首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Elevated levels of amyloid beta (Aβ) peptide, hyperphosphorylation of tau protein, and inflammation are pathological hallmarks in Alzheimer's disease (AD). Phosphodiesterase 7 (PDE7) regulates the inflammatory response through the cyclic adenosine monophosphate signaling cascade, and thus plays a central role in AD. The aim of this study was to evaluate the efficacy of an inhibitor of PDE7, named S14, in a mouse model of AD. We report that APP/Ps1 mice treated daily for 4 weeks with S14 show: (1) significant attenuation in behavioral impairment; (2) decreased brain Aβ deposition; (3) enhanced astrocyte-mediated Aβ degradation; and (4) decreased tau phosphorylation. These effects are mediated via the cyclic adenosine monophosphate/cyclic adenosine monophosphate response element-binding protein signaling pathway, and inactivation of glycogen synthase kinase (GSK)3. Our data support the use of PDE7 inhibitors, and specifically S14, as effective therapeutic agents for the prevention and treatment of AD.  相似文献   

2.
Magnetic resonance imaging studies have revealed distinct patterns of cortical atrophy and hypoperfusion in patients with Alzheimer's disease. The relationship between these in vivo imaging measures and the corresponding underlying pathophysiological changes, however, remains elusive. Recently, attention has turned to neuroimaging of mouse models of Alzheimer's disease in which imaging-pathological correlations can be readily performed. In this study, anatomical and arterial spin labeling perfusion magnetic resonance imaging scans of amyloid precursor protein transgenic and age-matched wild-type mice were acquired at 3, 12, and 18 months of age. Fully-automated image processing methods were used to derive quantitative measures of cortical thickness and perfusion. These studies revealed increased regional cortical thickness in young transgenic mice relative to age-matched wild-type mice. However, the transgenic mice generally demonstrated a greater rate of cortical thinning over 15 months. Cortical perfusion was significantly reduced in young transgenic mice in comparison with wild-type mice across most brain regions. Previously unreported regional genotype differences and age-related changes in cortical thickness and cerebral perfusion were identified in amyloid precursor protein transgenic and wild-type mice.  相似文献   

3.
Diagnosis of Alzheimer's disease (AD) can be performed with the assistance of amyloid imaging. The current method relies on positron emission tomography (PET), which is expensive and exposes people to radiation, undesirable features for a population screening method. Magnetic resonance imaging (MRI) is cheaper and is not radioactive. Our approach uses magnetic nanoparticles (MNPs) made of superparamagnetic iron oxide (SPIO) conjugated with curcumin, a natural compound that specifically binds to amyloid plaques. Coating of curcumin-conjugated MNPs with polyethylene glycol-polylactic acid block copolymer and polyvinylpyrrolidone by antisolvent precipitation in a multi-inlet vortex mixer produces stable and biocompatible curcumin magnetic nanoparticles (Cur-MNPs) with mean diameter <100 nm. These nanoparticles were visualized by transmission electron microscopy and atomic force microscopy, and their structure and chemistry were further characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and Fourier transform infrared spectroscopy. Cur-MNPs exhibited no cytotoxicity in either Madin–Darby canine kidney (MDCK) or differentiated human neuroblastoma cells (SH-SY5Y). The Papp of Cur-MNPs was 1.03 × 10−6 cm/s in an in vitro blood–brain barrier (BBB) model. Amyloid plaques could be visualized in ex vivo T2*-weighted magnetic resonance imaging (MRI) of Tg2576 mouse brains after injection of Cur–MNPs, and no plaques could be found in non-transgenic mice. Immunohistochemical examination of the mouse brains revealed that Cur-MNPs were co-localized with amyloid plaques. Thus, Cur–MNPs have the potential for non-invasive diagnosis of AD using MRI.  相似文献   

4.
Alzheimer's disease (AD) is characterized by cerebral proteinaceous deposits comprised of amyloid beta (Aβ). Evidence suggests that enhanced blood-to-brain delivery of Aβ occurs when plasma concentration is increased, exacerbating amyloidosis. In blood, significant Aβ is associated with apolipoprotein (apo) B lipoproteins. In this study, immunofluorescent microscopy was utilised to explore if there is an association between apo B lipoproteins and proteoglycan expression within Aβ-rich plaques in transgenic-amyloid mice. Focal accumulation of apo B was found with Aβ-plaque in APP/PS1 mice. There was enrichment in the proteoglycans, agrin, perlecan, biglycan and decorin within the core of dense Aβ-plaque. Perlecan, biglycan and decorin were positively associated with apo B lipoprotein abundance within amyloid plaque consistent with a cause-for-retention effect. These findings show that proteoglycans are an integral component of Aβ deposits in APP/PS1 mice. This study suggests that some proteoglycans contribute to Aβ retention, whilst other proteoglycans have different functions in the aetiology of AD.  相似文献   

5.
Alzheimer's disease (AD) is the most common form of dementia. To date, more than 200 mutations in three genes have been identified as cause of early-onset autosomal dominant inherited AD. The aim of this study was to characterize the mutation spectrum and describe genotype-phenotype correlations in Serbian patients with positive family history of AD or/and early-onset AD. We performed a genetic screening for mutations in the coding regions of Presenilins 1 and 2 (PSEN1 and PSEN2), as well as exons 16 and 17 of the Amyloid Precursor Protein gene (APP) in a total of 47 patients from Serbia with a clinical diagnosis of familial and/or early-onset AD (mean age at onset of 60.3 years; range 32-77). We found one novel mutation in PSEN1, one novel variant in PSEN2, and three previously described variants, one in each of the analyzed genes. Interestingly, we identified one patient harboring two heterozygous mutations: one in APP (p.L723P) and one in PSEN1 (p.R108Q).  相似文献   

6.
In Alzheimer's disease (AD), persistent microglial activation as sign of chronic neuroinflammation contributes to disease progression. Our study aimed to in vivo visualize and quantify microglial activation in 13- to 15-month-old AD mice using [11C]-(R)-PK11195 and positron emission tomography (PET). We attempted to modulate neuroinflammation by subjecting the animals to an anti-inflammatory treatment with pioglitazone (5-weeks' treatment, 5-week wash-out period). [11C]-(R)-PK11195 distribution volume values in AD mice were significantly higher compared with control mice after the wash-out period at 15 months, which was supported by immunohistochemistry data. However, [11C]-(R)-PK11195 μPET could not demonstrate genotype- or treatment-dependent differences in the 13- to 14-month-old animals, suggesting that microglial activation in AD mice at this age and disease stage is too mild to be detected by this imaging method.  相似文献   

7.
Alzheimer's disease (AD) is an incurable disease that affects most of the 47 million people estimated as living with dementia worldwide. The main histopathological hallmarks of AD are extracellular β‐amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein. In recent years, Aβ‐immunotherapy has been revealed as a potential tool in AD treatment. One strategy consists of using single‐chain variable fragments (scFvs), which avoids the fragment crystallizable (Fc) effects that are supposed to trigger a microglial response, leading to microhemorrhages and vasogenic edemas, as evidenced in clinical trials with bapineuzumab. The scFv‐h3D6 generated by our research group derives from this monoclonal antibody, which targets the N‐terminal of the Aβ peptide and recognizes monomers, oligomers and fibrils. In this study, 3xTg‐AD mice were intraperitoneally and monthly treated with 100 μg of scFv‐h3D6 (a dose of ~3.3 mg/kg) or PBS, from 5 to 12 months of age (?mo), the age at which the mice were sacrificed and samples collected for histological and biochemical analyses. During treatments, four monitoring sessions using magnetic resonance imaging and spectroscopy (MRI/MRS) were performed at 5, 7, 9, and 12 months of age. MRI/MRS techniques are widely used in both human and mouse research, allowing to draw an in vivo picture of concrete aspects of the pathology in a non‐invasive manner and allowing to monitor its development across time. Compared with the genetic background, 3xTg‐AD mice presented a smaller volume in almost all cerebral regions and ages examined, an increase in both the intra and extracellular Aβ1–42 at 12‐mo, and an inflammation process at this age, in both the hippocampus (IL‐6 and mIns) and cortex (IL‐6). In addition, treatment with scFv‐h3D6 partially recovered the values in brain volume, and Aβ, IL‐6, and mIns concentrations, among others, encouraging further studies with this antibody fragment.  相似文献   

8.
Inflammation is believed to be integral to the pathogenesis of Alzheimer's disease (AD). Arachidonic acid (AA) is the most important omega-6 fatty acid and a mediator of inflammatory pathways. High-sensitivity enzyme linked immunosorbent assay shows that AA and its various metabolites; prostaglandins, thromboxanes, and leukotriene B4 resulted in significantly higher secretion of both Abeta40 and 42 peptides. A combination of identical number of alternate cis and trans double bonds either at positions Δ5 or 7Z,13 or 15E (such as PGE(2), PGF(2α), THXB2 and PGF(2α)EA) or at positions Δ6Z,8E,10E,14Z (such as LB4) built in the 3-dimensional structure of 20-carbon fatty acyl chains believed to be responsible for their detrimental action. CP 24,879 and sesamin, 2 inhibitors of the AA pathway suppressed the production of amyloid-beta (Aβ) peptides. Immunoblotting experiments and use of SP-C99 transfected COS-7 cells suggested that AA and its metabolites-driven altered production of Aβ is mediated through gamma-secretase cleavage of amyloid precursor protein (APP). An early-onset AD transgenic mouse model expressing the double-mutant form of human amyloid precursor protein, Swedish (K670N/M671L) and Indiana (V717F), corroborated our in vitro findings by showing higher levels of Abeta and amyloid plaques in the brains, when they were fed chow supplemented with 2% AA. Our work not only supports that AA and its metabolites are involved in the production of Aβ and in the pathogenesis of AD but also contributes to clarify aspects of structure-activity relationship helpful for future nonsteroidal anti-inflammatory drugs (NSAIDs) research.  相似文献   

9.
Substantial resources and effort have been invested into the development of therapeutic agents for Alzheimer's disease (AD) with mixed and limited success. Research into the etiology of AD with animal models mimicking aspects of the disorder has substantially contributed to the advancement of potential therapies. Although these models have shown utility in testing novel therapeutic candidates, large variability still exists in terms of methodology and how the models are utilized. No model has yet predicted a successful disease-modifying therapy for AD. This report reviews several of the widely accepted transgenic and nontransgenic animal models of AD, highlighting the pathological and behavioral characteristics of each. Methodological considerations for conducting preclinical animal research are discussed, such as which behavioral tasks and histological markers may be associated with the greatest insight into therapeutic benefit. An overview of previous and current therapeutic interventions being investigated in AD models is presented, with an emphasis on factors that may have contributed to failure in past clinical trials. Finally, we propose a multitiered approach for investigating candidate therapies for AD that may reduce the likelihood of inappropriate conclusions from models and failed trials in humans.  相似文献   

10.
Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) that has been reported to reduce the risk of developing Alzheimer's disease (AD). Its preventive effects in AD are likely pleiotropic as ibuprofen displays both anti-inflammatory activity by inhibition of cyclooxygenases and anti-amyloidogenic activity by modulation of γ-secretase. In order to study the anti-inflammatory properties of ibuprofen independent of its anti-amyloidogenic activity, we performed a long-term treatment study with ibuprofen in 5XFAD mice expressing a presenilin-1 mutation that renders this AD model resistant to γ-secretase modulation. As expected, ibuprofen treatment for 3 months resulted in a reduction of the inflammatory reaction in the 5XFAD mouse model. Importantly, an unchanged amyloid beta (Aβ) plaque load, an increase in soluble Aβ42 levels, and an aggravation of some behavioral parameters were noted, raising the question whether suppression of inflammation by nonsteroidal anti-inflammatory drug is beneficial in AD.  相似文献   

11.
Increasing evidence indicates that a disturbance of normal iron homeostasis and an amyloid-β (Aβ)-iron interaction may contribute to the pathology of Alzheimer's disease (AD), whereas iron chelation could be an effective therapeutic intervention. In the present study, transgenic mice expressing amyloid precursor protein (APP) and presenilin 1 and watered with high-dose iron served as a model of AD. We evaluated the effects of intranasal administration of the high-affinity iron chelator deferoxamine (DFO) on Aβ neuropathology and spatial learning and memory deficits created in this AD model. The effects of Fe, DFO, and combined treatments were also evaluated in vitro using SHSY-5Y cells overexpressing the human APP Swedish mutation. In vivo, no significant differences in the brain concentrations of iron, copper, or zinc were found among the treatment groups. We found that high-dose iron (deionized water containing 10 mg/mL FeCl3) administered to transgenic mice increased protein expression and phosphorylation of APP695, enhanced amyloidogenic APP cleavage and Aβ deposition, and impaired spatial learning and memory. Chelation of iron via intranasal administration of DFO (200 mg/kg once every other day for 90 days) inhibited iron-induced amyloidogenic APP processing and reversed behavioral alterations. DFO treatment reduced the expression and phosphorylation of APP protein by shifting the processing of APP to the nonamyloidogenic pathway, and the reduction was accompanied by attenuating the Aβ burden, and then significantly promoted memory retention in APP/PS1 mice. The effects of DFO on iron-induced amyloidogenic APP cleavage were further confirmed in vitro. Collectively, the present data suggest that intranasal DFO treatment may be useful in AD, and amelioration of iron homeostasis is a potential strategy for prevention and treatment of this disease.  相似文献   

12.
Alzheimer's disease (AD) is characterized by amyloid-β deposition in amyloid plaques, neurofibrillary tangles, inflammation, neuronal loss, and cognitive deficits. Cannabinoids display neuromodulatory and neuroprotective effects and affect memory acquisition. Here, we studied the impact of cannabinoid receptor type 1 (CB1) deficiency on the development of AD pathology by breeding amyloid precursor protein (APP) Swedish mutant mice (APP23), an AD animal model, with CB1-deficient mice. In addition to the lower body weight of APP23/CB1−/− mice, most of these mice died at an age before typical AD-associated changes become apparent. The surviving mice showed a reduced amount of APP and its fragments suggesting a regulatory influence of CB1 on APP processing, which was confirmed by modulating CB1 expression in vitro. Reduced APP levels were accompanied by a reduced plaque load and less inflammation in APP23/CB1−/− mice. Nevertheless, compared to APP23 mice with an intact CB1, APP23/CB1−/− mice showed impaired learning and memory deficits. These data argue against a direct correlation of amyloid plaque load with cognitive abilities in this AD mouse model lacking CB1. Furthermore, the findings indicate that CB1 deficiency can worsen AD-related cognitive deficits and support a potential role of CB1 as a pharmacologic target.  相似文献   

13.
《Neurobiology of aging》2014,35(12):2665-2670
To better understand whether decreased cerebral blood flow (CBF) in patients with Alzheimer's disease (AD) reflects neurodegeneration or cerebral small vessel disease, we investigated the associations of normalized brain volume (NBV) and white matter hyperintensity (WMH) volume with CBF. We included 129 patients with AD (66 ± 7 years, 53% female) and 61 age-matched controls (64 ± 5 years, 43% female). CBF was measured with pseudocontinuous arterial spin labeling at 3T in the whole brain and in partial volume corrected cortical maps. When NBV and WMH were simultaneously entered in age and sex adjusted models, smaller NBV was associated with lower whole brain (Stβ: 0.29; p < 0.01) and cortical CBF (Stβ: 0.28; p < 0.01) in patients with AD. Larger WMH volume was also associated with lower whole brain (Stβ: −0.22; p < 0.05) and cortical CBF (Stβ: −0.24; p < 0.05) in AD. Additional adjustments did not change these results. In controls, neither NBV nor WMH was associated with CBF. Our results indicate that in AD, lower CBF as measured using pseudocontinuous arterial spin labeling, reflects the combined disease burden of both neurodegeneration and small vessel disease.  相似文献   

14.
15.
Chronic brain inflammation is associated with Alzheimer's disease (AD) and is classically attributed to amyloid plaque deposition. However, whether the amyloid pathology can trigger early inflammatory processes before plaque deposition remains a matter of debate. To address the possibility that a pre-plaque inflammatory process occurs, we investigated the status of neuronal, astrocytic, and microglial markers in pre- and post-amyloid plaque stages in a novel transgenic rat model of an AD-like amyloid pathology (McGill-R-Thy1-APP). In this model, we found a marked upregulation of several classical inflammatory markers such as COX-2, IL-1β, TNF-α, and fractalkine (CX3CL1) in the cerebral cortex and hippocampus. Interestingly, many of these markers were highly expressed in amyloid beta-burdened neurons. Activated astrocytes and microglia were associated with these Aβ-burdened neurons. These findings confirm the occurrence of a proinflammatory process preceding amyloid plaque deposition and suggest that Aβ-burdened neurons play a crucial role in initiating inflammation in AD.  相似文献   

16.
The postsynaptic density protein PSD-95 is a major element of synapses. PSD-95 is involved in aging, Alzheimer's disease (AD) and numerous psychiatric disorders. However, contradictory data about PSD-95 expression in aging and AD have been reported. Indeed in AD versus control brains PSD-95 varies according to regions, increasing in the frontal cortex, at least in a primary stage, and decreasing in the temporal cortex. In contrast, in transgenic mouse models of aging and AD PSD-95 expression is decreased, in behaviorally aged impaired versus unimpaired rodents it can decrease or increase and finally, it is increased in rodents grown in enriched environments. Different factors explain these contradictory results in both animals and humans, among others concomitant psychiatric endophenotypes, such as depression. The possible involvement of PSD-95 in reactive and/or compensatory mechanisms during AD progression is underscored, at least before the occurrence of important synaptic elimination. Thus, in AD but not in AD transgenic mice, enhanced expression might precede the diminution commonly observed in advanced aging. A two-compartments cell model, separating events taking place in cell bodies and synapses, is presented. Overall these data suggest that AD research will progress by untangling pathological from protective events, a prerequisite for effective therapeutic strategies.  相似文献   

17.
Impaired growth factor function is thought to drive many of the alterations observed in Alzheimer's disease (AD) patients. Endogenous regenerative technology, PRGF (plasma rich in growth factor)-Endoret, is designed for the delivery of a complex pool of patient's own active morphogens that may stimulate tissue regeneration. We obtained and characterized PRGF-Endoret preparations from human blood. We used, as experimental approach in vivo, APP/PS1 mice, characterized by age-dependent brain amyloid-β (Aβ) accumulation. Intranasal administration of PRGF-Endoret to APP/PS1 mice resulted in an important decrease in brain Aβ deposition and tau phosphorylation. PRGF-Endoret-treated APP/PS1 mice also showed decreased astrocyte reactivity, and prevented protein synaptic loss. In vitro approaches demonstrated that PRGF-Endoret treatment modulated astrocyte activation, reducing inflammatory responses, and promoted Aβ degradation. Furthermore, PRGF-Endoret stimulated global improvements in anxiety, learning, and memory behaviors. Our findings show that PRGF-Endoret exerts multifunctional and complementary effects that result in the reversal of the broad range of cognitive deficits in AD, suggesting that PRGF-Endoret may hold promise as an innovative therapy in AD.  相似文献   

18.
Previous studies showed the relationship between fatty acids and the risk of developing Alzheimer's disease (AD). However, they did not address potential differences in free fatty acid (FFA) profiles that could be used to distinguish between AD patients and healthy controls. In the present study we used gas chromatography-mass spectrometry (GC-MS) technology coupled with multivariate statistical analysis to study profiles of FFA in AD. The results indicated 2 saturated fatty acids (C14:0 and C16:0; p < 0.001 and p < 0.05, respectively), 3 unsaturated fatty acids (C18:1, C18:3, and C22:6; p < 0.05, p < 0.05, and p < 0.001, respectively), where mean levels in serum from AD patients were significantly lower than controls. Partial least squares discriminant analysis (PLS-DA) models with unit variance (UV) scaling and orthogonal signal correction (OSC) data preprocessing methods were employed to refine intergroup differences between FFA profiles. The results of the analysis have highlighted docosahexaenoic acid (DHA) as the FFA with the greatest potential as a biomarker of AD, and this study has demonstrated that FFA biomarkers have considerable potential in diagnosing and monitoring AD.  相似文献   

19.
Huperzine A (HupA), a natural inhibitor of acetylcholinesterase derived from a plant, is a licensed anti-Alzheimer's disease (AD) drug in China and a nutraceutical in the United States. In addition to acting as an acetylcholinesterase inhibitor, HupA possesses neuroprotective properties. However, the relevant mechanism is unknown. Here, we showed that the neuroprotective effect of HupA was derived from a novel action on brain iron regulation. HupA treatment reduced insoluble and soluble beta amyloid levels, ameliorated amyloid plaques formation, and hyperphosphorylated tau in the cortex and hippocampus of APPswe/PS1dE9 transgenic AD mice. Also, HupA decreased beta amyloid oligomers and amyloid precursor protein levels, and increased A Disintegrin And Metalloprotease Domain 10 (ADAM10) expression in these treated AD mice. However, these beneficial effects of HupA were largely abolished by feeding the animals with a high iron diet. In parallel, we found that HupA decreased iron content in the brain and demonstrated that HupA also has a role to reduce the expression of transferrin-receptor 1 as well as the transferrin-bound iron uptake in cultured neurons. The findings implied that reducing iron in the brain is a novel mechanism of HupA in the treatment of Alzheimer's disease.  相似文献   

20.
Nutritional intervention may retard the development of Alzheimer's disease (AD). In this study we tested the effects of 2 multi-nutrient diets in an AD mouse model (APPswe/PS1dE9). One diet contained membrane precursors such as omega-3 fatty acids and uridine monophosphate (DEU), whereas another diet contained cofactors for membrane synthesis as well (Fortasyn); the diets were developed to enhance synaptic membranes synthesis, and contain components that may improve vascular health. We measured cerebral blood flow (CBF) and water diffusivity with ultra-high-field magnetic resonance imaging, as alterations in these parameters correlate with clinical symptoms of the disease. APPswe/PS1dE9 mice on control diet showed decreased CBF and changes in brain water diffusion, in accordance with findings of hypoperfusion, axonal disconnection and neuronal loss in patients with AD. Both multinutrient diets were able to increase cortical CBF in APPswe/PS1dE9 mice and Fortasyn reduced water diffusivity, particularly in the dentate gyrus and in cortical regions. We suggest that a specific diet intervention has the potential to slow AD progression, by simultaneously improving cerebrovascular health and enhancing neuroprotective mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号