首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The differences in cardiorespiratory responses were examined during and after intermittent progressive maximal arm-crank and cycle exercise. Arm-crank exercise was performed in a standing position using no torso restraints to maximize the amount of active skeletal muscle mass. Recovery was followed for 16 min. In the tests a variety of ventilatory gas exchange variables, heart rate, the blood pressure, and the arm venous blood lactate concentration were measured in 21 untrained healthy men aged 24-45 years. At equal submaximal external workloads for arm cranking and cycling (50 and 100 W) the respiratory frequency, tidal volume, pulmonary ventilation, oxygen uptake, carbon dioxide output, the respiratory exchange ratio, heart rate, the arm venous blood lactate concentration, and the ventilatory equivalent for oxygen were higher (P less than 0.001) during arm cranking than cycling. The maximal workload for arm cranking was 44% lower than that for cycling (155 +/- 37 vs 277 +/- 39 W, P less than 0.001) associated with significantly (P less than 0.001) lower maximal tidal volume (-20%), oxygen uptake (-22%), carbon dioxide output (-28%), systolic blood pressure (-17%) and oxygen pulse (-22%) but a higher ventilatory equivalent for carbon dioxide (+22%) and arm venous blood lactate concentration (+37%). However, these responses after arm-crank and cycle exercises behaved almost similarly during recovery. The high cardiorespiratory stress induced by arm work should be taken into account when the work stress and work-rest regimens in actual manual tasks are assessed, and when arm work is used for clinical testing, and in physiotherapy particularly for patients with heart or pulmonary diseases.  相似文献   

2.
Summary Six healthy men performed sustained static handgrip exercise for 2 min at 40% maximal voluntary contraction followed by a 6-min recovery period. Heart rate (f c), arterial blood pressures, and forearm blood flow were measured during rest, exercise, and recovery. Potassium ([K+]) and lactate concentrations in blood from a deep forearm vein were analysed at rest and during recovery. Mean arterial pressure (MAP) andf c declined immediately after exercise and had returned to control levels about 2 min into recovery. The time course of the changes in MAP observed during recovery closely paralleled the changes in [K+] (r=0.800,P<0.01), whereas the lactate concentration remained elevated throughout the recovery period. The close relationship between MAP and [K+] was also confirmed by experiments in which a 3-min arterial occlusion period was applied during recovery to the exercised arm by an upper arm cuff. The arterial occlusion affected MAP whilef c recovered at almost the same rate as in the control experiment. Muscle biopsies were taken from the brachioradialis muscle and analysed for fibre composition and capillary supply. The MAP at the end of static contraction and the [K+] appearing in the effluent blood immediately after contraction were positively correlated to the relative content of fast twitch (% FT) fibres (r=0.886 for MAP vs %FT fibres,P<0.05 andr=0.878 for [K+] vs %FT fibres,P<0.05). Capillary to fibre ratio showed an inverse correlation to % FT fibres (r=–0.979,P<0.01). These results indicated that activation of FT rather than slow twitch fibres during static contraction induced a more marked arterial pressure reflex. It was concluded that the arterial pressure reflex would seem to be mediated through stimulation of unmyelinized free nerve endings in the contracted muscle. The [K+] would appear to be a more likely candidate than lactate as a mediator for this pressure reflex.  相似文献   

3.
Summary The aim of this study was to elucidate the mechanism by which the disappearance of blood lactate following severe exercise is enhanced during active recovery in comparison with recovery at rest. Rates of decline of arterialised venous blood lactate concentrations in man after maximal one-leg exercise were compared during four different modes of recovery: passive (PR), exercise of the muscles involved in the initial exercise (SL), exercise of the corresponding muscles in the hitherto-inactive leg (OL), or exercise of one arm (RA). Recovery exercise workloads were each 40% of the onset of blood lactate accumulation (OBLA) for the limb used. In comparison with PR, SL and OL accelerated the fall in blood lactate to similar extents whereas RA was without effect. The first-order rate constant (min–1) for decline of arterialised venous blood lactate concentration after the intense exercise was 0.027 (0.003) in PR, 0.058 (0.025) in SL, 0.034 (0.002) in OL, and in RA was 0.028 (0.002) [mean (SEM),n = 6 subjects]. Preliminary studies had shown that RA in isolation elevated blood lactate whereas SL and OL did not. Thus, with appropriate workloads, exercise of either hitherto active or passive muscles enhanced blood lactate decline during recovery from intense exercise. This suggests that the effect resulted principally from the uptake and utilisation of lactate in the circulation by those exercising muscles rather than from increased transport of lactate to other sites of clearance by sustained high blood flow through the previously active muscles.  相似文献   

4.
Controversy exists whether recruitment of a large muscle mass in dynamic exercise may outstrip the pumping capacity of the heart and require neurogenic vasoconstriction in exercising muscle to prevent a fall in arterial blood pressure. To elucidate this question, seven healthy young men cycled for 70 minutes at a work load of 55-60% VO2max. At 30 to 50 minutes, arm cranking was added and total work load increased to (mean +/- SE) 82 +/- 4% of VO2max. During leg exercise, leg blood flow average 6.15 +/- .511 minutes-1, mean arterial blood pressure 137 +/- 4 mmHg and leg conductance 42.3 +/- 2.2 ml minutes-1 mmHg-1. When arm cranking was added to leg cycling, leg blood flow did not change significantly, mean arterial blood pressure increased transiently to 147 +/- 5 mmHg and leg vascular conductance decreased transiently to 33.5 +/- 3.1 ml minutes-1 mmHg-1. Furthermore, arm cranking doubled leg noradrenaline spillover. When arm cranking was discontinued and leg cycling continued, leg blood flow was unchanged but mean arterial blood pressure decreased to values significantly below those measured in the first leg exercise period. Furthermore, leg vascular conductance increased transiently, and noradrenaline spillover decreased towards values measured during the first leg exercise period. It is concluded that addition of arm cranking to leg cycling increases leg noradrenaline spillover and decreases leg vascular conductance but leg blood flow remains unchanged because of a simultaneous increase in mean arterial blood pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Controversy exists whether recruitment of a large muscle mass in dynamic exercise may outstrip the pumping capacity of the heart and require neurogenic vasoconstriction in exercising muscle to prevent a fall in arterial blood pressure. To elucidate this question, seven healthy young men cycled for 70 minutes at a work load of 5540%VO2max. At 30 to 50 minutes, arm cranking was added and total work load increased to (mean ± SE) 82 ± 4% of Vo2max. During leg exercise, leg blood flow average 6.15 4.511 minutes-1, mean arterial blood pressure 137 ± 4 mmHg and leg conductance 42.3 ± 2.2 ml minutes-1 mmHg-1. When arm cranking was added to leg cycling, leg blood flow did not change significantly, mean arterial blood pressure increased transiently to 147 ± 5 mmHg and leg vascular conductance decreased transiently to 33.5 ± 3.1 ml minutes-1 mmHg-1. Furthermore, arm cranking doubled leg noradrenaline spillover. When arm cranking was discontinued and leg cycling continued, leg blood flow was unchanged but mean arterial blood pressure decreased to values significantly below those measured in the first leg exercise period. Furthermore, leg vascular conductance increased transiently, and noradrenaline spillover decreased towards values measured during the first leg exercise period. It is concluded that addition of arm cranking to leg cycling increases leg noradrenaline spillover and decreases leg vascular conductance but leg blood flow remains unchanged because of a simultaneous increase in mean arterial blood pressure. The decrease in leg vascular conductance observed when arm cranking increased mean arterial blood pressure could be regarded more as a measure to prevent overperfusion than a measure to maintain arterial blood pressure.  相似文献   

6.
To evaluate the relationship between lactate release and [lac]art and to investigate the influence of the catecholamines on the lactate release, 14 healthy men [age 25±3 (SE) year] were studied by superimposing cycle on forearm exercise, both at 65% of their maximal power reached in respective incremental tests. Handgrip exercise was performed for 30 min at 65% of peak power. In addition, between the tenth and the 22nd minute, cycling with the same intensity was superimposed. The increase in venous lactate concentration ([lac]ven) (rest: 1.3±0.4 mmol·l−1; 3rd min: 3.9±0.8 mmol·l−1) begins with the forearm exercise, whereas arterial lactate concentration ([lac]art) remains almost unchanged. Once cycling has been added to forearm exercise (COMB), [lac]art increases with a concomitant increase in [lac]ven (12th min: [lac]art, 3.2±1.3 mmol·l−1; [lac]ven, 5.7±2.2 mmol·l−1). A correlation between oxygen tension (PvO2) and [lac]ven cannot be detected. There is a significant correlation between [lac]art and norepinephrine ([NE]) (y=0.25x+1.2; r=0.815; p<0.01) but no correlation between lactate release and epinephrine ([EPI]) at moderate intensity. Our main conclusion is that lactate release from exercising muscles at moderate intensities is neither dependent on PvO2 nor on [EPI] in the blood.  相似文献   

7.
We investigated the role of the forearm skeletal muscles in the removal of lactate during repeated periods of short-term intensive leg exercise, i.e. a force-velocity (FV) test known to induce a marked accumulation of lactate in the blood. The leg FV test was performed by seven untrained male subjects. Arterial and venous blood samples for determination of arterial ([la]a) and venous ([la]v) plasma lactate concentrations were concomitantly taken at rest before the test, during the FV test at the end of each period of intensive exercise just before the 5-min between-sprint recovery period, and after the completion of the test at 2, 4, 6, 8, 10, 15, and 20 min of the final recovery. The arteriovenous difference in concentration for plasma lactate ([la]a–v) was determined for each blood sample. During the test, [la]a and [la]v increased significantly (P < 0.001;P < 0.001) with significantly higher values for [la]a (P < 0.001). At the onset of the test, [la]a–v became positive and increased up to a braking force of 6 kg, correlating significantly with [la]a (r = 0.61,P < 0.001) with power (r = 0.58,P < 0.001) during the test. At the end of the test, [la]a, [la]v and [la]a–v decreased (P < 0.001;P < 0.001;P < 0.001 respectively) but were still higher than the basal values after 20-min of passive recovery. In conclusion, forearm skeletal muscles would seem to have been involved in the removal of lactate from the blood during the leg FV test, with an increase in lactate uptake proportional to the increase in plasma lactate concentration and power.  相似文献   

8.
The purpose of this study was to compare the rates of muscle deoxygenation in the exercising muscles during incremental arm cranking and leg cycling exercise in healthy men and women. Fifteen men and 10 women completed arm cranking and leg cycling tests to exhaustion in separate sessions in a counterbalanced order. Cardiorespiratory measurements were monitored using an automated metabolic cart interfaced with an electrocardiogram. Tissue absorbency was recorded continuously at 760?nm and 850?nm during incremental exercise and 6?min of recovery, with a near infrared spectrometer interfaced with a computer. Muscle oxygenation was calculated from the tissue absorbency measurements at 30%, 45%, 60%, 75% and 90% of peak oxygen uptake (V˙O2) during each exercise mode and is expressed as a percentage of the maximal range observed during exercise and recovery (%Mox). Exponential regression analysis indicated significant inverse relationships (P?2 during arm cranking and leg cycling in men (multiple R?=??0.96 and ?0.99, respectively) and women (R?=?0.94 and ?0.99, respectively). No significant interaction was observed for the %Mox between the two exercise modes and between the two genders. The rate of muscle deoxygenation per litre of V˙O2 was 31.1% and 26.4% during arm cranking and leg cycling, respectively, in men, and 26.3% and 37.4% respectively, in women. It was concluded that the rate of decline in %Mox for a given increase in V˙O2 between 30% and 90% of the peak V˙O2 was independent of exercise mode and gender.  相似文献   

9.
The purpose of this study was to determine for the first time by repeated non-invasive 13C-NMR spectrometry whether blood lactate concentration affects glycogen reduction in non-exercising muscle during prolonged (6 h) physical exercise in healthy adult males. Such an effect would indirectly show that glycogenolysis independent of nervous activation occurs in non-exercising muscle. After an overnight fast, 12 subjects performed alternating one-leg cycle exercise and arm cranking exercise at an average work load of 106 (SD 26) W [63 (9)% maximum oxygen consumption for one-leg exercise] and 69 (13) W [61 (10)% maximum oxygen consumption for arm cranking exercise], respectively. During the 6-h exercise test, glycogen concentration of the non-exercising calf muscle decreased by 17 (7)% while the glycogen concentration in the exercising calf muscle decreased by 45 (8)%. In a resting control group (n=6), the glycogen concentration did not decrease significantly. The higher the exercise intensity and therefore blood lactate concentration, the smaller was the glycogen reduction in the non-exercising calf muscles. We conclude that during prolonged physical exercise glycogenolysis in non-exercising human muscles decreases as exercise intensity increase contrary to exercising muscles. This observation might be an indirect evidence for a non-exercise induced glycogenolysis in inactive muscles.  相似文献   

10.
The purpose of this study was to determine forearm blood flow changes during static handgrip exercise at different intensities in relation to heart rate and blood pressure. Seven active women performed static handgrip exercise at intensities of 10, 30, 50 and 70% maximum voluntary contraction (MVC) in a supine position for 1 min. During exercise at different intensities, the brachial arterial blood flow (Doppler ultrasound method), calculated from vessel diameter, flow velocity and heart rate (measured by ECG), increased to a similar level (137.3 ± 20.2 – 160.9 ± 26.1 mL min?1) from pre-exercise control value (87.5 ± 14.1 mL min?1). These increases at the lower intensities were attributable to increased in-flow during one cardiac cycle, whereas at the higher intensities, they were due to increased heart rate. Both systolic and diastolic blood pressure (Finapres) changes increased from 10% MVC (16.1 ± 3.4, 9.0 ± 1.7 mmHg) up to 50% MVC (33.8 ± 6.7, 25.0 ± 4.9 mmHg), but were disproportionately more elevated at 70% MVC (46.1 ± 7.9, 42.9 ± 8.9 mmHg), suggesting neural vasoconstriction had occurred. Immediate post-exercise hyperaemia, used as an indicator of poor blood supply, became greater as the exercise intensity increased. These results suggest that the brachial arterial blood flow was maintained at a similar level during 60-s static handgrip exercise at different intensities by elevating the blood pressure and heart rate, which probably counteracted the increased intramuscular pressure and neural vasoconstriction occurring at the higher exercise intensity. The magnitude of the post-exercise hyperemic response increased as exercise level increased despite increased blood flow to the arm during exercise. This suggests a worsening imbalance in oxygen delivery in forearm muscles at higher levels of exercise.  相似文献   

11.
7 young, healthy, male subjects performed exercise on bicycle ergometers in two 20 min periods with an interval of 1 h. The first 10 min of each 20 min period consisted of arm exercise (38–62% of Vdot;o2 max for arm exercise) or leg exercise (58–78% of Vdot;o2 max for leg exercise). During the last 10 min the subjects performed combined arm and leg exercise (71–83% of Vdot;o2 max for this type of exercise). The following variables were measured during each type of exercise: oxygen uptake, heart rate, mean arterial blood pressure, cardiac output, leg blood flow (only during leg exercise and combined exercise), arterio-venous concentration differences for O2 and lactate at the levels of the axillary and the external iliac vessels. Superimposing a sufficiently strenuous arm exercise (oxygen uptake for arm exercise 40% of oxygen uptake for combined exercise) on leg exercise caused a reduction in blood flow and oxygen uptake in the exercising legs with unchanged mean arterial blood pressure. Superimposing leg exercise on arm exercise caused a decrease in mean arterial blood pressure and an increased axillary arterio-venous oxygen difference. These findings indicate that the oxygen supply to one large group of exercising muscles may be limited by vasoconstriction or by a fall in arterial pressure, when another large group of muscles is exercising simultaneously.  相似文献   

12.
We investigated the effects of passive and partially active recovery on lactate removal after exhausting cycle ergometer exercise in endurance and sprint athletes. A group of 14 men, 7 endurance-trained (ET) and 7 sprint-trained (ST), performed two maximal incremental exercise tests followed by either passive recovery (20 min seated on cycle ergometer followed by 40 min more of seated rest) or partially active recovery [20 min of pedalling at 40% maximal oxygen uptake ( O2max) followed by 40 min of seated rest]. Venous blood samples were drawn at 5 min and 1 min prior to exercise, at the end of exercise, and during recovery at 1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 30, 40, 50, 60 min post-exercise. The time course of changes in lactate concentration during the recovery phases were fitted by a bi-exponential time function to assess the velocity constant of the slowly decreasing component (2) expressing the rate of blood lactate removal. The results showed that at the end of maximal exercise and during the 1st min of recovery, ET showed higher blood lactate concentrations than ST. Furthermore, ET reached significantly higher maximal exercise intensities [5.1 (SEM 0.5) W · kg–1 vs 4.0 (SEM 0.3) W · kg–1,P < 0.05] and O2max [68.4 (SEM 1.1) ml · kg–1 · min–1 vs 55.5 (SEM 5.1) ml · kg–1 · min–1,P < 0.01]. There was no significant difference between the two groups during passive recovery for 2 During partially active recovery, 2 was higher than during passive recovery for both groups (P < 0.001), but ET recovered faster and sooner than ST (P < 0.05). Compared to passive recovery, the 2 measured during partially active recovery was increased threefold in ET and only 1.5-fold in ST. We concluded that partially active recovery potentiates the enhanced ability to remove blood lactate induced by endurance training.  相似文献   

13.
The purpose of this study was to measure O2 consumption of nonexercising skeletal muscles (VO2nonex) at rest and after aerobic exercise and to investigate the stimulant factors of O2 consumption. In experiment 1, we measured the resting metabolic rate of the finger flexor muscles in seven healthy males by 31P-magnetic resonance spectroscopy during a 15 min arterial occlusion. In experiment 2, the VO2nonex of the finger flexor muscles was measured using near infrared continuous wave spectroscopy at rest, immediate postexercise, and 3, 5, 10, 15, and 20 min following a cycling exercise at a workload corresponding to 50% of peak pulmonary O2 uptake for 20 min. We also monitored deep tissue temperature in the VO2nonex measurement area and determined catecholamines and lactate concentrations in the blood at rest and immediate postexercise. VO2nonex at rest was 1.1 +/- 0.1 microM O2/S (mean +/- standard error) and VO2nonex after exercise increased 59.6 +/- 7.2% (p < 0.001) from the resting values. There were significant correlations between the increase in VO2nonex and the increase in epinephrine concentration (p < 0.01), and between the increase in VO2nonex and the increase in lactate concentration (p < 0.05). These results suggest that epinephrine and lactate concentrations are important VO2nonex stimulant factors.  相似文献   

14.
Dependence of lactate removal on muscle metabolism in man   总被引:2,自引:0,他引:2  
Summary If lactate is primarily oxidized in skeletal muscle in man, it is expected that lactate uptake would increase linearly with increasing muscle metabolism (VO2). Therefore, lactate removal was investigated (N=9) after 6 min exercise bouts (90% VO2 max), at rest, and during 30 min of recovery exercise, when the relative intensities were constant to equate lactate production while permitting exercise metabolism (VO2) to vary. Recovery exercises were therefore conducted at 26.8% VO2 max for arm exercise, 26.8% VO2 max for leg exercise, and 29% VO2 max for combined arm and leg exercise. These exercise intensities were calculated from VO2 max values established separately for each of the three modes of exercise. Lactate removal was slowest at rest (p<0.05). Removal during leg recovery was faster than during the arm condition (p<0.05), but the leg removal was not different from the combined arm and leg condition (p>0.05). The VO2 cost of the arm (0.73±0.04 l/min), leg (1.04±0.05 l/min) and combined arm and leg exercise (1.23±0.10 l/min) were distinctly different from each other (p<0.05). There was a high correlation (r=0.92) between VO2 cost, and the lactate removal rates of the corresponding recovery conditions. These findings indicate that lactate increases proportionately with the metabolically active muscle mass, providing exercise remains aerobic. Thus in man, it appears that lactate removal from the blood during recovery exercise occurs primarily in skeletal muscle.  相似文献   

15.
Summary Analyzes were made on muscle samples taken from the lateral part of the m. quadriceps femoris of man (lactate, pyruvate, and pH) on venous blood (lactate, pyruvate) and on capillary blood (pH). Samples were taken at rest, immediately after termination of dynamic exercise and during 20 min recovery from exhaustive dynamic exercise.Muscle pH decreased from 7.08 at rest to 6.60 at exhaustion. Decrease in muscle pH was linearly related to muscle content of lactate + pyruvate. The relationship was slightly different from what has been obtained after isometric exercise and this difference was ascribed to acid-base exchange with the blood during dynamic exercise.Lactate content was highly elevated in muscle after exercise and the concentration was 2–3 times higher than in blood. Pyruvate content was, however, only slightly higher than that at rest. During recovery lactate content of muscle decreased exponentially with respect to time, whereas pyruvate content increased. The half-time of lactate decrease was 9.5 min. From the lactate dehydrogenase equilibrium relative values on NADH/NAD ratio could be calculated. It was found that NADH/NAD was highly increased after exercise and that it had not returned to the basal value after 20 min recovery.  相似文献   

16.
The present study examined the effect of acute exercise on flow mediated dilation (FMD) and reactivity to neurovascular challenges among female smokers and nonsmokers. FMD was determined by arterial diameter, velocity, and blood flow measured by Doppler ultrasonography after forearm occlusion. Those measures and blood pressure and heart rate were also assessed in response to forehead cold and the Stroop Color‐Word Conflict Test (CWT) before and after 30 min of rest or an acute bout of cycling exercise (~50% VO2peak). Baseline FMD and stress responses were not different between smokers and nonsmokers. Compared to passive rest, exercise increased FMD and decreased arterial velocity and blood flow responses during the Stroop CWT and forehead cold in both groups. Overall, acute exercise improved endothelial function among smokers and nonsmokers despite increasing vascular resistance and reducing limb blood flow during neurovascular stress.  相似文献   

17.
Summary To compare some psychophysiological responses to arm exercise with those to leg exercise, an experiment was carried out on electronically braked bicycle ergometers, one being adapted for arm exercise. Eight healthy males took part in the experiment with stepwise increases in exercise intensity every 4 min: 40—70—100—150—200 W in cycling and 20—35—50—70—100 W in arm cranking. Towards the end of each 4 min period, ratings of perceived exertion were obtained on the RPE scale and on a new category ratio (CR) scale: heart rate (HR) and blood lactate accumulation (BL) were also measured. The responses obtained were about twice as high or more for arm cranking than for cycling. The biggest difference was found for BL and the smallest for HR and RPE. The incremental functions were similar in both activities, with approximately linear increases in HR and RPE and positively accelerating functions for CR (exponents about 1.9) and BL (exponents 2.5 and 3.3 respectively). When perceived exertion (according to the CR scale) was set as the dependent variable and a simple combination of HR and BL was used as the independent variable, a linear relationship was obtained for both kinds of exercise, as has previously been found in cycling, running, and walking. The results thus give support for the following generalization: For exercise of a steady state type with increasing loads the incremental curve for perceived exertion can be predicted from a simple combination of HR and BL. This study was supported by a research grant from The Bank of Sweden Tercentenary Foundation No. 85/291  相似文献   

18.
Summary 54 subjects were given a standardized elbow flexion exercise consisting of holding the arm flexed at 90 ° against the pull of a 20 lb. weight while in a recumbent position. Measurements were obtained on apparent weight of the arm and on upper arm and forearm circumferences during a period of 10 min. prior to exercise and 20 min. after exercise.The immediate post-exercise upper arm circumference was 1 percent greater than the resting level (t = 10.3) and the lower arm circumference was also 1 percent greater (t = 12.3). The circumferences gradually returned toward the pre-exercise resting level during the 20 min. of recovery period. However, they had not completely returned at this time. The upper arm circumferences lost only 65 percent of the increase. The forearm circumference lost 75 percent.The time after exercise required for the apparent arm weight to return to within 5 percent of the level of resting was between 8 and 9 min. The subject's failure to relax appears to prevent the arm from manifesting its full apparent weight during the early stages of rest and recovery. To secure data on apparent weight by the method described, therefore entails a rest period of at least 10 min.  相似文献   

19.
The aim of the present investigation was to test the hypothesis that long-term modulation (LTM) of the exercise ventilatory response, evidenced as an augmentation in minute ventilation (V(I)) and tidal volume (VT) during the early phase of exercise, is only evident when the muscle groups recruited are the same during testing and during hypercapnic exercise conditioning. Measurements of cardiorespiratory variables were made at rest and during leg cycling (fH=107+/-5) exercise in eight male subjects, 1 week before and 1 h after conditioning. Conditioning involved either: (a) ten trials of arm cranking exercise (V(I)=29.0+/-4.4), or (b) ten trials of arm cranking exercise paired with external respiratory dead space (1400 ml; V(I)=57.3+/-6.5). Neither arm conditioning paradigm evoked any of the modulatory responses described in previous studies. We, therefore, conclude that the general upregulation of the spinal respiratory motoneuron pool excitability after conditioning (the "final common pathway" hypothesis), may be inadequate to fully explain the underlying mechanisms of LTM of ventilation in humans.  相似文献   

20.
The purpose of the present study was to examine the oxygen uptake kinetics during heavy arm exercise using appropriate modelling techniques, and to compare the responses to those observed during heavy leg exercise at the same relative intensity. We hypothesised that any differences in the response might be related to differences in muscle fibre composition that are known to exist between the upper and lower body musculature. To test this, ten subjects completed several bouts of constant-load cycling and arm cranking exercise at 90% of the mode specific V(O(2)) peak. There was no difference in plasma [lactate] at the end of arm and leg exercise. The time constant of the fast component response was significantly longer in arm exercise compared to leg exercise (mean+/-S.D., 48+/-12 vs. 21+/-5 sec; P < 0.01), while the fast component gain was significantly greater in arm exercise (12.1+/-1.0 vs. 9.2+/-0.5 ml min(-1) W(-1); P < 0.01). The V(O(2)) slow component emerged later in arm exercise (126+/-27 vs. 95+/-20 sec; P < 0.01) and, in relative terms, increased more per unit time (5.5 vs. 4.4% min(-1); P < 0.01). These differences between arm crank and leg cycle exercise are consistent with a greater and/or earlier recruitment of type II muscle fibres during arm crank exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号