首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paraventricular (PV) and paratenial (PT) nuclei are prominent cell groups of the midline thalamus. To our knowledge, only a single early report has examined PV projections and no previous study has comprehensively analyzed PT projections. By using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin, and the retrograde tracer, FluoroGold, we examined the efferent projections of PV and PT. We showed that the output of PV is virtually directed to a discrete set of limbic forebrain structures, including 'limbic' regions of the cortex. These include the infralimbic, prelimbic, dorsal agranular insular, and entorhinal cortices, the ventral subiculum of the hippocampus, dorsal tenia tecta, claustrum, lateral septum, dorsal striatum, nucleus accumbens (core and shell), olfactory tubercle, bed nucleus of stria terminalis (BST), medial, central, cortical, and basal nuclei of amygdala, and the suprachiasmatic, arcuate, and dorsomedial nuclei of the hypothalamus. The posterior PV distributes more heavily than the anterior PV to the dorsal striatum and to the central and basal nuclei of amygdala. PT projections significantly overlap with those of PV, with some important differences. PT distributes less heavily than PV to BST and to the amygdala, but much more densely to the medial prefrontal and entorhinal cortices and to the ventral subiculum of hippocampus. As described herein, PV/PT receive a vast array of afferents from the brainstem, hypothalamus, and limbic forebrain, related to arousal and attentive states of the animal, and would appear to channel that information to structures of the limbic forebrain in the selection of appropriate responses to changing environmental conditions. Depending on the specific complement of emotionally associated information reaching PV/PT at any one time, PV/PT would appear positioned, by actions on the limbic forebrain, to direct behavior toward a particular outcome over a range of outcomes.  相似文献   

2.
The efferent, afferent and intrinsic connections of the septal region have been analyzed in the rat with the autoradiographic method. The lateral septal nucleus, which can be divided into dorsal, intermediate and ventral parts, receives its major input from the hippocampal formation and projects to the medial septal-diagonal band complex. The ventral part of the nucleus also sends fibers through the medial forebrain bundle to the medial preoptic and anterior hypothalamic areas, to the lateral hypothalamic area and the dorsomedial nucleus, to the mammillary body (including the supramammillary region), and to the ventral tegmental area. The medial septal nucleus/diagonal band complex projects back to the hippocampal formation by way of the dorsal fornix, fimbria, and possibly the cingulum. Both nuclei also project through the medial forebrain bundle to the medial and lateral preoptic areas, to the lateral hypothalamic area, and to the mammillary complex. The medial septal nucleus also sends fibers to the midbrain (the ventral tegmental area and raphe nuclei) and to the parataenial nucleus of the thalamus, while the nucleus of the diagonal band has an additional projection to the anterior limbic area. Ascending inputs to the medial septal nucleus/diagonal band complex arise in several hypothalamic nuclei and in the brainstem aminergic cell groups. The posterior septal nuclei (the septofimbrial and triangular nuclei) receive their major input from the hippocampal formation, and project in a topographically ordered manner upon the habenular nuclei and the interpeduncular nuclear complex. The bed nucleus of the stria terminalis receives its major input from the amygdala (Krettek and Price, '78); but other afferents arise from the ventral subiculum, the ventromedial nucleus, and the brainstem aminergic cell groups. The principal output of the bed nucleus is through the medial forebrain bundle to the substantia innominata, the nucleus accumbens, most parts of the hypothalamus and the preoptic area, the central tegmental fields of the midbrain, the ventral tegmental area, the dorsal and median nuclei of the raphe, and the locus coeruleus. The bed nucleus also projects to the anterior nuclei of the thalamus, the parataenial and paraventricular nuclei, and the medial habenular nucleus, and through the stria terminalis to the medial and central nuclei of the amygdala, and to the amygdalo-hippocampal transition area.  相似文献   

3.
The afferent connections of the substantia innominata (SI) in the rat were determined employing the anterograde axonal transport of Phaseolus vulgaris leucoagglutinin (PHA-L) and the retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP), in combination with histochemical procedures to characterize the neuropil of the SI and identify cholinergic cells. Both neurochemical and connectional data establish that the SI is organized into a dorsal and a ventral division. Each of these divisions is strongly affiliated with a different region of the amygdala, and, together with its amygdalar affiliate, forms part of one of two largely distinct constellations of interconnected forebrain and brainstem cell groups. The dorsal SI receives selective innervation from the lateral part of the bed nucleus of the stria terminalis, the central and basolateral nuclei of the amygdala, the fundus of the striatum, distinctive perifornical and caudolateral zones of the lateral hypothalamus, and caudal brainstem structures including the dorsal raphe nucleus, parabrachial nucleus, and nucleus of the solitary tract. Projections preferentially directed to the ventral SI arise from the medial part of the bed nucleus of the stria terminalis, the rostral two-thirds of the medial nucleus of the amygdala, a large region of the rat amygdala that lies ventral to the central nucleus, the medial preoptic area, anterior hypothalamus, medialmost lateral hypothalamus, and the ventromedial hypothalamus. Both SI divisions appear to receive afferents from the dorsomedial and posterior hypothalamus, supramammillary region, ventral tegmental area, and the peripeduncular area of the midbrain. Projections to the SI whose selectivity was not determined originate from medial prefrontal, insular, perirhinal, and entorhinal cortex and from midline thalamic nuclei. Findings from both PHA-L and WGA-HRP experiments additionally indicate that cell groups preferentially innervating a single SI division maintain numerous projections to one another, thus forming a tightly linked assembly of structures. In the rat, cholinergic neurons that are scattered throughout the SI and in parts of the globus pallidus make up a cell population equivalent to the primate basal nucleus of Meynert (Mesulam et al.: Neuroscience 10:1185-1201, '83). PHA-L-filled axons, labelled from lectin deposits in the dorsal raphe nucleus, peripeduncular area, ventral tegmental area, or caudomedial hypothalamus were occasionally seen to approach individual cholinergic neurons int he SI, and to contact the surface of such cells with axonal varicosities (putative synaptic boutons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Subcortical afferent projections to the medial limbic cortex were examined in the rat by the use of retrograde axonal transport of horseradish peroxidase. Small iontophoretic injections of horseradish peroxidase were placed at various locations within the dorsal and ventral cingulate areas, the dorsal agranular and ventral granular divisions of the retrosplenial cortex and the presubiculum. Somata of afferent neurons in the thalamus and basal forebrain were identified by retrograde labeling. Each of the anterior thalamic nuclei was found to project to several limbic cortical areas, although not with equal density. The anterior dorsal nucleus projects primarily to the presubiculum and ventral retrosplenial cortex; the anterior ventral nucleus projects to the retrosplenial cortex and the presubiculum with apparently similar densities; and the anterior medial nucleus projects primarily to the cingulate areas. The projections from the lateral dorsal nucleus to these limbic cortical areas are organized in a loose topographic fashion. The projection to the presubiculum originates in the most dorsal portion of the lateral dorsal nucleus. The projection to the ventral retrosplenial cortex originates in rostral and medial portions of the nucleus, whereas afferents to the dorsal retrosplenial cortex originate in caudal portions of the lateral dorsal nucleus. The projection to the cingulate originates in the ventral portion of the lateral dorsal nucleus. Other projections from the thalamus originate in the intralaminar and midline nuclei, including the central lateral, central dorsal, central medial, paracentral, reuniens, and paraventricular nuclei, and the ventral medial and ventral anterior nuclei. In addition, projections to the medial limbic cortex from the basal forebrain originate in cells of the nucleus of the diagonal band. Projections to the presubiculum also originate in the medial septum. These results are discussed in regard to convergence of sensory and nonsensory information projecting to the limbic cortex and the types of visual and other sensory information that may be relayed to the limbic cortex by these projections.  相似文献   

5.
The efferent fiber connections of the nuclei of the amygdaloid complex with subcortical structures in the basal telencephalon, hypothalamus, midbrain, and pons have been studied in the rat and cat, using the autoradiographic method for tracing axonal connections. The cortical and thalamic projections of these nuclei have been described in previous papers (Krettek and Price, ′77b,c). Although the subcortical connections of the amygdaloid nuclei are widespread within the basal forebrain and brain stem, the projections of each nucleus have been found to be well defined, and distinct from those of the other amygdaloid nuclei. The basolateral amygdaloid nucleus projects heavily to the lateral division of the bed nucleus of the stria terminalis (BNST), to the caudal part of the substantia innominata, and to the ventral part of the corpus striatum (nucleus accumbens and ventral putamen) and the olfactory tubercle; it projects more lightly to the lateral hypothalamus. The central nucleus also projects to the lateral division of the BNST and the lateral hypothalamus, but in addition it sends fibers to the lateral part of the substantia nigra and the marginal nucleus of the brachium conjunctivum. The basomedial nucleus has projections to the ventral striatum and olfactory tubercle which are similar to those of the basolateral nucleus, but it also projects to the core of the ventromedial hypothalamic nucleus and the premammillary nucleus, and to a central zone of the BNST which overlaps the medial and lateral divisions. The medial nucleus also projects to the core of the ventromedial nucleus and the premammillary nucleus, but sends fibers to the medial division of the BNST and does not project to the ventral striatum. The posterior cortical nucleus projects to the premammillary nucleus and to the medial division of the BNST, but a projection from this nucleus to the ventromedial nucleus has not been demonstrated. Projections to the “shell” of the ventromedial nucleus have been found only from the ventral part of the subiculum and from a structure at the junction of the amygdala and the hippocampal formation, which has been termed the amygdalo-hippocampal area (AHA). The AHA also sends fibers to the medial part of the BNST and the premammillary nucleus. Virtually no subcortical projections outside the amygdala itself have been demonstrated from the lateral nucleus, or from the olfactory cortical areas around the amygdala (the anterior cortical nucleus, the periamygdaloid cortex, and the posterior prepiriform cortex). However, portions of the endopiriform nucleus deep to the prepiriform cortex project to the ventral putamen, and to the lateral hypothalamus.  相似文献   

6.
The projections from the basal telencephalon and hypothalamus to each nucleus of the amygdaloid complex of the rat, and to the central amygdala of the cat, were investigated by the use of retrograde transport of horseradish peroxidase (HRP). The enzyme was injected stereotaxically by microiontophoresis, using three different approaches. The ventral pallidum (Heimer, '78) and ventral part of the globus pallidus were found to project to the lateral and basolateral nuclei of the amygdala. The substantia innominata projects diffusely to the entire amygdaloid complex, except to the lateral nucleus and the caudal part of the medial nucleus. The anterior amygdaloid area shows a similar projection field, the only difference being that this structure does not project to any parts of the medial nucleus. The dorsal subdivision of the nucleus of the lateral olfactory tract sends fibers to the ipsilateral as well as the contralateral basolateral nucleus, and possibly to the ipsilateral basomedial and cortical amygdala. The ventral subdivision of the nucleus of the lateral olfactory tract was massively labeled after an injection in the ipsilateral central nucleus, but this injection affected the commissural component of the stria terminalis. The nucleus of the horizontal limb of the diagonal band of Broca connects with the medial, central, and anterior cortical nuclei, whereas the bed nucleus of stria terminalis and medial preoptic area are related to the medial nucleus predominantly. The lateral preoptic area is only weakly labeled after intra-amygdaloid HRP injections. The hypothalamo-amygdaloid projections terminate preponderantly in the medial part of the amygdaloid complex. Thus, axons from neurons in the area dorsal and medial to the paraventricular nucleus of the hypothalamus distribute to the medial nucleus and intra-amygdaloid part of the bed nucleus of stria terminalis. Most of the amygdalopetal fibers from the ventromedial, ventral premammillary, and arcuate nuclei of the hypothalamus end in the medial nucleus, but some extend into the central nucleus. A few fibers from the ventromedial nucleus of the hypothalamus reach the basolateral nucleus. The lateral hypothalamic area projects heavily to the central nucleus, and more sparsely to the medial and basolateral nuclei. The dorsal hypothalamic area and supramammillary nucleus show restricted projections to the central and basolateral nuclei, respectively. There are only a modest number of crossed hypothalamo-amygdaloid fibers. Most of these originate in the ventromedial nucleus of the hypothalamus and terminate in the contralateral medial nucleus. The projections from the basal telencephalon and hypothalamus to the central nucleus of the amygdala of the cat are similar to the corresponding projections in the rat.  相似文献   

7.
The structure and connectivity of the basal nucleus of Meynert, the substantia innominata in which it lies, and certain related areas have been examined in New World and Old World Monkeys, using retrograde and anterograde axonal transport methods. Experiments using the retrograde, horseradish peroxidase method confirm the observations of Kievet and Kuypers ('75) that the basal nucleus and substantia innominata project directly, heavily and with a somewhat crude topography upon the neocortex. Experiments involving the anterograde, autoradiographic method show that the basal nucleus and substantia innominata form part of a complex pathway that links them together with the lateral hypothalamus, certain parts of the amygdala and the peripeduncular nucleus of the midbrain. The peripeduncular nucleus is often regarded as a part of the central auditory pathway; it gives rise to a fiber bundle of considerable size that ascends on the dorsal surface of the ipsilateral optic tract and terminates ultimately in the lateral hypothalamic area of both sides. As well as distributing fibers to the basal nucleus, substantia innominata and lateral hypothalamus, this pathway provides a heavy projection to a cytoarchitectonically distinct posterior part of the lateral nucleus of the amygdala, the medial and intercalated nuclei of the amygdala and a less dense projection to the bed nucleus of the stria terminalis. Certain parts of the hypothalamus and possibly the preoptic areas give rise to a complementary descending pathway that distributes fibers to the ipsilateral basal nucleus, substantia innominata and amygdala, and ends in the peripeduncular nuclei of both sides. Decussating fibers in both the ascending and descending pathways cross in the ventral supraoptic commissure. It is concluded that the basal nucleus should include most of the aggregated and unaggregated large cells that lie in the substantia innominata and which in places intrude upon the preoptic regions and the nucleus of the diagonal band of Broca. Together, these may form a complex that receives inputs from a variety of brainstem sources, and projects widely and diffusely upon all cortical structures of the telencephalon.  相似文献   

8.
The ventral striatum is considered to be that portion of the striatum associated with the limbic system by virtue of its afferent connections from allocortical and mesolimbic areas as well as from the amygdala. The efferent projections from this striatal region in the primate were traced by using 3H aminoacids and Phaseolus vulgaris-leucoagglutinin (PHA-L). Particular attention was paid to the topographic organization of terminal fields in the globus pallidus and substantia nigra, the projections to non-extrapyramidal areas, the relationship between projections from the nucleus accumbens and the other parts of the ventral striatum, and the comparison between ventral and dorsal striatal projections. This study demonstrates that in monkeys a circumscribed region of the globus pallidus receives topographically organized efferent fibers from the ventral striatum. The ventral striatal fibers terminate in the ventral pallidum, the subcommissural part of the globus pallidus, the rostral pole of the external segment, and the rostromedial portion of the internal segment. The more central and caudal portions of the globus pallidus do not receive this input. This striatal output appears to remain segregated from the dorsal striatal efferent projections to pallidal structures. Fibers from the ventral striatum projecting to the substantia nigra are not as confined to a specific region as those projecting to the globus pallidus. Although the densest terminal fields occur in the medial portion, numerous fibers also extend laterally to innervate the dorsal stratum of dopaminergic neurons of the substantia nigra and the retrorubral area. Furthermore, they project throughout the rostral-caudal extent of the substantia nigra. Projections from the medial part of the ventral striatum reach the more caudally located pedunculopontine tegmental nucleus. Thus unlike the above described terminals in the globus pallidus, the ventral striatum project widely throughout the substantia nigra, a fact that indicates that they may contribute to the integration between limbic and other output systems of the striatum. Finally, the ventral striatum projects to non-extrapyramidal regions including the bed nucleus of the stria terminals, the nucleus basalis magnocellularis, the lateral hypothalamus, and the medial thalamus.  相似文献   

9.
Fibers projecting from several levels of the spinal cord to the diencephalon and telencephalon were labeled anterogradely with Phaseolus vulgaris leucoagglutinin injected iontophoretically. Labeled fibers in the thalamus confirmed projections previously observed. In addition, many labeled fibers were seen in the hypothalamus and in telencephalic areas not generally recognized previously as receiving such projections. In the hypothalamus, these areas included the lateral hypothalamus (including the medial forebrain bundle), the posterior hypothalamic area, the dorsal hypothalamic area, the dorsomedial nucleus, the paraventricular nucleus, the periventricular area, the suprachiasmatic nucleus, and the lateral and medial preoptic areas. In the telencephalon, areas with labeled fibers included the ventral pallidum, the globus pallidus, the substantia innominata, the basal nucleus of Meynert, the amygdala (central nucleus), the horizontal and vertical limbs of the diagonal band of Broca, the medial and lateral septal nuclei, the bed nucleus of the stria terminalis, the nucleus accumbens, infralimbic cortex, and medial orbital cortex. These results suggest that somatosensory, possibly including visceral sensory, information is carried directly from the spinal cord to areas in the brain involved in autonomic regulation, motivation, emotion, attention, arousal, learning, memory, and sensory-motor integration. Many of these areas are associated with the limbic system.  相似文献   

10.
The nucleus reuniens (RE) is the largest of the midline nuclei of the thalamus and exerts strong excitatory actions on the hippocampus and medial prefrontal cortex. Although RE projections to the hippocampus have been well documented, no study using modern tracers has examined the totality of RE projections. With the anterograde anatomical tracer Phaseolus vulgaris leuccoagglutinin, we examined the efferent projections of RE as well as those of the rhomboid nucleus (RH) located dorsal to RE. Control injections were made in the central medial nucleus (CEM) of the thalamus. We showed that the output of RE is almost entirely directed to the hippocampus and "limbic" cortical structures. Specifically, RE projects strongly to the medial frontal polar, anterior piriform, medial and ventral orbital, anterior cingulate, prelimbic, infralimbic, insular, perirhinal, and entorhinal cortices as well as to CA1, dorsal and ventral subiculum, and parasubiculum of the hippocampus. RH distributes more widely than RE, that is, to several RE targets but also significantly to regions of motor, somatosensory, posterior parietal, retrosplenial, temporal, and occipital cortices; to nucleus accumbens; and to the basolateral nucleus of amygdala. The ventral midline thalamus is positioned to exert significant control over fairly widespread regions of the cortex (limbic, sensory, motor), hippocampus, dorsal and ventral striatum, and basal nuclei of the amygdala, possibly to coordinate limbic and sensorimotor functions. We suggest that RE/RH may represent an important conduit in the exchange of information between subcortical-cortical and cortical-cortical limbic structures potentially involved in the selection of appropriate responses to specific and changing sets of environmental conditions.  相似文献   

11.
The present review summarizes our research findings concerning the role of the limbic system in hypothalamically-elicited aggression in the cat. Utilizing a dual-stimulation procedure, our results indicate that much of the limbic system suppresses quiet biting attack behavior. The most potent inhibitory effects were obtained from the basomedial amygdala and the prefrontal cortex. Other structures displaying suppression of attack following electrical stimulation include the dorsal hippocampus, pyriform cortex, lateral septal nucleus, lateral aspect of substantia innominata, and anterior cingulate gyrus. Sites producing facilitation of attack include the ventral hippocampus, far lateral aspect of the lateral septal nucleus, medial aspect of the substantia innominata, and lateral amygdaloid nucleus. Anatomical studies suggest that the medial forebrain bundle and stria terminalis are utilized by limbic structures to provide direct modulation of the hypothalamus while the substantia innominata, mediodorsal thalamic nucleus and bed nucleus of the stria terminalis contain important interneurons in the control of quiet biting attack. Further studies indicate that the amygdala, ventral hippocampus, and substantia innominata may control aggressive behavior by modulating the trigeminal sensory components of the attack response.  相似文献   

12.
The lateral bed nucleus of the stria terminalis (BSTL) is involved in mediating anxiety‐related behaviors to sustained aversive stimuli. The BSTL forms part of the central extended amygdala, a continuum composed of the BSTL, the amygdala central nucleus, and cell columns running between the two. The central subdivision (BSTLcn) and the juxtacapsular subdivision (BSTLJ) are two BSTL regions that lie above the anterior commissure, near the ventral striatum. The amygdala, a heterogeneous structure that encodes emotional salience, projects to both the BSTL and ventral striatum. We placed small injections of retrograde tracers into the BSTL, focusing on the BSTLcn and BSTLJ, and analyzed the distribution of labeled cells in amygdala subregions. We compared this to the pattern of labeled cells following injections into the ventral striatum. All retrograde results were confirmed by anterograde studies. We found that the BSTLcn receives stronger amygdala inputs relative to the BSTLJ. Furthermore, the BSTLcn is defined by inputs from the corticoamygdaloid transition area and central nucleus, while the BSTLJ receives inputs mainly from the magnocellular accessory basal and basal nucleus. In the ventral striatum, the dorsomedial shell receives inputs that are similar, but not identical, to inputs to the BSTLcn. In contrast, amygdala projections to the ventral shell/core are similar to projections to the BSTLJ. These findings indicate that the BSTLcn and BSTLJ receive distinct amygdala afferent inputs and that the dorsomedial shell is a transition zone with the BSTLcn, while the ventral shell/core are transition zones with the BSTLJ. J. Comp. J. Comp. Neurol. 521:3191–3216, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Limbic dysfunction and hypothalamo-pituitary-adrenocortical (HPA) axis dysregulation are key features of affective disorders. The following review summarizes our current understanding of the relationship between limbic structures and control of ACTH and glucocorticoid release, focusing on the hippocampus, medial prefrontal cortex and amygdala. In general, the hippocampus and anterior cingulate/prelimbic cortex inhibit stress-induced HPA activation, whereas the amygdala and perhaps the infralimbic cortex may enhance glucocorticoid secretion. Several characteristics of limbic–HPA interaction are notable: first, in all cases, the role of given limbic structures is both region- and stimulus-specific. Second, limbic sites have minimal direct projections to HPA effector neurons of the paraventricular nucleus (PVN); hippocampal, cortical and amygdalar efferents apparently relay with neurons in the bed nucleus of the stria terminalis, hypothalamus and brainstem to access corticotropin releasing hormone neurons. Third, hippocampal, cortical and amygdalar projection pathways show extensive overlap in regions such as the bed nucleus of the stria terminalis, hypothalamus and perhaps brainstem, implying that limbic information may be integrated at subcortical relay sites prior to accessing the PVN. Fourth, these limbic sites also show divergent projections, with the various structures having distinct subcortical targets. Finally, all regions express both glucocorticoid and mineralocorticoid receptors, allowing for glucocorticoid modulation of limbic signaling patterns. Overall, the influence of the limbic system on the HPA axis is likely the end result of the overall patterning of responses to given stimuli and glucocorticoids, with the magnitude of the secretory response determined with respect to the relative contributions of the various structures.  相似文献   

14.
The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro-Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal-directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices.  相似文献   

15.
The connectivity and cytoarchitecture of telencephalic centers except dorsal and medial pallium were studied in the fire-bellied toad Bombina orientalis by anterograde and retrograde biocytin labeling and intracellular biocytin injection (total of 148 intracellularly labeled neurons or neuron clusters). Our findings suggest the following telencephalic divisions: (1) a central amygdala-bed nucleus of the stria terminalis in the caudal midventral telencephalon, connected to visceral-autonomic centers; (2) a vomeronasal amygdala in the caudolateral ventral telencephalon receiving input from the accessory olfactory bulb and projecting mainly to the preoptic region/hypothalamus; (3) an olfactory amygdala in the caudal pole of the telencephalon lateral to the vomeronasal amygdala receiving input from the main olfactory bulb and projecting to the hypothalamus; (4) a medial amygdala receiving input from the anterior dorsal thalamus and projecting to the medial pallium, septum, and hypothalamus; (5) a ventromedial column formed by a nucleus accumbens and a ventral pallidum projecting to the central amygdala, hypothalamus, and posterior tubercle; (6) a lateral column constituting the dorsal striatum proper rostrally and the dorsal pallidum caudally, and a ventrolateral column constituting the ventral striatum. We conclude that the caudal mediolateral complex consisting of the extended central, vomeronasal, and olfactory amygdala of anurans represents the ancestral condition of the amygdaloid complex. During the evolution of the mammalian telencephalon this complex was shifted medially and involuted. The mammalian basolateral amygdala apparently is an evolutionary new structure, but the medial portion of the amygdalar complex of anurans reveals similarities in input and output with this structure and may serve similar functions.  相似文献   

16.
The amygdala shows ventropallial and lateropallial derivatives that can be compared among vertebrates according to their topological position, either superficial (cortical amygdala) or deep (basolateral amygdala and amygdalo-hippocampal area), connections and histochemical features. On the other hand, the subpallial amygdala, also called extended amygdala, is composed of medial and central divisions. In mammals, both divisions consist of an intra-amygdaloid portion and a part of the bed nucleus of the stria terminalis. In non-mammals, the intratelencephalic trajectory of the stria terminalis is short and both poles of the extended amygdala are close together. Like its mammalian counterpart, the medial extended amygdala of non-mammals receives an olfactory input (reduced in birds), projects to the medial hypothalamus and shows a sexually dimorphic vasotocinergic (vasopressinergic) cell group. Thus, the medial extended amygdala is part of the forebrain circuitry for the expression of defensive and reproductive behaviours. In turn, the central extended amygdala of amniotes shows a prominent CGRP innervation and a medially located CRF/neurotensin-expressing cell group, and projects to the lateral hypothalamus and to the midbrain and brainstem centres involved in fear/anxiety expression. The projections from the pallial amygdala to the central and medial extended amygdala are similarly organized in the mammals and non-mammals. These circuits, which have not changed substantially in birds despite the disappearance of the vomeronasal system, delineate two functional divisions within the amygdala that, together, orchestrate the expression of species-specific behaviours with a strong emotional component.  相似文献   

17.
The thalamocortical projections to limbic cortex in the cat have been studied with retrograde and anterograde axonal transport techniques. Five limbic cortical areas were identified on the basis of cytoarchitecture. The five areas are the anterior limbic area, the cingular area, the dorsal and ventral retrosplenial areas, and the presubiculum. Each of these cortical areas received small injections of horseradish peroxidase, and the afferent thalamic nuclei were identified by retrograde labelling of cells. The cortical projection of each of the anterior thalamic nuclei and the lateral dorsal nucleus was determined autoradiographically. Each of the anterior thalamic nuclei and the lateral dorsal nucleus projects to limbic cortex by two pathways. One group of fibers leaves the rostral thalamus by the fornix, pierces the corpus callosum, and joins the cingulate fasciculus to reach limbic cortex. The other group travels through the lateral thalamic peduncle and internal capsule. The anterior ventral nucleus projects primarily to the dorsal retroslenial area, particularly to layer I, the deep portion of layer II, and superficial portion of layer III. Sparse projections also exist to the ventral retrosplenial area, the cingular area, and the presubiculum. Very sparse projections to the anterior limbic area are seen. The anterior dorsal nucleus projects primarily to the ventral retrosplenial area, particularly layers I, the deep portion of layer II, and superficial layer III. Sparse projections exist to the dorsal retrosplenial area and presubiculum, but apparently no projections exist to the cingular or anterior limbic area. The anterior medial nucleus projects primarily to layers I and superficial III of the ventral retrosplenial area. Sparse projections exist to each of the other limbic cortical areas. The lateral dorsal nucleus projects extensively onto limbic cortex. Prominent projections occur to layer I, the external granular layer and lamina dessicans of the presubiculum, layers I and III-IV of the dorsal retrosplenial area, and layers I, III, and IV of the cingular area. Sparse projections occur to the ventral retrosplenial area and the anterior limbic areas. Thalamocortical projections also originate in the midline and intralaminar nuclei including the central medial reuniens, rhomboid, paracentral, central lateral, and central dorsal nuclei. These data indicate that the anterior thalamic nuclei project upon limbic cortex in a complex manner. Further, the projections to limbic cortex from the anterior nuclei overlap with projections from the lateral dorsal nucleus. This overlap of thalamic projections onto limbic cortex suggests a convergence of information from nonprimary sensory systems with information from the classical limbic system.  相似文献   

18.
The anterior cortical amygdaloid nucleus (ACo) is a chemosensory area of the cortical amygdala that receives afferent projections from both the main and accessory olfactory bulbs. The role of this structure is unknown, partially due to a lack of knowledge of its connectivity. In this work, we describe the pattern of afferent and efferent projections of the ACo by using fluorogold and biotinylated dextranamines as retrograde and anterograde tracers, respectively. The results show that the ACo is reciprocally connected with the olfactory system and basal forebrain, as well as with the chemosensory and basomedial amygdala. In addition, it receives dense projections from the midline and posterior intralaminar thalamus, and moderate projections from the posterior bed nucleus of the stria terminalis, mesocortical structures and the hippocampal formation. Remarkably, the ACo projects moderately to the central nuclei of the amygdala and anterior bed nucleus of the stria terminalis, and densely to the lateral hypothalamus. Finally, minor connections are present with some midbrain and brainstem structures. The afferent projections of the ACo indicate that this nucleus might play a role in emotional learning involving chemosensory stimuli, such as olfactory fear conditioning. The efferent projections confirm this view and, given its direct output to the medial part of the central amygdala and the hypothalamic ‘aggression area’, suggest that the ACo can initiate defensive and aggressive responses elicited by olfactory or, to a lesser extent, vomeronasal stimuli.  相似文献   

19.
The efferent connections of the central nucleus of the monkey amygdala have been studied using the autoradiographic method for tracing axonal projections. Small injections of 3H-amino-acids which are largely confined to the central nucleus lead to the labeling of several brainstem nuclei as far caudally as the spinomedullary junction. Specifically, in the forebrain, the central nucleus projects heavily to the bed nucleus of the stria terminalis, the basal nucleus of Meynert, the nucleus of the horizontal limb of the diagonal band, and more lightly to the substantia innominata and the preoptic area. In the hypothalamus, label is found over the dorsomedial nucleus, the perifornical region, the lateral hypothalamus, the supramammillary area, and most heavily in the paramammillary nucleus. In the thalamus, all components of the nucleus centralis medialis and the nucleus reuniens receive fibers from the central nucleus and there is a light projection to the medial pulvinar nucleus. In the mesencephalon, there is heavy labeling dorsal to the substantia nigra ad over the peripeduncular nucleus and lighter labeling within the substantia nigra pars compacta and the ventral tegmental area; the midbrain central gray is also labeled. More caudally, fibers from the central nucleus travel in the lateral tegmental reticular fields and contribute collaterals to the raphe nuclei, the cuneiform nucleus, and the central gray substance. Perhaps one of the heaviest terminal zones is the parabrachial region of the pons, both the lateral and the medial nuclei of which receive a prominent central nucleus projection. Only the ventral aspect of the adjacent locus coeruleus appears to receive a substantial input, but there is labeling also over the area of the nucleus subcoeruleus. Finally, there is heavy labeling around the dorsal motor nucleus of the vagus and over the parvocellular component of the nucleus of the solitary tract. A number of intra-amygdaloid connections between the basal and lateral nuclei of the amygdala and the central nucleus are also described. The present findings, taken together with recently reported widespread projections from the temporal association cortex to the amygdala, point out a potentially trisynaptic route between neocortical association regions and a variety of brainstem nuclei, many of which are related to autonomic function.  相似文献   

20.
The anatomical distribution of neuronal perikarya and nerve fibres containing FMRF-amide-like immunoreactivity in the brain, spinal cord and pituitary of the rat has been studied by immunohistochemistry. In animals pretreated with colchicine, the highest concentration of nerve cell bodies occurred in hypothalamic nuclei. Cells were also present in the cortex, striatum, septum, thalamus and in the brainstem. Beaded nerve fibres were abundant in the septum, nucleus of the striae terminalis, hypothalamus, medial regions of the thalamus, the parabrachial nucleus, the ventrolateral medulla, the substantia gelatinosa of the spinal trigeminal nucleus and the dorsal horn of the spinal cord. Fibres were also present in the cortex, striatum, amygdala, pons, ventral spinal cord and the neural lobe of the pituitary. The localization was specific in that preabsorbtion of the antisera with FMRF-amide, but not structurally related molecules such as Met-Enk-Arg6Phe7, APP or BPP, completely abolished the localization. The mammalian counterparts of FMRF-amide may have a neurotransmitter or neuromodulatory role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号