid (RH) mapping. Seven out of 37 differentially expressed genes were mapped to congenic regions carrying BP QTLs, but only one of these genes, L-2 hydroxy acid oxidase (Hao2), showed the congenic strain-specific pattern of differential kidney gene expression predicted by its chromosomal location. This data suggests that Hao2 should be examined as a candidate gene for the rat chromosome 2 (RNO2) BP QTL.  相似文献   

5.
OBJECTIVE: To improve the localization of a blood pressure quantitative trait locus (BP QTL) on rat chromosome (RNO) 1. METHODS: Congenic substrains were derived from the progenitor congenic strains S.LEW(D1Mco4X1) and S.LEW(D1Mco4X5) which previously localized a BP QTL (region 2) to a 17cM interval on RNO1. The newly developed congenic substrains, along with control Dahl salt-sensitive (S) rats were fed a 2% NaCl diet for 24 days before their BP was compared by both tail-cuff and radiotelemetry methods. RESULTS: By comparing BP of these congenic substrains to that of S rats, we have refined the location of the BP QTL2 region to a 2.73 Mb genomic interval that contains 19 annotated genes in the latest rat genome assembly (version 2.1). Slc9a3, the gene encoding the Na(+)/H(+) exchanger 3, originally a candidate gene in the BP QTL2 region, is excluded based on its map location. CONCLUSION: Substitution mapping was used to reduce a BP QTL on RNO1 from 17 centimorgans (cM) to approximately 1.4 cM (= 2.73 Mb). This region now contains 19 annotated rat candidate genes.  相似文献   

6.
Several clinical and animal studies indicate that essential hypertension is inherited as a multifactorial trait with a significant genetic and environmental component. In the stroke-prone spontaneously hypertensive rat model, investigators have found evidence for linkage to blood pressure regulatory genes (quantitative trait loci) on rat chromosomes 2, 10, and X. In 1 human study of French and UK sib pairs, evidence for linkage has been reported to human chromosome 17q, the syntenic region of the rat chromosome 10 quantitative trait loci (QTL). Our study confirms this linkage (P=0.0005) and refines the location of the blood pressure QTL.  相似文献   

7.
Recently, a genome-wide screen has shown a major quantitative trait locus (QTL) for a stroke-associated phenotype on rat chromosome 1 (RNO1) independent of QTL for blood pressure (BP) in the stroke-prone spontaneously hypertensive rat (SHRSP) of a Heidelberg colony. However, it remains to be elucidated whether these observations reflect the existence of different genes predisposing to each of the disorders. To address this issue, we performed comprehensive approaches in a Japanese colony, Izm, as follows. First, we undertook genome-wide searches in F1(SHRSP/IzmxWKY/Izm)xSHRSP/Izm back-cross (n=63) to pursue a causal relation between hypertension and stroke. Although the strongest linkage to BP (LOD score of 3.4) was identified on RNO1, its relevance to stroke was not supported in the F1 back-cross studied. Second, we also investigated linkage to BP in F2 progeny (n=175) involving the stroke-resistant (or normal) spontaneously hypertensive rat (SHR). In F2 studies of SHR/Izm, this locus did not appear to constitute a principal BP QTL. Third, we constructed congenic animals with detailed phenotype characterization. Transfer of a chromosomal fragment between markers Klk1 and D1Rat116 from WKY/Izm onto the SHRSP/Izm background lowered systolic BP by 20 to 80 mm Hg, prevented development of apparent stroke, and exaggerated impaired glucose tolerance. In conclusion, we have successfully isolated an RNO1 region affecting BP, stroke, and glucose tolerance in SHRSP/Izm-derived congenic rats. The size of the introgressed region is large, but our novel congenic strain should help delineate complex, genetic impairments underlying BP and associated vascular disease phenotypes.  相似文献   

8.
The complex nature of hypertension makes identifying the pathophysiology and its genetic contributions a challenging task. One powerful approach for the genetic dissection of blood pressure regulation is studying inbred rat models of hypertension, as they provide natural allele variants but reduced heterogeneity (both genetic and etiologic). Furthermore, the detailed physiologic studies to which the rat is amenable allow for the determination of intermediate phenotypes. We have performed a total genome scan in offspring of an F2 intercross between the Lyon hypertensive (LH) and Lyon normotensive rat strains to identify linkage of anthropometric, blood pressure, renal, metabolic, and endocrine phenotypes. Quantitative trait locus (QTL) regions involved in blood pressure regulation, end-stage organ damage, body and organ weight, and lipid metabolism in the LH rat were identified on chromosomes 1, 2, 3, 5, 7, 10, 13, and 17, with 2 phenotypes associated with the metabolic syndrome identified on chromosomes 1 and 17. Regions on chromosomes 2, 13, and 17 were revealed to be important for blood pressure regulation. Regions on chromosome 17 were found to significantly contribute to both metabolic homeostasis and blood pressure regulation; 2 aggregates of a total of 23 QTLs were identified, including several "intermediate phenotypes." These intermediate phenotypes may be used as closer surrogates to the mechanisms leading to hypertension and metabolic dysfunction in the LH rat.  相似文献   

9.
Garrett MR  Meng H  Rapp JP  Joe B 《Hypertension》2005,45(3):451-459
Previously, a blood pressure (BP) quantitative trait locus (QTL) on rat chromosome 9 (RNO9) was localized to a <2.4 cM interval using congenic strains generated by introgressing segments of RNO9 from the Dahl salt-resistant (R) rat into the background of the Dahl salt-sensitive (S) rat. Renal gene expression using Affymetrix gene chips was profiled on S and a congenic strain spanning the 2.4-cM BP QTL interval. This analysis identified 20 differentially expressed genes/expressed sequence tags. Of these, the locus with the greatest differential expression (30- to 35-fold) was regulated endocrine-specific protein 18 (Resp18), which also mapped in the 2.4-cM BP QTL interval. Additional substitution mapping located the QTL to <0.4 cM or approximately 493 kb. This newly defined QTL region still included Resp18. Nucleotide variants were identified between S and R genomic DNA of Resp18 in the coding, 5' regulatory and 3' untranslated regions. The coding sequence variation (T/C) occurs in exon 2 and predicts an amino acid change (Ile/Val) in the protein product. Resp18 was considered a differentially expressed positional candidate for the QTL. To fine-map the BP QTL, we constructed a congenic strain with a smaller introgressed region. Compared with the S rat, this strain (1) had significantly lower BP, (2) did not contain the R form of Resp18, and (3) did not retain the rather spectacular differential expression of Resp18. Together, these results demonstrate that a BP QTL independent of Resp18 exists within the newly defined 117-kb QTL region on RNO9.  相似文献   

10.
11.
Cardiac hypertrophy and left ventricular hypertrophy are known to be substantially controlled by genetic factors. As an experimental model, we undertook genome-wide screens for cardiac mass in F2 populations bred from the stroke-prone spontaneously hypertensive rats (SHRSP) and normal spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) of a Japanese colony. Two F2 cohorts were independently produced: F2(SHRSP x WKY) (110 male and 110 female rats) and F2(SHR x WKY) (151 male rats). The ratio of heart weight to body weight (Hw/Bw) was evaluated at 12 months of age in F2(SHRSP x WKY) after salt-loading for 7 months, and at around 15 weeks of age in F2(SHR x WKY) who had been fed a normal rat chow diet. Subsequent to an initial screen with 251 markers in F2(SHRSP x WKY) male progeny, 170 and 161 markers were selected and characterized in F2(SHRSP x WKY) female progeny and F2(SHR x WKY) male progeny, respectively. Markers from four chromosomal regions showed suggestive or significant linkage to Hw/Bw. The strongest and the most consistent linkage was found in the vicinity of D3Mgh16 on rat chromosome (RNO) 3 (a maximal log of the odds score reached 4.0 to 6.6 across the F2 populations studied). In the other three regions on RNO6, RNO10 and RNO13, the degree of linkage was more prominent in either males or females. These data provide solid evidence for a "principal" RNO3 quantitative trait loci regulating Hw/Bw in SHRSP and SHR, and also suggest the possible presence of sexual dimorphism in regard to genetic susceptibility for cardiac hypertrophy.  相似文献   

12.
To narrow the area known to contain the blood pressure quantitative trait locus (QTL) on rat chromosome 1, we constructed a fine linkage map covering the blood pressure OTL region on the chromosome using 22 genetic markers informative for stroke-prone spontaneously hypertensive rats of the Izumo colony (SHRSP/Izm) and Wistar-Kyoto rats of the Izumo colony (WKY/Izm). Linkage mapping was done by genotyping 626 backcrossed rats from matings between SHRSP/Izm and WKY/Izm. Nineteen genetic markers informative for the two strains were selected from public databases. Two markers were newly isolated by screening a rat genomic library. One marker was mapped using a restriction endonuclease polymorphism. The region between DlWox29 and D1Smu11 was covered with 22 informative markers placed every 0.6 cM on average. In addition, 6 physiological candidates for a hypertension gene were mapped in this region either by linkage or by radiation hybrid (RH) mapping. This information should be essential for the construction and analysis of congenic strains for this QTL region.  相似文献   

13.
OBJECTIVE: We documented susceptibility in Dahl S rats to coronary atherosclerosis upon the transgenic expression of human cholesteryl ester transfer protein (hCETP) producing severe combined hyperlipidemia, as detected in Tg[hCETP]53 (Tg53) Dahl S rats. In other genetic backgrounds (i.e. Dahl R, spontaneously hypertensive rat strains) transgene expression does not lead to severe combined hyperlipidemia. This study aimed to identify genetic loci that modify the effect of hCETP on hypercholesterolemia observed in different genetic contexts. METHODS: To identify quantitative trait loci (QTL) that affect hCETP-mediated hyperlipidemia in Tg53 Dahl S rats in contrast to Tg53 Dahl R rats we performed a genome-wide scan for QTL affecting plasma total cholesterol in an F2[Tg (R x S)]-intercross male population (n = 159) that are transgenic for the Tg[hCETP]53 transgene. Hybrids were genotyped with 121 informative polymorphic markers. RESULTS: We detected three novel hCETP-dependent QTL for hypercholesterolemia: one on chromosome 3 with suggestive linkage [logarithm of odds score derived from likelihood ratio statistic using a factor of 4.6 (LOD) 2.26]; one on chromosome 9 with significant linkage (LOD 4.15), and one on chromosome 11 with significant linkage (LOD 3.48) that have not been detected in other rat intercrosses. CONCLUSION: Three cholesteryl ester transfer protein (CETP)-interacting loci were identified in a Tg53 Dahl S rat intercross study affecting cholesterol metabolism. These results could partly explain the controversy regarding the atherogenic role of CETP in humans, suggesting the hypothesis that putative CETP interacting genes confound or play an important role in CETP-mediated pro-atherogenic susceptibility in humans. Overall, these observations reiterate the key role of epistasis in complex, multifactorial traits.  相似文献   

14.
Genetic strategies such as linkage analysis and quantitative trait locus (QTL) mapping have identified a multitude of loci implicated in the pathogenesis of hypertension in the spontaneously hypertensive rat (SHR). While several candidate genetic regions have been identified in the SHR and its control, the Wistar-Kyoto rat (WKY), systematic follow-up of candidate identification with polymorphism discovery has not been widespread. In the current report, we develop a data-mining strategy to identify candidate genes for hypertension in the SHR, and then sequence each gene in the SHR and WKY strains. We integrate blood pressure QTL data, microarray data and data-mining methods. First, we determined the set of genes differentially expressed in SHR and WKY adrenal glands. Next, the chromosomal position of all differentially expressed genes was compared with peak marker position of all reported SHR blood pressure QTLs. We also identified the set of differentially expressed genes with the most extreme fold-change. Finally, the QTL positional candidates and the genes with extreme differential expression were proposed as candidate genes if they had biologically plausible roles in hypertensive pathology. We identified seven candidate genes that merit resequencing (catechol-O-methyltransferase [Comt], chromogranin A [Chga], dopamine beta-hydroxylase [Dbh], electron transferring flavoprotein dehydrogenase [Etfdh], endothelin receptor type B [Ednrb], neuropeptide Y [Npy] and phenylethanolamine-N-methyltransferase [Pnmt]), and then discovered polymorphism in four of these seven candidate genes. Chga is proposed as the strongest candidate for additional functional investigation. Our method for candidate gene identification is portable and can be applied to microarray data from any tissue, in any disease model with a QTL database.  相似文献   

15.
16.
OBJECTIVES: Unlike Dahl salt-sensitive (SS) rats, some strains of spontaneously hypertensive (SHR) rats develop only minor organ damage even when exposed to high-salt diet. In previous linkage studies, we identified quantitative trait loci on rat chromosome 19 (RNO19) linked to the SHR allele suggesting a protective effect against salt-induced hypertensive organ damage in SS. METHODS: To test the relevance of this finding, we generated and characterized a consomic strain SS-19SHR in which RNO19 from SHR was introgressed into the susceptible background of SS. We compared the effects of low-salt (0.2% NaCl) and high-salt (4% NaCl) diet exposure for 8 weeks on the development of hypertension and target organ damage in male consomic and SS animals (n=14-20, each). RESULTS: Systolic blood pressure, relative left ventricular weight and urinary protein excretion were significantly lower in SS-19SHR compared to SS under both low-salt and high-salt diet (P < 0.05, respectively). Left ventricular atrial natriuretic peptide mRNA expression showed a more pronounced 4.5-fold increase in SS compared to SS-19 (two-fold) after high-salt (P < 0.05). In comparison to low diet, high-salt exposure induced a significant increase in vascular aortic hypertrophy index, left ventricular interstitial fibrosis (+210%) and perivascular fibrosis (+195%) in SS but not in consomic SS-19SHR (P < 0.05, respectively). CONCLUSIONS: These results demonstrate a strong protective effect of RNO19 from SHR on the development of hypertension, salt-sensitivity, cardiovascular and renal organ damage in SS. In particular, we demonstrate a genetic effect protecting against the development of cardiac fibrosis in salt-sensitive hypertension.  相似文献   

17.
Chromosomes (Chr) 10 and 16 of the Dahl salt-sensitive (S) rat harbor quantitative trait loci (QTLs) for blood pressure (BP). To facilitate gene discovery of these QTLs, gene profiling based on microarrays was combined with fine QTL mapping to identify potential candidate genes that are differentially expressed. First, the region harboring the BP QTL on Chr 16 was narrowed by comparative congenic mapping. In this endeavor, a number of new chromosome markers were generated and used to physically define the chromosome interval in question. Second, in an effort to minimize the costs of gene profiling without sacrificing the chance of gene discovery, a combination congenic strain was produced by replacing one segment of Chr 10 along with one segment of Chr 16 of the hypertensive S rat by those of the normotensive Lewis (LEW) rat. Both of these regions are known to contain BP QTLs. Third, kidneys of this combination congenic strain and the S strain were employed for expression profiling studies. Finally, a comparison between the two strains yielded a number of potentially differentially expressed candidates. Six Established Sequence Tags (ESTs)/genes among them were located in Chr 10 regions and 1 was found in a Chr 16 region, and the genetic make-ups of all these regions were shown to be different between S and LEW. However, none of these ESTs/genes identified by gene profiling were located in an interval containing a QTL. Thus, the present study highlights the importance of correlating the results of gene expression profiling with fine congenic mapping.  相似文献   

18.
Allelic expression in genes has become recognized as a heritable trait by which phenotypes are generated. We have examined gene expression in the rat kidney using genome-wide microarray technology (Affymetrix). Gene expression was determined across 4 rat strains, 3 hypertensive spontaneously hypertensive rat (SHR) substrains (SHR-A3, SHR-B2, and SHR-C), and a normotensive strain (Wistar-Kyoto [WKY]). Expression measurements were made in multiple animals from all strains at 4 time points (4 weeks, 8 weeks, 12 weeks, and 18 weeks of age), covering the prehypertensive period in SHR (4 weeks), and the period of rapidly rising blood pressure (8 and 12 weeks) and of sustained hypertension (18 weeks). Regression analysis revealed a close relationship across all strains during the first 3 time points, after which SHR-A3 became a substantial outlier. SHR-B2 and SHR-C demonstrated a very close relationship in gene expression at all times but also showed increased differences compared with the other strains at 18 weeks of age. We identified genes that were consistently different in expression, comparing all SHR substrains at each time point with WKY. The resulting list of genes was compared with blood pressure quantitative trait loci reported for SHR to refine a number of genes consistently differentially expressed between SHR substrains and WKY, persistently differentially expressed across multiple time points, and located in SHR blood pressure-determinative regions of the genome. Genealogical relationships and SHR substrain intercrosses suggest that genes responsible for heritable hypertension in SHR are shared across SHR substrains. The present approach identifies a number of genes that may influence blood pressure in SHR by virtue of allelic effects on gene expression.  相似文献   

19.
Stress is a critical contributor to cardiovascular diseases through its impact on blood pressure variability and cardiac function. Familial clustering of reactivity to stress has been demonstrated in human subjects, and some rodent models of hypertension are hyperresponsive to stress. Therefore, the present study was designed to uncover the genetic determinants of the stress response. We performed a total genome linkage search to identify the loci of the body temperature response to immobilization stress in a set of recombinant inbred strains (RIS) originating from reciprocal crosses of spontaneously hypertensive rats (SHR) with a normotensive Brown Norway Lx strain. Two quantitative trait loci (QTLs) were revealed on chromosomes (Chrs) 10 and 12 (logarithm of odds scores, 2.2 and 1. 3, respectively). The effects of these QTLs were enhanced by a high sodium diet (logarithm of odds scores, 4.0 and 3.3 for Chrs 10 and 12, respectively), which is suggestive of a salt-sensitive component for the phenotype. Congenics for Chr 10 confirmed both the QTL and the salt effect in RIS. Negatively associated loci were also identified on Chrs 8 and 11. Interaction between the loci of Chrs 10 and 12 was demonstrated, with the rat strains bearing SHR alleles at both loci having the highest thermal response to stress. Furthermore, the Y Chr of SHR origin enhanced the response to immobilization stress, as demonstrated in 2 independent models, RIS and Y Chr consomics. However, its full effect requires autosomes of the SHR strain. These findings provide the first evidence for the genetic determination of reactivity to stress with interactions between autosomal loci and between the Y and autosomal Chrs that contribute to the explanation of the 46% of variance in the stress response.  相似文献   

20.
A region with a major effect on blood pressure (BP) is located on rat chromosome 1 in the vicinity of the Sa gene, a candidate gene for BP regulation. Previously, we observed a single linkage peak for BP in this region in second filial generation rats derived from a cross of the spontaneously hypertensive rat (SHR) with the Wistar-Kyoto rat (WKY), and we have reported the isolation of the region containing the BP effect in reciprocal congenic strains (WKY.SHR-Sa) and (SHR.WKY-Sa) derived from these animals. Here, we report the further genetic dissection of this region. Two congenic substrains each were derived from WKY.SHR-Sa (WISA1 and WISA2) and SHR.WKY-Sa (SISA1 and SISA2) by backcrossing to WKY and SHR, respectively. Although there was some overlap of the introgressed regions retained in the various substrains, the segments in WISA1 and SISA1 did not overlap. Furthermore, although the Sa allele in WISA1, WISA2, and SISA2 remained donor in origin, recombination in SISA1 reverted it back to the recipient (SHR) allele. Surprisingly, all 4 substrains demonstrated a highly significant BP difference compared with that of their respective parental strain, which was of a magnitude similar to those seen in the original congenic strains. The findings strongly indicate that there are at least 2 quantitative trait loci (QTLs) affecting BP in this region of rat chromosome 1. Furthermore, the BP effect seen in SISA1 indicates that at least a proportion of the BP effect of this region of rat chromosome 1 cannot be due to the Sa gene. SISA1 contains an introgressed segment of <3 cM, and this will facilitate the physical mapping of the BP QTL(s) located within it and the identification of the susceptibility-conferring genes. Our observations serve to illustrate the complexity of QTL dissection and the care needed to interpret findings from congenic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号