首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oocyte growth-dependent progression of maternal imprinting in mice   总被引:3,自引:0,他引:3  
In mammals, some genes categorized as imprinted genes are exclusively expressed either from maternal or paternal allele. This parental-origin-specific gene expression is regulated by epigenetic modification of DNA methylation in differentially methylated region (DMR), which is independently imposed during oogenesis and spermatogenesis. It is known that methylation of DMR in the female germ line is established during oocyte growth phase. However, the cause of the progression of methylation on DMR, due to either aging of mice or growth-size of oocyte was unclear up to now. Here, we analyzed the methylation of DMR for each eight imprinted genes (Igf2r, Lit1, Zac1, Snrpn, Peg1/Mest, Impact, Meg1/Grb10, and H19) by bisulfite sequencing methylation assay, using oocytes from 10 dpp (days post partum), 15 dpp, 20 dpp, and adult mice. To find whether the size of oocytes is the cause of methylation, above oocytes were classified into seven groups (each oocyte diameter ranging from 40 to 75 microm with intervals of 5 microm). The results from juvenile mice oocytes showed that DMR methylation progressed according to oocyte growth each imprinted gene. More than 85% of DMR methylation was achieved for both Igf2r, Zac1 & Lit1 with oocyte size of reaching 55 microm and Snrpn, Peg1/Mest, Impact, and Meg1/Grb10 with oocyte size of reaching 60 microm. Preferential methylation of maternal allele was observed in Zac1 and Peg1/Mest of juvenile oocytes and in Snrpn of juvenile and adult oocytes. The oocyte size-dependent-methylation progressed equally for all three different-age juvenile mice. The size-dependent-methylation was also recognized in the growing oocytes collected from adult mice, although the progress is slightly slower than that of juvenile mice. From these results, we concluded that DNA methylation is established with oocyte size dependent manner, not with aging of mice.  相似文献   

2.
BACKGROUND: Germline-specific differential DNA methylation that persists through fertilization and embryonic development is thought to be the 'imprint' distinguishing the parental alleles of imprinted genes. If such methylation is to work as the imprinting mechanism, however, it has to be reprogrammed following each passage through the germline. Previous studies on maternally methylated genes have shown that their methylation imprints are first erased in primordial germ cells (PGCs) and then re-established during oocyte growth. RESULTS: We have examined the timing of the reprogramming of the paternal methylation imprint of the mouse H19 gene during germ cell development. In both male and female PGCs, the paternal allele is partially methylated whereas the maternal allele is unmethylated. This partial methylation is completely erased in the female germline by entry into meiosis, establishing the oocyte methylation pattern. In the male germline, both alleles become methylated, mainly during the gonocyte stage, establishing the sperm methylation pattern. CONCLUSION: The paternal methylation imprint of H19 is established in the male germline and erased in the female germline at specific developmental stages. The identification of the timings of the methylation and demethylation should help to identify and characterize the biochemical basis of the reprogramming of imprinting.  相似文献   

3.
Parental-specific epigenetic modifications are imprinted on a subset of genes in the mammalian genome during germ cell maturation. However, the precise timing of their establishment remains to be determined. Methylation of CpG dinucleotides has been shown to be a part of the parental imprint. We have examined how the methylation pattern characteristic of the paternal allele in germ cells are established during human spermatogenesis. Two representative imprinted genes, H19 and MEST/PEG1, were studied. The experiments were performed using the bisulphite sequencing method on microdissected individual cells at different stages of male germ cell differentiation. We show that both genes are unmethylated in fetal spermatogonia, suggesting that all pre-existing methylation imprints are already erased by this stage. The MEST/PEG1 gene remains unmethylated at all subsequent post-pubertal stages of spermatogenesis, including mature spermatozoa. The methylation of H19 typical of the paternal allele first appears in a subset of adult spermatogonia and then is maintained in spermatocytes, spermatids and mature spermatozoa. Our results suggest that the methylation imprint inherited from the parents is first erased in the male germ line at an early fetal stage. The paternal-specific imprint is re-established only later, during spermatogonial differentiation in the adult testis.  相似文献   

4.
Genomic imprinting in mammals marks the parental alleles in gametes, resulting in differential gene expression in offspring. A number of epigenetic features are associated with imprinted genes. These include differential DNA methylation, histone acetylation and methylation, subnuclear localization and DNA replication timing. While DNA methylation has been shown to be necessary both for establishment and maintenance of imprinting, the connections with the other types of epigenetic marking systems are not clear. Specifically, it is not known whether the other marking systems, either on their own or in conjunction with DNA methylation, are required for imprinting. Here we show that in the mouse mutant Minute (Mnt) the Igf2-H19 locus acquires a paternal methylation imprint in the maternal germline. DNA methylation of the H19 DMR is established in oogenesis, maintained during postzygotic development on the maternal allele, and erased in primordial germ cells. The fact that a paternal type methylation imprint can also be established in the maternal germline indicates that trans-acting factors that target methylation to this imprinted region are likely to be the same in both germlines. Surprisingly, however, asynchrony of DNA replication of the locus is maintained despite the altered expression and methylation imprint of Igf2 and H19. These results show clearly that replication asynchrony of this region is neither the determinant factor for, nor a consequence of, epigenetic modifications that are critical for genomic imprinting. Replication asynchrony may thus be regulated differently from methylation imprints and have a separate function.  相似文献   

5.
6.
In vitro follicular growth affects oocyte imprinting establishment in mice   总被引:2,自引:0,他引:2  
In vitro folliculogenesis of cryopreserved ovarian tissue could be an effective method for insuring fertility for patients who receive gonadotoxic treatment. Although several culture systems have been described for growing female gametes in vitro, the production of competent oocytes for further development remains a considerable challenge. The purpose of our study was to determine whether maternal primary imprinting progresses normally during mouse oocyte growth in vitro. We analysed the DNA methylation status of differentially methylated regions of the imprinted genes H19, Mest/Peg1 and Igf2R using fully grown germinal vesicle-stage oocytes (fg oocytes) produced by in vitro folliculogenesis from early preantral follicles. When compared to fg oocytes removal from control females, we observed after in vitro development, a loss of methylation at the Igf2R locus in six out of seven independent experiments and Mest/Peg1 locus (one out of seven), and a gain of methylation at the H19 locus (one out of seven). These results provide insight into the dysregulation of the process of primary imprinting during oocyte growth in vitro and highlight the need for effective new biomarkers to identify complete nuclear reprogramming competence after in vitro folliculogenesis.  相似文献   

7.
Recent studies suggest that IVF and assisted reproduction technologies (ART) may result in abnormal genomic imprinting, leading to an increased frequency of Angelman syndrome (AS) and Beckwith-Weidemann syndrome (BWS) in IVF children. To learn how ART might alter the epigenome, we examined morulas and blastocysts derived from C57BL/6J X M. spretus F1 mice conceived in vivo and in vitro and determined the allelic expression of four imprinted genes: Igf2, H19, Cdkn1c and Slc221L. IVF-derived mouse embryos that were cultured in human tubal fluid (HTF) (Quinn's advantage) media displayed a high frequency of aberrant H19 imprinting, whereas in vivo and IVF embryos showed normal maternal expression of Cdkn1c and normal biallelic expression of Igf2 and Slc221L. Embryonic stem (ES) cells derived from IVF blastocysts also showed abnormal Igf2/H19 imprinting. Allele-specific bisulphite PCR reveals abnormal DNA methylation at a CCCTC-binding factor (CTCF) site in the imprinting control region (ICR), as the normally unmethylated maternal allele acquired a paternal methylation pattern. Chromatin immunoprecipitation (ChIP) assays indicate an increase of lysine 4 methylation (dimethyl Lys4-H3) on the paternal chromatin and a gain in lysine 9 methylation (trimethyl Lys9-H3) on the maternal chromatin at the same CTCF-binding site. Our results indicate that de novo DNA methylation on the maternal allele and allele-specific acquisition of histone methylation lead to aberrant Igf2/H19 imprinting in IVF-derived ES cells. We suggest that ART, which includes IVF and various culture media, might cause imprinting errors that involve both aberrant DNA methylation and histone methylation at an epigenetic switch of the Igf2-H19 gene region.  相似文献   

8.
In the male and female germ‐lines of mice, both of the two de novo DNA methyltransferases Dnmt3a and Dnmt3b are expressed. By the conditional knockout experiments using the Tnap‐Cre gene, we previously showed that deletion of Dnmt3a in primordial germ cells disrupts paternal and maternal imprinting, however, Dnmt3b mutants did not show any defect. Here, we have knocked out Dnmt3a after birth in growing oocytes by using the Zp3‐Cre gene and obtained genetic evidence that de novo methylation by Dnmt3a during the oocyte growth stage is indispensable for maternal imprinting. We also carried out DNA methylation analysis in the mutant oocytes and embryos and found that hypomethylation of imprinted genes in Dnmt3a‐deficient oocytes was directly inherited to the embryos, but repetitive elements were re‐methylated during development. Furthermore, we show that Dnmt3b‐deficient cells can contribute to the male and female germ‐lines in chimeric mice and can produce normal progeny, establishing that Dnmt3b is dispensable for mouse gametogenesis and imprinting. Finally, Dnmt3‐related protein Dnmt3L is not only essential for methylation of imprinted genes but also enhances de novo methylation of repetitive elements in growing oocytes.  相似文献   

9.
ART is suspected to generate increased imprinting errors in the lineage. Following an intra cytoplasmic sperm injection (ICSI) procedure, a certain number of embryos fail to develop normally and imprinting disorders may be associated to the developmental failure. To evaluate this hypothesis, we analysed the methylation profile of H19DMR, a paternally imprinting control region, in high-graded blastocysts, in embryos showing developmental anomalies, in the matching sperm and in oocytes of the concerned couples when they were available. Significant hypomethylation of the paternal allele was observed in half of the embryos, independently of the stage at which they were arrested (morula, compacted morula, pre blastocyst or BC-graded blastocysts). Conversely, some embryos showed significant methylation on the maternal allele, whereas few others showed both hypomethylation of the paternal allele and abnormal methylation of the maternal allele. The matching sperm at the origin of the embryos exhibited normal methylated H19 patterns. Thus, hypomethylation of the paternal allele in the embryos does not seem inherited from the sperm but likely reflects instability of the imprint during the demethylating process, which occurred in the early embryo. Analysis of a few oocytes suggests that the defect in erasure of the paternal imprint in the maternal germ line may be responsible for the residual methylation of the maternal allele in some embryos. None of these imprinting alterations could be related to a particular stage of developmental arrest; compared with high-grade blastocysts, embryos with developmental failure are more likely to have abnormal imprinting at H19 (P<0.05).  相似文献   

10.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are caused by the loss of imprinted gene expression from chromosome 15q11-q13. Imprinted gene expression in the region is regulated by a bipartite imprinting centre (IC), comprising the PWS-IC and the AS-IC. The PWS-IC is a positive regulatory element required for bidirectional activation of a number of paternally expressed genes. The function of the AS-IC appears to be to suppress PWS-IC function on the maternal chromosome through a methylation imprint acquired during female gametogenesis. Here we have placed the entire mouse locus under the control of a human PWS-IC by targeted replacement of the mouse PWS-IC with the equivalent human region. Paternal inheritance of the human PWS-IC demonstrates for the first time that a positive regulatory element in the PWS-IC has diverged. These mice show postnatal lethality and growth deficiency, phenotypes not previously attributed directly to the affected genes. Following maternal inheritance, the human PWS-IC is able to acquire a methylation imprint in mouse oocytes, suggesting that acquisition of the methylation imprint is conserved. However, the imprint is lost in somatic cells, showing that maintenance has diverged. This maternal imprinting defect results in expression of maternal Ube3a-as and repression of Ube3a in cis, providing evidence that Ube3a is regulated by its antisense and creating the first reported mouse model for AS imprinting defects.  相似文献   

11.
In order to further our understanding of the epigenetic modifications of DNA and its role in imprinting, we examined DNA methylation patterns of human tissues of uniparental origin. We used complete hydatidiform moles (CHM), which are totally androgenetic conceptions, to examine the paternal methylation pattern in the absence of a maternal contribution and we used ovarian teratomas to represent the maternal counterpart. We carried out an analysis of DNA methylation of a gene which has been shown to contain sites which are differentially methylated in a parent-specific fashion. The gene, ZNF127, is located on chromosome 15q11-q13 in the region associated with Prader-Willi and Angelman syndromes. The parent-of-origin DNA methylation has been postulated to reflect the presence of an imprint and recent studies have confirmed that ZNF127 is differentially expressed only from the paternal chromosome. We identified a unique pattern of hyper- and hypomethylated sites in androgenetic conceptions which was nearly identical to the paternal pattern found in sperm. This may represent the paternal germ-line methylation imprint. We also studied partial hydatidiform moles, non-molar triploid conceptions, normal chorionic villi, and somatic tissue. These all demonstrated a modified DNA methylation pattern characteristic of normal chorionic villi with only limited findings of the imprint. Our results suggest that human androgenetic conceptions may provide an excellent model to analyze epigenetic DNA modifications, such as methylation, in imprinted genes. The paternal allele-specific methylation imprint will also be useful clinically to confirm the androgenetic nature of suspected molar conceptions in which parental blood samples may not be available. © 1996 Wiley-Liss, Inc.  相似文献   

12.
13.
Differences in DNA methylation distinguish the maternal and paternal alleles of many imprinted genes. Allele-specific methylation that is inherited from the gametes and maintained throughout development has been proposed as a candidate imprinting mark. To determine how methylation is established in the germline, we have analyzed the allelic methylation patterns of the maternally expressed, paternally methylated H19 gene during gametogenesis in the mouse embryo. We show here that both parental alleles are devoid of methylation in male and female mid-gestation embryonic germ cells, suggesting that methylation imprints are erased in the germ cells prior to this time. In addition, we demonstrate that the subsequent hypermethylation of the paternal and maternal alleles in the male germline occurs at different times. Although the paternal allele becomes hypermethylated during fetal stages, methylation of the maternal allele begins during perinatal stages and continues postnatally through the onset of meiosis. The differential acquisition of methylation on the parental H19 alleles during gametogenesis implies that the two unmethylated alleles can still be distinguished from each other. Thus, in the absence of DNA methylation, other epigenetic mechanism(s) appear to maintain parental identity at the H19 locus during male germ cell development.  相似文献   

14.
Nuclear competence for maturation and pronuclear formation in mouse oocytes   总被引:3,自引:0,他引:3  
BACKGROUND: In response to gonadotrophins, a fully grown mouse oocyte matures to the metaphase of the second meiotic division and becomes competent for the development of female and male pronuclei after fertilization. The present study was carried out to clarify when during the growth period an oocyte nucleus acquires the ability to promote pronuclei formation after fertilization. METHODS: Fully grown germinal vesicle (GV) oocytes were enucleated and fused with nuclei from growing oocytes from 1-20 day old mice by standard nuclear transfer technique. The reconstructed oocytes were matured and fertilized in vitro, and pronuclear formation was assessed. RESULTS: The oocytes whose nuclei were exchanged for those of the non-growing-stage oocytes matured to the metaphase of the second meiotic stage, but no normal female pronuclei were formed. Female pronuclei first formed in 27% of the oocytes reconstituted with the nuclei of oocytes from 8 day old pups after fertilization. Recondensed sperm chromatin was detected in 27% of the oocytes reconstructed with oocyte nuclei from 8 day old mice, and a male pronucleus was first formed in 6% of the oocytes that had been reconstructed with the nuclei of oocytes from 15 day old mice. The sizes of the female and male pronuclei increased with oocyte donor age, and reached normal size when the oocytes from 15 and 20 day old mice respectively were used. An electron microscopic study using oocytes that had received the oocyte nuclei of 8 day old mice confirmed these results. CONCLUSION: The factors required for pronuclear formation are derived from fully grown GV oocytes, and the transformation from decondensed sperm chromatin to a recondensed male pronucleus is governed by GV-derived factors.  相似文献   

15.
Imprinting is an epigenetic mechanism leading to mono-allelic expression of imprinted genes. In order to inherit the differential epigenetic imprints from one generation to the next, these imprints have to be erased in the primordial germ cells and re-established in a sex-specific manner during gametogenesis. The exact timing of the imprint resetting is not yet known and the use of immature gametes in assisted reproductive technologies may therefore lead to abnormal imprinting and related diseases. Imprinting is associated with differential allelic methylation in a CpG-context. We studied the methylation patterns of the imprint control (IC) region of the human SNRPN-gene in human spermatozoa, oocytes in different developmental stages [germinal vesicle (GV), metaphase I and metaphase II oocytes] and in preimplantation embryos using the bisulphite sequencing technique. In the spermatozoa, almost all potential methylation sites were unmethylated whereas mainly methylated patterns were found in the oocytes at different developmental stages. In the embryos, an average methylation pattern of 53% was found indicating that the imprints, which have been set during gametogenesis, are stably maintained in the preimplantation embryo. Our results indicate that the maternal imprints for the IC-region of the human SNRPN-gene are already re-established at the GV stage and that they are not re-established in a late oocyte stage or after fertilization as previously reported. Recent advances in assisted reproductive technologies raise questions concerning safety and the epigenetic risks involved. Our study was the first to check the methylation imprints in human pre-implantation embryos and oocytes at different developmental stages.  相似文献   

16.
This study compares failed fertilization oocytes from patients participating in an in-vitro fertilization (IVF) programme with failed fertilization oocytes from B6SJLF(1)/J mice, in order to characterize and describe the distribution of DNA in oocytes that do not undergo normal fertilization. Our goal is to evaluate the mouse IVF system as a model to gain insight into reasons for human fertilization failures. All oocytes were stained with the vital fluorescent dye, Hoechst 33342, which rapidly stains double-stranded DNA. Of the 237 human oocytes that had been scored as failed fertilization by brightfield microscopy, 61 (25.7%) showed the presence of at least one spermatozoon within the oocyte cytoplasm. In contrast, out of 69 failed fertilization mouse oocytes, only one oocyte showed the presence of a spermatozoon within its cytoplasm. Mouse failed fertilization oocytes exhibited a significantly lower internal sperm rate (P < 0.0001) than human failed fertilization oocytes. Human failed fertilization oocytes show a higher incidence of sperm penetration, but the cytoplasm fails to support pronuclear development, whereas, at least in this strain, mouse failed fertilization oocytes arise from an inability of the spermatozoa to penetrate the oocyte. This study suggests that the mouse is not a clinically relevant model for human fertilization failures.  相似文献   

17.
The physiological trigger for meiotic resumption in the human oocyte is the surge of luteinizing hormone, but it can also occur spontaneously if oocytes are released from antral follicles and cultured in vitro. The development of novel techniques for the culture of murine oocytes has raised the possibility of growing human oocytes to maturity in vitro. Such a system could open the door to a number of techniques with revolutionary consequences. It would clearly be of benefit in basic physiological studies of follicular development, as well as being used to test the effect of toxicological substances on oocyte maturation. More significantly, such a system could provide a source of human oocytes for in-vitro fertilization (IVF) where immature or germinal vesicle oocytes are cultured to maturity before being fertilized. If this can be achieved, it might facilitate oocyte cryopreservation, where surplus oocytes are stored, thus avoiding the need for repeated superovulation. A combination of immature oocyte cryopreservation for later maturation and IVF will provide the opportunity to establish oocyte banks and help overcome some of the practical and ethical dilemmas that are currently shadowing the field of reproductive medicine.  相似文献   

18.
Erasure and subsequent reinstatement of DNA methylation in the germline, especially at imprinted CpG islands (CGIs), is crucial to embryogenesis in mammals. The mechanisms underlying DNA methylation establishment remain poorly understood, but a number of post-translational modifications of histones are implicated in antagonizing or recruiting the de novo DNA methylation complex. In mouse oogenesis, DNA methylation establishment occurs on a largely unmethylated genome and in nondividing cells, making it a highly informative model for examining how histone modifications can shape the DNA methylome. Using a chromatin immunoprecipitation (ChIP) and genome-wide sequencing (ChIP-seq) protocol optimized for low cell numbers and novel techniques for isolating primary and growing oocytes, profiles were generated for histone modifications implicated in promoting or inhibiting DNA methylation. CGIs destined for DNA methylation show reduced protective H3K4 dimethylation (H3K4me2) and trimethylation (H3K4me3) in both primary and growing oocytes, while permissive H3K36me3 increases specifically at these CGIs in growing oocytes. Methylome profiling of oocytes deficient in H3K4 demethylase KDM1A or KDM1B indicated that removal of H3K4 methylation is necessary for proper methylation establishment at CGIs. This work represents the first systematic study performing ChIP-seq in oocytes and shows that histone remodeling in the mammalian oocyte helps direct de novo DNA methylation events.  相似文献   

19.
Although there is an increased frequency of low birth weight after assisted reproduction, the mechanisms underlying this association are unclear. We have proposed that some of the children conceived by intracytoplasmic sperm injection (ICSI) with low birth weight might have an epimutation (faulty methylation pattern) in one of the imprinted genes involved in fetal growth control, eg, KCNQ1OT1, PEG1, PEG3, GTL2, IGF2/H19 and PLAGL1. Using bisulfite DNA sequencing and sequence-based quantitative methylation analysis (SeQMA), we determined the methylation pattern of these genes in buccal smears from 19 ICSI children born small for gestational age (SGA, birth weight <3rd percentile) and from 29 term-born normal weight children after spontaneous conception. We detected clear hypermethylation of KCNQ1OT1 and borderline hypermethylation of PEG1 in one and the same ICSI child. The other children and the parents of the affected child have normal methylation patterns. Imprinting defects appear to be a rare finding in ICSI children born SGA. Methylation of the paternal KCNQ1OT1 and PEG1 alleles may be a previously unrecognized cause of SGA. The epimutations found in the SGA child, whose father had oligozoospermia, probably result from an imprint erasure defect in the paternal germ line and therefore appear to be linked to the fertility problem of the father and not to in vitro fertilization/ICSI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号