首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Age and severity of nigrostriatal damage at onset of Parkinson's disease   总被引:2,自引:0,他引:2  
The clinical evolution of Parkinson's disease (PD) is known to be partly dependent on the age of onset. For example, motor complications associated with chronic dopaminomimetic treatment occur more often in younger patients. However, few attempts have been made to characterize the functional pathological differences underlying this age effect. We investigated the relationship between age and severity of nigrostriatal damage at onset of PD. Twenty patients with early PD (symptom duration 相似文献   

2.
A dopamine transporter (DAT) ligand 2beta-carbomethoxy-3beta-(4-fluoro-phenyl)-8-(2-[(18)F]fluoroethyl)nortropane ([(18)F]beta-CFT-FE) was synthesized and evaluated in comparison with [(11)C]beta-CFT in monkey brain using animal positron emission tomography (PET). [(18)F]beta-CFT-FE and [(11)C]beta-CFT were injected intravenously to conscious monkeys for a 91-min PET scan with arterial blood sampling for metabolite analysis. In the conscious state, [(18)F]beta-CFT-FE provided a peak about 20 min after the injection and declined thereafter in the striatum of monkey brain, while [(11)C]beta-CFT continuously increased with time up to 91 min after injection. Metabolite analysis revealed that [(18)F]beta-CFT-FE was more rapidly metabolized in plasma than [(11)C]beta-CFT. The striatal binding of both ligands was dose-dependently displaced by preadministration of a specific DAT inhibitor, GBR12909, at doses of 0.5 and 5 mg/kg; however, the displacement degree of [(11)C]beta-CFT-FE was higher than that of [(18)F]beta-CFT. The effects of the anesthetics, ketamine and isoflurane, on binding were more prominent in [(11)C]beta-CFT than [(18)F]beta-CFT-FE. Specificity and affinity of beta-CFT-FE to DAT were evaluated in an in vitro assay using cloned human DAT, serotonin transporter, and norepinephrine transporter in comparison with other conventional DAT ligands, showing that beta-CFT-FE had lower affinity and higher specificity to DAT than beta-CFT and beta-CIT. These results suggested that [(18)F]beta-CFT-FE could be a potential imaging agent for DAT, providing excellent selectivity and tracer kinetics for quantitative PET imaging.  相似文献   

3.
Microdialysis experiments in rodents indicate that ethanol promotes dopamine release predominantly in the nucleus accumbens, a phenomenon that is implicated in the reinforcing effects of drugs of abuse. The aim of the present study was to test the hypothesis in humans that an oral dose of ethanol would lead to dopamine release in the ventral striatum, including the nucleus accumbens. Six healthy subjects underwent two [(11)C]raclopride PET scans following either alcohol (1 ml/kg) in orange juice or orange juice alone. Subjective mood changes, heart rate, and blood-alcohol levels were monitored throughout the procedure. Personality traits were evaluated using the tridimensional personality questionnaire. PET images were co-registered with MRI and transformed into stereotaxic space. Statistical parametric maps of [(11)C]raclopride binding potential change were generated. There was a significant reduction in [(11)C]raclopride binding potential bilaterally in the ventral striatum/nucleus accumbens in the alcohol condition compared to the orange juice condition, indicative of increased extracellular dopamine. Moreover, the magnitude of the change in [(11)C]raclopride binding correlated with the alcohol-induced increase in heart rate, which is thought to be a marker of the psychostimulant effects of the drug, and with the personality dimension of impulsiveness. The present study is the first report that, in humans, alcohol promotes dopamine release in the brain, with a preferential effect in the ventral striatum. These findings support the hypothesis that mesolimbic dopamine activation is a common property of abused substances, possibly mediating their reinforcing effects.  相似文献   

4.
In common with many addictive substances and behaviors nicotine activates the mesolimbic dopaminergic system. Brain microdialysis studies in rodents have consistently shown increases in extrasynaptic DA levels in the striatum after administration of nicotine but PET experiments in primates have given contradicting results. A recent PET study assessing the effect of smoking in humans showed no change in [(11)C]raclopride binding in the brain, but did find that "hedonia" correlated with a reduction in [(11)C]raclopride binding suggesting that DA may mediate the positive reinforcing effects of nicotine. In this experiment we measured the effect of nicotine, administered via a nasal spray, on DA release using [(11)C]raclopride PET, in 10 regular smokers. There was no overall change in [(11)C]raclopride binding after nicotine administration in any of the striatal regions examined. However, the individual change in [(11)C]raclopride binding correlated with change in subjective measures of "amused" and "happiness" in the associative striatum (AST) and sensorimotor striatum (SMST). Nicotine concentration correlated negatively with change in BP in the limbic striatum. Nicotine had significant effects on cardiovascular measures including pulse rate, systolic blood pressure (BPr), and diastolic BPr. Baseline [(11)C]raclopride binding potential (BP) in the AST correlated negatively with the Fagerstr?m score, an index of nicotine dependence. These results support a role for the DA system in nicotine addiction, but reveal a more complex relationship than suggested by studies in animals.  相似文献   

5.
Estimates of dopamine D(2/3) receptor occupancy by endogenous dopamine using positron emission tomography (PET) in animals have varied almost threefold. This variability may have been caused by incomplete depletion of dopamine or by the use of antagonist radioligands, which appear less sensitive than agonist radioligands to changes in endogenous dopamine. PET scans were performed in rats with the agonist PET radioligand [(11)C]MNPA ([O-methyl-(11)C]2-methoxy-N-propylnorapomorphine). [(11)C]MNPA was injected as a bolus plus constant infusion to achieve steady-state concentration in the body and equilibrium receptor binding in the brain. Radioligand binding was compared at baseline and after treatment with reserpine plus alpha-methyl-para-tyrosine, which cause approximately 95% depletion of endogenous dopamine. Depletion of dopamine increased radioligand binding in striatum but had little effect in cerebellum. Striatal [(11)C]MNPA binding potential was 0.93 +/- 0.12 at baseline and increased to 1.99 +/- 0.25 after dopamine depletion. Occupancy of D(2/3) receptors by endogenous dopamine at baseline was calculated to be approximately 53%. Striatal binding was displaceable with raclopride, but not with BP 897 (a selective D(3) compound), thus confirming the D(2) receptor specificity of [(11)C]MNPA binding. Radioactivity extracted from rat brain contained only 8-10% radiometabolites and was insignificantly altered by administration of reserpine plus alpha-methyl-para-tyrosine. Hence, dopamine depletion did not increase the PET measurements via an effect on radiotracer metabolism. Our in vivo estimate of dopamine's occupancy of D(2/3) receptors at baseline is higher than that previously reported using antagonist radioligands and PET, but is similar to that reported using agonist radioligands and ex vivo measurements.  相似文献   

6.
Central dopaminergic systems are known to be implicated in the pathophysiology of schizophrenia and recent in vivo dopamine receptor imaging studies have focused on the measurement of extrastriatal dopamine receptor. However, there are only a limited number of ligands that can measure the low-density D2 receptor in extrastriatal regions and their sensitivity to endogenous dopamine in extrastriatal regions has not yet been fully examined. In this study, the effect of endogenous dopamine on the extrastriatal binding of [(11)C]FLB 457 was examined in the rhesus monkey after facilitation with 1 mg/kg of methamphetamine (MAP) and was compared with the effect on the striatal binding of [(11)C]raclopride. The indices of receptor binding were obtained by four methods using cerebellum as a reference region. The bindings of [(11)C]FLB 457 in the frontal cortex, temporal cortex, and thalamus were not significantly changed after MAP treatment, while the striatal binding of [(11)C]raclopride was decreased by more than 20%. These results suggest that [(11)C]FLB 457 is not sensitive to endogenous dopamine in the extrastriatal regions of rhesus monkeys, despite a sufficient dose of MAP to decrease the binding of [(11)C]raclopride in the striatum.  相似文献   

7.
The present study evaluated the effects of methamphetamine and scopolamine on the striatal dopamine D(1) receptor binding, measured by [(11)C]SCH23390, and D(1) receptor-coupled cAMP messenger system, determined as phosphodiesterase type-IV (PDE-IV) activity, were evaluated in the brains of conscious monkeys using positron emission tomography (PET) with microdialysis. When methamphetamine (0.1, 0.3, and 1 mg/kg) or scopolamine (0.01, 0.03, and 0.1 mg/kg) was systemically administered, [(11)C]SCH23390 binding to D(1) receptors was not affected. With administration of methamphetamine, the striatal PDE-IV activity, as measured with R-[(11)C]rolipram (active form) and S-[(11)C]rolipram (inactive form), was dose-dependently facilitated with enhanced dopamine level in the striatal ECF. Administration of scopolamine also induced facilitated PDE-IV activity without any apparent changes in the ECF dopamine. These facilitations of PDE-IV activity were abolished by preadministration of SCH23390, but not by raclopride. These results demonstrate that, as evaluated by PDE-IV activity, the inhibition of muscarinic cholinergic receptors actually facilitated dopamine neuronal signal transduction through D(1) receptors, as observed previously on D(2) receptors with no apparent increase in the striatal ECF dopamine level, but the enhanced dopamine transmission could not detected by [(11)C]SCH23390.  相似文献   

8.
OBJECTIVE: The hypothesis that human cocaine users lose vesicular monoamine transporter (VMAT2) protein was tested in striatal samples from cocaine users and age-, sex-, and postmortem interval-matched comparison subjects. METHOD: Striatal samples were retrieved at autopsy; immunoblot assays were then performed by using a highly specific VMAT2 antibody. Striatal radioligand binding to VMAT2 was assessed with dihydrotetrabenazine ([(3)H]DTBZ) and dopamine levels employing high-performance liquid chromatography. RESULTS: Cocaine users displayed a marked reduction in VMAT2 immunoreactivity as well as reduced [(3)H]DTBZ binding and dopamine levels. It did not appear that the reduction in VMAT2 immunoreactivity was related to ethanol use, but dopamine levels were lower in subjects with only ethanol diagnoses. Subjects suffering from cocaine-induced mood disorders displayed a greater loss of VMAT2 immunoreactivity that approached significance. CONCLUSIONS: Human cocaine users lose VMAT2 protein, which might reflect damage to striatal dopamine fibers. These neuronal changes could play a role in causing disordered mood and motivational processes in more severely dependent patients.  相似文献   

9.
BACKGROUND: Abnormal function of striatal dopaminergic synapses is suggested to underlie Tourette's syndrome (TS). OBJECTIVE: To determine dorsal striatal dopaminergic innervation in TS. Prior in vitro and in vivo studies of dopamine reuptake transporter binding sites suggest increased striatal dopaminergic innervation in TS. METHODS: We used in vivo measures of striatal vesicular monoamine transporter type-2 (VMAT2) binding to quantify striatal dopaminergic innervation in TS. Eight TS patients (mean age 30+/-9 years) and 22 age-comparable normal controls (age 34+/-8 years) underwent PET imaging with the VMAT2 ligand (+)-alpha-[11C]dihydrotetrabenazine (DTBZ). Compartmental modeling was used to quantify blood-to-brain ligand transport and VMAT2 binding site density from the tissue-to-plasma distribution volume (DV) during continuous (+)-alpha-[11C]DTBZ infusion. DTBZ DV in dorsal striatal regions was expressed relative to the occipital cortex to estimate relative specific VMAT2 binding (binding potential). RESULTS: We found no significant differences in VMAT2 binding potential between patients and controls in the caudate nucleus, anterior putamen, or posterior putamen. There were no significant differences in striatal VMAT2 binding between patients with (n = 5) or without (n = 3) features of obsessive-compulsive disorder. CONCLUSIONS: There is no evidence for increased binding to the VMAT2 in TS striatum and that dorsal striatal dopaminergic innervation density is normal in TS. The previously reported changes in dopamine transporter binding sites may reflect medication effect and/or altered synaptic activity or regulation of dopamine transporter expression in nigrostriatal neurons.  相似文献   

10.
Micro-positron emission tomography imaging studies were conducted to characterize modulation of metabotropic glutamate subtype-5 receptor (mGluR5) function in a 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease using four analogical PET ligands: 2-[(11)C]methyl-6-(2-phenylethynyl) pyridine ([(11)C]MPEP), 2-(2-(3-[(11)C]methoxyphenyl)ethynyl)pyridine ([(11)C]M-MPEP), 2-(2-(5-[(11)C]methoxypyridin-3-yl)ethynyl)pyridine ([(11)C]M-PEPy), and 3-[(2-[(18)F]methyl-1,3-thiazol-4-yl)ethynyl]pyridine ([(18)F]M-TEP). A total of 45 positron emission tomography (PET) imaging studies were conducted on nine male Sprague-Dawley rats within 4 to 6 weeks after unilateral 6-OHDA lesioning into the right medial forebrain bundle. The severity of the lesion was determined with [(11)C]CFT ([(11)C]2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane), a specific and sensitive ligand for imaging dopamine transporter function. The binding potential (BP) images were processed on pixel-by-pixel basis by using a method of the distribution volume ratio with cerebellum as a reference tissue. The values for BP were determined on striatum, hippocampus, and cortex. [(11)C]CFT binding was decreased on the lesioned (right) striatum by 35.4%+/-13.4% compared with the intact left striatum, indicating corresponding loss of presynaptic dopamine terminals. On the same areas of the lesioned striatum, three of the four tested mGluR5 ligands showed enhanced binding characteristics. The average differences between the right and left striatum were 4.4%+/-6.5% (P<0.05) with [(11)C]MPEP, -0.1%+/-1.7% (P>0.05) with [(11)C]M-MPEP, 3.9%+/-4.6% (P<0.05) with [(11)C]M-PEPy, and 6.6%+/-2.7% (P>0.05) with [(18)F]M-TEP. The enhanced binding was also observed in the right hippocampus and cortex. These studies showed that glutamatergic neurotransmission might have a complementary role in dopaminergic degeneration, which can be evaluated by in vivo PET imaging.  相似文献   

11.
PET measurements of stimulant-induced dopamine (DA) release are typically performed with antagonist radioligands that bind to both the high- and low-affinity state of the receptor. In contrast, an agonist radioligand binds preferentially to the high-affinity state and is expected to have greater sensitivity to DA, which is the endogenous agonist. [(11)C]MNPA, (R)-2-CH(3)O-N-n-propylnorapomorphine (MNPA), is a D(2) agonist radioligand with subnanomolar affinity to the D(2) receptor. The aim of the present study is to assess and compare the sensitivity of the agonist radioligand [(11)C]MNPA and antagonist radioligand [(11)C]raclopride to synaptic DA levels. Four cynomolgus monkeys were examined with [(11)C]MNPA and [(11)C]raclopride (16 PET measurements with each tracer) at baseline and after pretreatment with various doses of amphetamine. The effect of amphetamine was calculated by the change in binding potential (BP) analyzed with the multilinear reference tissue model (MRTM2). Amphetamine caused a reduction in [(11)C]MNPA BP of 4% at 0.1, 23% at 0.2, 25% at 0.5, and 46% at 1.0 mg/kg. [(11)C]Raclopride BP was reduced to a lesser extent by 2% at 0.1, 16% at 0.2, 15% at 0.5, and 23% at 1.0 mg/kg. The data were used to estimate the in vivo percentage of high-affinity state receptors to be approximately 60%. These results demonstrate that [(11)C]MNPA is more sensitive than [(11)C]raclopride to displacement by endogenous DA, and that it may provide additional information about the functional state of the D(2) receptor in illnesses such as schizophrenia and Parkinson's disease.  相似文献   

12.
Clinical symptoms of Parkinson's disease (PD) do not manifest until dopamine (DA) neuronal loss reaches a symptomatic threshold. To explore the mechanisms of functional compensation that occur in presynaptic DA nerve terminals in PD, we compared striatal positron emission tomographic (PET) measurements by using [11C]dihydrotetrabenazine ([11C]DTBZ; labeling the vesicular monoamine transporter type 2), [11C]methylphenidate (labeling the plasma membrane DA transporter), and [18F]dopa (reflecting synthesis and storage of DA). Three consecutive PET scans were performed in three-dimensional mode by using each tracer on 35 patients and 16 age-matched, normal controls. PET measurements by the three tracers were compared between subgroups of earlier and later stages of PD, between drug-naive and drug-treated subgroups of PD, and between subregions of the parkinsonian striatum. The quantitative relationships of [18F]dopa and [11]DTBZ, and of [11C]methylphenidate and [11C]DTBZ, were compared between the PD and the normal control subjects. We found that [18F]dopa Ki was reduced less than the binding potential (Bmax/Kd) for [11C]DTBZ in the parkinsonian striatum, whereas the [11C]methylphenidate binding potential was reduced more than [11C]DTBZ binding potential. These observations suggest that the activity of aromatic L-amino acid decarboxylase is up-regulated, whereas the plasma membrane DA transporter is down-regulated in the striatum of patients with PD.  相似文献   

13.
To study the 5-HT(2A) receptors in the living human brain, using positron emission tomography (PET), two selective radiotracers are currently in use: [(18)F]altanserin and [(11)C]MDL 100907. It is, however, currently unknown to what extent data obtained with either tracer are directly comparable. The aim of this study was to compare binding characteristics of these two radiotracers in rat brain with respect to affinity (K(d)), receptor binding density (B(max)), binding potential (BP), and nonspecific binding. Further, binding kinetics, sensitivity towards competition with the endogenous transmitter serotonin, and the competitive/noncompetitive interaction between the two radioligands were evaluated. In addition, the selectivity of [(18)F]altanserin for the 5-HT(2A) receptor was assessed.The K(d) value of [(18)F]altanserin and [(3)H]MDL 100907 was in the order of 0.3 nM. B(max) in frontal cortex was 523 and 527 fmol/mg protein, respectively. The binding of [(18)F]altanserin was not influenced by blocking either the 5-HT(2B/2C) or the alpha(1)-adrenergic receptors. At 37 degrees C the association t(1/2) was 2.8 and 2.7 min and the dissociation t(1/2) was 11 and 13.5 min for [(18)F]altanserin and [(3)H]MDL 100907, respectively.Both radioligands were displaced by 5-HT, only at high concentrations; the K(i) value of 5-HT ranging between 650 and 3,300 nM. This indicates that binding of both radioligands in PET studies is not directly influenced by changes in endogenous 5-HT.Overall, the binding of [(18)F]altanserin and [(3)H]MDL 100907 to the 5-HT(2A) receptor was very comparable, showing selective high affinity binding in the subnanomolar range.  相似文献   

14.
[(11)C]FLB 457 is a very high-affinity radiotracer that allows the measurement of dopamine D(2/3) receptor availability in regions of the brain where densities are very low, such as the cerebral cortex. It is not known if [(11)C]FLB 457 binding is sensitive to the concentration of endogenous dopamine in humans in a manner analogous to [(11)C]raclopride and [(123)I]IBZM in the striatum. To test this possibility, extrastriatal [(11)C]FLB 457 binding was measured at baseline and after the oral administration of 40 to 60 mg of the psychostimulant methylphenidate (MP) in 12 healthy volunteers using positron emission tomography (PET) in a balanced-order, double-blind design. The dynamic PET data were quantified using a two-tissue compartment model with a metabolite-corrected arterial plasma input function. Two volunteers were excluded because of excessive head movement. In the remainder, MP caused significant reductions in the volume of distribution (VD) in temporal and frontal cortical regions and thalamus, suggesting that [(11)C]FLB 457 binding is sensitive to endogenous dopamine concentration. Moreover, the change in [(11)C]FLB 457 binding after MP correlated with the dose of MP (in mg/kg body weight) in all regions assessed. We conclude that MP in doses within the therapeutic range for the treatment of attention deficit hyperactivity disorder causes increases in dopamine concentrations in extrastriatal regions and that [(11)C]FLB 457 PET may be a useful tool for the assessment of change in dopamine concentration in these areas in humans.  相似文献   

15.
We developed PET ligands (+)N-[(11)C]ethyl-3-piperidyl benzilate ([(11)C](+)3-EPB) and (+)N-[(11)C]propyl-3-piperidyl benzilate ([(11)C](+)3-PPB) for cerebral muscarinic cholinergic receptors. The distribution and kinetics of the novel ligands were evaluated for comparison with the previously reported ligand (+)N-[(11)C]methyl-3-piperidyl benzilate ([(11)C](+)3-MPB) in the monkey brain (Macaca mulatta) in the conscious state using high-resolution positron emission tomography (PET). At 60-91 min postinjection, regional distribution patterns of these three ligands were almost identical, and were consistent with the muscarinic receptor density in the brain as previously reported in vitro. However, the time-activity curves of [(11)C](+)3-EPB and [(11)C](+)3-PPB showed earlier peak times of radioactivity and a faster clearance rate than [(11)C](+)3-MPB in cortical regions rich in the receptors. Kinetic analysis using the three-compartment model with time-activity curves of radioactivity in metabolite-corrected arterial plasma as input functions revealed that labeling with longer [(11)C]alkyl chain length induced lower binding potential (BP = k(3)/k(4)), consistent with the rank order of affinity of these ligands obtained by an in vitro assay using rat brain slices and [(3)H]QNB. The cholinesterase inhibitor Aricept administered at doses of 50 and 250 microg/kg increased acetylcholine level in extracellular fluid of the frontal cortex and the binding of [(11)C](+)3-PPB with the lowest affinity to the receptors was displaced by the endogenous acetylcholine induced by cholinesterase inhibition, while [(11)C](+)3-MPB with the highest affinity was not significantly affected. Taken together, these observations indicate that the increase in [(11)C]alkyl chain length could alter the kinetic properties of conventional receptor ligands for PET by reducing the affinity to receptors, which might make it possible to assess the interaction between endogenous neurotransmitters and ligand-receptor binding in vivo as measured by PET.  相似文献   

16.
Tobacco dependence is highly prevalent in depressed patients. We assessed changes in [11C]‐raclopride binding potential (BP) using positron emission tomography (PET) before and after the oral administration of d‐amphetamine in healthy controls and unmedicated patients with current depression with and without current tobacco dependence. Over a single study day 2 [11C]‐raclopride positron emission tomography scans were taken in 38 subjects: at baseline and 2 h following oral d‐amphetamine 30 mg. Twenty controls (9 smokers, 11 nonsmokers) and 18 subjects with current major depressive episode (8 smokers, 10 non‐smokers). Striatal [11C]‐raclopride binding potential was measured before and after d‐amphetamine administration. Depressed smokers had a lower baseline [11C]‐raclopride binding potential compared with both control non‐smokers (P < 0.007) and depressed non‐smokers (P < 0.001). There was a main effect of smoking status on amphetamine‐induced change in [11C]‐raclopride binding potential (P < 0.02), but no main effect of depression. This may be due to a floor effect because of the low BP at baseline. Depressed subjects reported significant increase of positive mood after d‐amphetamine administration compared with controls (depressed smokers vs. control smokers: P < 0.05; depressed non‐smokers vs. controls: P < 0.055). Tobacco dependence appears to decrease d‐amphetamine‐induced changes in [11C]‐raclopride binding potential as measured by positron emission tomography. Comorbid major depression and tobacco dependence exacerbates this effect, suggesting an altered dopamine system in comorbid patients. Synapse 63:681–689, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
(-)-N-Propyl-norapomorphine (NPA) is a full dopamine (DA) D2 receptor agonist and [11C]NPA is a suitable radiotracer to image D2 receptors configured in a state of high affinity for agonists with positron emission tomography (PET). In this study the vulnerability of the in vivo binding of [11C]NPA to acute fluctuation in synaptic DA was assessed with PET in baboons and compared to that of the reference D2 receptor antagonist radiotracer [11C]raclopride. Three male baboons were studied with [11C]raclopride and [11C]NPA under baseline conditions and following administration of the potent DA releaser amphetamine (0.3, 0.5, and 1.0 mg kg(-1) i.v.). Kinetic modeling with an arterial input function was used to derive the striatal specific-to-nonspecific equilibrium partition coefficient (V3"). [11C]Raclopride V3" was reduced by 24 +/- 10%, 32 +/- 6%, and 44 +/- 9% following amphetamine doses of 0.3, 0.5, and 1.0 mg kg(-1), respectively. [11C]NPA V3" was reduced by 32 +/- 2%, 45 +/- 3%, and 53 +/- 9% following amphetamine doses of 0.3, 0.5, and 1.0 mg kg(-1), respectively. Thus, endogenous DA was more effective at competing with [11C]NPA binding compared to [11C]raclopride binding, a finding consistent with the pharmacology of these tracers (agonist vs. antagonist). These results also suggest that 71% of D2 receptors are configured in a state of high affinity for agonists in vivo. In conclusion, [11C]NPA might provide a superior radiotracer to probe presynaptic DA function with PET in health and disease.  相似文献   

18.
Competition between endogenous neurotransmitters and radiolabelled tracers, as measured by positron emission tomography (PET), may provide a measure of endogenous neurotransmitter flux in vivo. For example, carbon-11 labelled raclopride has been effectively used to monitor dopamine release following pharmacological and behavioural manipulations. The current study describes a rodent model of amphetamine-induced [11C]raclopride reduction, which allowed the characterisation of the dose-response and temporal dynamics of this reduction over a 24-h time course. Over the range studied, a monotonic dose-response relationship between amphetamine dose and [11C]raclopride reduction was observed. When compared with previously published microdialysis data, an approximate 16% reduction in [11C]raclopride binding potential was associated with a approximately 25-fold increase in extracellular dopamine. A reduction of 20-30% in raclopride binding was observed 30 min after amphetamine injection (4 mg/kg i.p.). This reduction in [11C]raclopride binding persisted for 4 h but returned to baseline by 8 h. The data suggest a persistent amphetamine-induced raclopride displacement in rodents and reinforce findings from nonhuman primates that a simple competitive occupancy model may not adequately explain the temporal characteristics of the amphetamine-induced decrease in radiotracer binding.  相似文献   

19.
In rodents, stress causes rapid increases in extracellular dopamine (DA) concentration in cortical and subcortical brain regions, and positron emission tomography (PET) studies in healthy humans have suggested psychological and pharmacological stressors are associated with increased DA concentration in the striatum. In this experiment, we measured the effect of stress, induced by difficult mental arithmetic, on [11C]raclopride binding in order to index striatal DA release. To refine measurements and facilitate interpretation of results a combination of head movement correction, a carefully designed control condition and bolus infusion administration of [11C]raclopride were employed. Fourteen healthy volunteers were scanned using [11C]raclopride PET. Physiological and psychological responses to the task were consistent with a stress response with changes in cardiovascular, hormonal, and subjective state indices. No change of ventral or dorsal striatal [11C]raclopride binding was found in the stress condition compared to nonstress. This negative result suggests that significant DA release does not occur in the striatum in healthy humans after mild, psychological stress.  相似文献   

20.
[11C]TMSX is a new positron emission tomography (PET) radioligand that provides visualization of adenosine A(2A) receptors (A(2A)Rs) in the brain, heart and skeletal muscle. Here we report on the first visualization of the A(2A)Rs in the human brain by PET and [11C]TMSX in a male healthy volunteer, compared with the adenosine A1 receptors (A1Rs) and dopamine D2 receptors (D2Rs) which were measured by PET with [11C]MPDX and [11C]raclopride, respectively. The distribution volume (DV) of [11C]TMSX in the baseline was relatively high in the head of caudate nucleus, putamen, and thalamus and relatively low in the cortical regions. Infusion of theophylline, a nonselective A(2A)R antagonist (Ki for A(2A)Rs = 16000 nM for theophylline vs 5.9 nM for TMSX), slightly reduced the DVs in the head of caudate nucleus (8.0% reduction) and putamen (4.5% reduction), but not in the other regions having much lower levels of A(2A)Rs, demonstrating the A(2A)R-specific binding of [11C]TMSX. On the other hand, the A1Rs were widely distributed in the whole brain except for the cerebellum, while the binding potential of [11C]raclopride was predominantly high in the striatum. We concluded that [11C]TMSX is an applicable PET ligand for mapping the A(2A)Rs in the caudate nucleus and putamen in clinical studies because of no availability of other radioligands until now. The [11C]TMSX PET is of great interest for studying the pathophysiology of neurological and psychiatric disorders together with the [11C]raclopride PET for D2Rs evaluation and/or the [11C]MPDX PET for A1Rs evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号