首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes the effects of six processing parameters on the release kinetics of a model drug Texas red dextran (TRD) from poly(propylene fumarate)/poly(lactic-co-glycolic acid) (PPF/PLGA) blend microspheres as well as the degradation of these microspheres. The microspheres were fabricated using a double emulsion-solvent extraction technique in which the following six parameters were varied: PPF/PLGA ratio, polymer viscosity, vortex speed during emulsification, amount of internal aqueous phase, use of poly(vinyl alcohol) in the internal aqueous phase, and poly(vinyl alcohol) concentration in the external aqueous phase. We have previously characterized these microspheres in terms of microsphere morphology, size distribution, and TRD entrapment efficiency. In this work, the TRD release profiles in phosphate-buffered saline were determined and all formulations showed an initial burst release in the first 2 days followed by a decreased sustained release over a 38-day period. The initial burst release varied from 5.1 (+/-1.1) to 67.7 (+/-3.4)% of the entrapped TRD, and was affected most by the viscosity of the polymer solution used for microsphere fabrication. The sustained release between day 2 and day 38 ranged from 7.9 (+/-0.8) to 27.2 (+/-3.1)% of the entrapped TRD. During 11 weeks of in vitro degradation, the mass of the microspheres remained relatively constant for the first 3 weeks after which it decreased dramatically, whereas the molecular weight of the polymers decreased immediately upon placement in phosphate-buffered saline. Increasing the PPF content in the PPF/PLGA blend resulted in slower microsphere degradation. Overall, this study provides further understanding of the effects of various processing parameters on the release kinetics from PPF/PLGA blend microspheres thus allowing modulation of drug release to achieve a wide spectrum of release profiles.  相似文献   

2.
He S  Yaszemski MJ  Yasko AW  Engel PS  Mikos AG 《Biomaterials》2000,21(23):2389-2394
New injectable, in situ crosslinkable biodegradable polymer composites were investigated consisting of poly(propylene fumarate) (PPF), poly(ethylene glycol)-dimethacrylate (PEG-DMA), and beta-tricalcium phosphate (beta-TCP). We examined the effects of the PEG-DMA/PPF double-bond ratio and beta-TCP content on the crosslinking characteristics of the composites including the maximum crosslinking temperature and the gel point, as well as the properties of the crosslinked composites such as the compressive strength and modulus, and the water-holding capacity. The maximum crosslinking temperature was constant averaging 39.7 degrees C for the composite formulations tested. The gel points varied from 8.0 +/- 1.0 to 12.6 +/- 2.5 min and were not affected by the relative amounts of PEG-DMA. The compressive strength at yield of PEG-DMA/PPF composites without beta-TCP increased from 5.9 +/- 1.0 to 11.2 +/- 2.2 MPa as the double-bond ratio of PEG-DMA/PPF increased from 0.38 to 1.88. An increase in compressive modulus was also observed from 30.2 +/- 3.5 to 58.4 +/- 6.2 MPa for the same range of the PEG-DMA/PPF double-bond ratio. Also, the addition of beta-TCP (33 wt%) enhanced the mechanical properties of all composites. The equilibrium water content of networks without beta-TCP increased from 21.7 +/- 0.2 to 30.6 +/- 0.2% for a double-bond ratio of PEG-DMA/PPF ranging from 0.38 to 1.88. However, the mechanical properties of the swollen composites under compression were smaller than the dry ones. These data demonstrate the feasibility of fabricating injectable biodegradable polymer composites with engineered mechanical properties for orthopedic tissue engineering.  相似文献   

3.
Peter SJ  Lu L  Kim DJ  Mikos AG 《Biomaterials》2000,21(12):1207-1213
The objective of this study was to assess the osteoconductivity of a poly(propylene fumarate)/beta-tricalcium phosphate (PPF/beta-TCP) composite in vitro. We examined whether primary rat marrow stromal cells would attach, proliferate, and express differentiated osteoblastic function when seeded on PPF/beta-TCP substrates. Attachment studies showed that a confluent monolayer of cells had adhered to the substrates within an 8 h time frame for marrow stromal cells seeded at confluent numbers. Proliferation and differentiated function of the cells were then investigated for a period of 4 weeks for an initial seeding density of 42,000 cells/cm2. Rapid proliferation during the first 24 h as determined by 3H-thymidine incorporation was mirrored by an initial rapid increase in total cell number by DNA assay. A lower proliferation rate and a gradual increase in cell number persisted for the remainder of the study, resulting in a final cell number of 128,000 cells/cm2. Differentiated cell function was assessed by measuring alkaline phosphatase (ALP) activity and osteocalcin (OC) production throughout the time course. Both markers of osteoblastic differentiation increased significantly over a 4-week period. By day 28, cells grown on PPF/beta-TCP reached a maximal ALP activity of 11 (+/- 1) x 10(-7) micromol/min/cell, while the OC production reached 40 (+/- 1) x 10(-6) ng/cell. These data show that a PPF/beta-TCP composite exhibits in vitro osteoconductivity similar to or better than that of control tissue culture polystyrene.  相似文献   

4.
In-situ preparation of poly(propylene fumarate)--hydroxyapatite composite   总被引:1,自引:0,他引:1  
Hakimimehr D  Liu DM  Troczynski T 《Biomaterials》2005,26(35):7297-7303
In-situ precipitation of hydroxyapatite (HAp) in the presence of poly(propylene fumarate) (PPF) is investigated. Amorphous calcium phosphate (ACP) precipitates in the presence of the polymer and remains in the amorphous form for a relatively long time, e.g. even after 24 h of coexistence with the mother solution. Our observations suggest that PPF interacts with the surface of the ACP particles and prevents them from transformation to crystalline hydroxyapatite. The PPF polymer seems to be more efficient in hindering the ACP to HAp transformation at higher pH conditions. From spectroscopic observations we hypothesize that the C=O bond of the PPF molecules interact with the calcium ion of the ACP particles. In case of low molecular weight PPF this interaction may lead to the incorporation of the polymer within the growing ACP particles.  相似文献   

5.
Biodegradable networks of poly(propylene fumarate) (PPF) and the crosslinking reagent poly(propylene fumarate)-diacrylate (PPF-DA) were prepared with thermal- and photo-initiator systems. Thermal-crosslinking was performed with benzoyl peroxide (BP), which is accelerated by N,N-dimethyl-p-toluidine (DMT) and enables injection and in situ polymerization. Photo-crosslinking was accomplished with bis(2,4,6-trimethylbenzoyl) phenylphosphine oxide (BAPO), which is activated by long-wavelength UV light and facilitates material processing with rapid manufacturing techniques, such as stereolithography. Networks were evaluated to assess the effects of the initiators and the PPF/PPF-DA double bond ratio on the mechanical properties. Regardless of the initiator system, the compressive properties of the PPF/PPF-DA networks increased as the double bond ratio decreased from 2 to 0.5. BAPO/UV-initiated networks were significantly stronger than those formed with BP/DMT. The compressive modulus of the photo- and thermal-crosslinked PPF/PPF-DA networks ranged from 310 +/- 25 to 1270 +/- 286 MPa and 75 +/- 8 to 332 +/- 89 MPa, respectively. The corresponding fracture strengths varied from 58 +/- 7 to 129 +/- 17 MPa and 31 +/- 13 to 105 +/- 12 MPa. The mechanical properties were not affected by the initiator concentration. Characterization of the network structures indicated that BAPO was a more efficient initiator for the crosslinking of PPF/PPF-DA, achieving a higher double bond conversion and crosslinking density than its BP counterpart. Estimated average molecular weights between crosslinks (Mc) confirmed the effects of the initiators and PPF/PPF-DA double bond ratio on the mechanical properties. This work demonstrates the capability to control the properties of PPF/PPF-DA networks as well as their versatility to be used as an injectable material or a prefabricated implant.  相似文献   

6.
Biodegradable hydrogels (FPBe-G) were synthesized by the photopolymerization of two precursors: FPBe, a fumurate-based unsaturated poly(ester amide) (UPEA), and poly(ethylene glycol) diacrylate (PEG-DA). Depending on the feed ratio of these two precursors, the resultant FPBe-G hydrogels showed different crosslinking levels of network structure, mesh sizes (ξ) and matrix morphology. When a lipophilic drug, paclitaxel, was preloaded into FPBe-G hydrogels, the two-month drug-release kinetics from FPBe-G hydrogels in both pure PBS buffer and α-chymotrypsin media were measured. The paclitaxel-preloaded FPBe-G hydrogels in a α-chymotrypsin solution had significantly faster drug release rate than the corresponding hydrogels in a pure PBS buffer due to an enzyme catalyzed biodegradation of FPBe-G hydrogels. Sustained paclitaxel releases over a two-month period without initial burst release were also achieved by using hydrogels having certain feed ratios of hydrogel precursors. These paclitaxel release data correlated well with the molecular mesh size (ξ), molecular weight between cross-links (M c) and matrix morphological structure of FPBe-G hydrogels.  相似文献   

7.
Biodegradable hydrogels (FPBe-G) were synthesized by the photopolymerization of two precursors: FPBe, a fumurate-based unsaturated poly(ester amide) (UPEA), and poly(ethylene glycol) diacrylate (PEG-DA). Depending on the feed ratio of these two precursors, the resultant FPBe-G hydrogels showed different crosslinking levels of network structure, mesh sizes (xi) and matrix morphology. When a lipophilic drug, paclitaxel, was preloaded into FPBe-G hydrogels, the two-month drug-release kinetics from FPBe-G hydrogels in both pure PBS buffer and alpha-chymotrypsin media were measured. The paclitaxel-preloaded FPBe-G hydrogels in a alpha-chymotrypsin solution had significantly faster drug release rate than the corresponding hydrogels in a pure PBS buffer due to an enzyme catalyzed biodegradation of FPBe-G hydrogels. Sustained paclitaxel releases over a two-month period without initial burst release were also achieved by using hydrogels having certain feed ratios of hydrogel precursors. These paclitaxel release data correlated well with the molecular mesh size (xi), molecular weight between cross-links (M(c)) and matrix morphological structure of FPBe-G hydrogels.  相似文献   

8.
We investigated the crosslinking characteristics of an injectable composite paste of poly(propylene fumarate) (PPF), N-vinyl pyrrolidinone (N-VP), benzoyl peroxide (BP), sodium chloride (NaCl), and beta-tricalcium phosphate (beta-TCP). We examined the effects of PPF molecular weight, N-VP/PPF ratio, BP/PPF ratio, and NaCl weight percent on the crosslinking temperature, heat release upon crosslinking, gel point, and the composite compressive strength and modulus. The maximum crosslinking temperature did not vary widely among formulations, with the absolute values falling between 38 degrees and 48 degrees C, which was much lower than that of 94 degrees C for poly(methyl methacrylate) bone cement controls tested under the same conditions. The total heat released upon crosslinking was decreased by an increase in PPF molecular weight and a decrease in N-VP/PPF ratio. The gel point was affected strongly by the PPF molecular weight, with a decrease in PPF molecular weight more rapidly leading to a gel point. An increase in initiator concentration had the same effect to a lesser degree. The time frame for curing was varied from 1-121 min, allowing the composite to be tailored to specific applications. The compressive strength and compressive modulus values increased with decreasing N-VP/PPF, increasing NaCl content, and increasing BP/PPF ratio. For all formulations, the compressive strength values fell between 1 and 12 MPa, and the compressive modulus values fell between 23 and 265 MPa. These data suggest that injectable PPF/beta-TCP pastes can be prepared with handling characteristics appropriate for clinical orthopedic applications and that the mechanical properties of the cured composites are suitable for trabecular bone replacement.  相似文献   

9.
A biodegradable microsphere/scaffold composite based on the synthetic polymer poly(propylene fumarate) (PPF) holds promise as a scaffold for cell growth and sustained delivery vehicle for growth factors for bone regeneration. The objective of the current work was to investigate the in vitro release and in vivo bone forming capacity of this microsphere/scaffold composite containing bone morphogenetic protein-2 (BMP-2) in combination with autologous bone marrow stromal cells (BMSCs) in a goat ectopic implantation model. Three composites consisting of 0, 0.08, or 8 microg BMP-2 per mg of poly(lactic-co-glycolic acid) microspheres, embedded in a porous PPF scaffold, were combined with either plasma (no cells) or culture-expanded BMSCs. PPF scaffolds impregnated with a BMP-2 solution and combined with BMSCs as well as empty PPF scaffolds were also tested. The eight different composites were implanted subcutaneously in the dorsal thoracolumbar area of goats. Incorporation of BMP-2-loaded microspheres in the PPF scaffold resulted in a more sustained in vitro release with a lower burst phase, as compared to BMP-2-impregnated scaffolds. Histological analysis after 9 weeks of implantation showed bone formation in the pores of 11/16 composites containing 8 microg/mg BMP-2-loaded microspheres with no significant difference between composites with or without BMSCs (6/8 and 5/8, respectively). Bone formation was also observed in 1/8 of the BMP-2-impregnated scaffolds. No bone formation was observed in the other conditions. Overall, this study shows the feasibility of bone induction by BMP-2 release from microspheres/scaffold composites.  相似文献   

10.
This study investigated the in vivo degradation of poly(propylene fumarate) (PPF)/poly(DL-lactic-co-glycolic acid) (PLGA) composite scaffolds designed for controlled release of osteogenic factors. PPF/PLGA composites were implanted into 15.0mm segmental defects in the rabbit radius, harvested after 12 and 18 weeks, and analyzed using histological techniques to assess the extent of polymer degradation as well as the tissue response within the pores of the scaffolds. Polymer degradation was limited to micro-fragmentation of the scaffold at the ends and edges of the implant at both 12 and 18 weeks. The tissue within the pores of the scaffold consisted of fibrous tissue, blood vessels and some inflammatory cells. In areas where polymer breakdown was evident, an increased inflammatory response was observed. In contrast, areas of bone ingrowth into the polymer scaffold were characterized by minimal inflammatory response and polymer degradation. Our results show that minimal degradation of porous PPF occurs within 18 weeks of implantation in a rabbit model. Further, the in vivo degradation data of porous PPF/PLGA scaffolds are comparable with earlier obtained in vitro data.  相似文献   

11.
This study investigated the in vitro degradation of porous poly(propylene fumarate) (PPF-based) composites incorporating microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) during a 26-week period in pH 7.4 phosphate-buffered saline at 37 degrees C. Using a fractional factorial design, four formulations of composite scaffolds were fabricated with varying PEG content of the microparticles, microparticle mass fraction of the composite material, and initial leachable porogen content of the scaffold formulations. PPF scaffolds without microparticles were fabricated with varying leachable porogen content for use as controls. The effects of including PLGA/PEG microparticles in PPF scaffolds and the influence of alterations in the composite formulation on scaffold mass, geometry, water absorption, mechanical properties and porosity were examined for cylindrical specimens with lengths of 13 mm and diameters of 6.5 mm. The composite scaffold composition affected the extent of loss of polymer mass, scaffold length, and diameter, with the greatest loss of polymer mass equal to 15+/-5% over 26 weeks. No formulation, however, exhibited any variation in compressive modulus or peak compressive strength over time. Additionally, sample porosity, as determined by both mercury porosimetry and micro-computed tomography did not change during the period of this study. These results demonstrate that microparticle carriers can be incorporated into PPF scaffolds for localized delivery of bioactive molecules without altering scaffold mechanical or structural properties up to 26 weeks in vitro.  相似文献   

12.
Fisher JP  Dean D  Mikos AG 《Biomaterials》2002,23(22):4333-4343
The development of tissue engineered materials for the treatment of large bone defects would provide attractive alternatives to the autografts, allografts, non-degradable polymers, ceramics, and metals that are currently used in clinical settings. To this end, poly(propylene fumarate) (PPF), a viscous polyester synthesized from diethyl fumarate (DEF), has been studied for use as an engineered bone graft. We have investigated the photocrosslinking of PPF dissolved in its precursor, DEF, using the photoinitiator bis(2,4,6-trimethylbenzoyl) phenylphosphine oxide (BAPO) and low levels of ultraviolet light exposure. A three factor, 2 x 2 x 4 factorial design was developed, studying the effects of PPF number average molecular weight, BAPO initiator content, and DEF content upon photocrosslinking characteristics and mechanical properties. Uncured DEF/PPF solution viscosity fell over three orders of magnitude as DEF content was increased from 0% to 75%. The exothermic photocrosslinking reaction released low levels of heat, with no more than 160J/g released from any formulation tested. As a result, the maximum photocrosslinking temperature remained below 47 degrees C for all samples. Both sol fraction and swelling degree generally increased with increasing DEF content. Compressive mechanical properties were within the range of trabecular bone, with the strongest samples possessing an elastic modulus of 195.3 +/- 17.5 MPa and a fracture strength of 68.8 +/- 9.4MPa. Finally, the results indicate that PPF crosslinking was facilitated at low DEF precursor concentrations, but hindered at higher precursor concentrations. These novel DEF/PPF solutions may be preferred over pure PPF as the basis for an engineered bone graft because they (1) exhibit reduced viscosity and thus are easily handled, (2) form polymer networks with compressive strength at fracture suitable for consideration for trabecular bone replacement, and (3) may be readily fabricated into solids with a wide range of structures.  相似文献   

13.
This pilot study investigates the osseointegration of four types of critical-size (1.5-cm diameter) rabbit cranial defect (n = 35) bone graft scaffolds. The first is a solid poly(propylene fumarate)/beta-tricalcium phosphate(PPF/beta-TCP) disk; the three remaining constructs contain a PPF/beta-TCP core coated with a 1-mm resorptive porous foam layer of PPF or PLGA [poly(DL-lactic-co-glycolic acid)], and bone marrow. Animals were killed at 6, 12, and 20 weeks. There was no evidence of a foreign body inflammatory response at any time during the study. Histomorphometric analyses of new bone formation sorted lineal and areal measures of new bone into three cranial layers (i.e., external, middle, and internal). Statistical analyses revealed significantly more bone in the PLGA foam-coated constructs than in the PPF foam-coated constructs (p < 0.03). No implant fixation was used; there is no strength at time 0. Twenty percent of all explants were tested for incorporation strength with a one-point "push-in" test, and failure ranged from 8.3 to 34.7 lb. The results of this study support the use of PPF as a biocompatible material that provides both a structural and osteogenic substrate for the repair of cranial defects.  相似文献   

14.
Polymeric networks of poly(propylene fumarate) (PPF) crosslinked with poly(propylene fumarate)-diacrylate (PPF-DA) are currently being investigated as an injectable, biodegradable bone cement. This study examined the effect of crosslinking density, medium pH, and the incorporation of a beta-tricalcium phosphate (beta-TCP) filler on the in vitro degradation of PPF/PPF-DA. Cylindrical specimens were submerged in buffered saline at 37 degrees C and the change in weight, geometry, and compressive mechanical properties were monitored over a 52-week period. All formulations showed an initial increase in modulus and yield strength over the first 12 weeks, achieving maxima of 1307+/-101 and 51+/-3MPa, respectively, for the beta-TCP composite. PPF/PPF-DA networks with the lower crosslinking density demonstrated the greatest degradation with a 17% mass loss. Samples in the lower buffer pH 5.0 compared to physiological pH 7.4 did not show any differences in mass loss, but exhibited a faster decrease in the compressive strength over time. The beta-TCP composites maintained their mechanical properties at the level following their initial increase. These results show that the degradation of PPF/PPF-DA networks can be controlled by the crosslinking density, accelerated at a lower pH, and prolonged with the incorporation of the beta-TCP filler.  相似文献   

15.
BACKGROUND: Poly(propylene fumarate) (PPF) can crosslink at room temperature, and β-tricalcium phosphate (β-TCP) has good biocompatibility, but PPF/β-TCP composite bone cement has not yet been systematically studied. OBJECTIVE: To prepare PPF/β-TCP composite bone cement and to explore its in vitro bioactivity and degradability. METHODS: β-TCP and PPF were respectively synthesized by liquid-phase precipitation and a two-step method, and PPF/β-TCP composite bone cement was prepared through mixing PPF with β-TCP. The    in vitro bioactivity of PPF/β-TCP was compared with the commercial poly(methyl methacrylate) (PMMA) through the ability of forming hydroxyapatite after immersed in simulated body fluid for 7 days. The in vitro degradability of PPF/β-TCP was studied via investigating the transformation of pH values, water uptake and mass loss, compressive strength and morphology at each time point. RESULTS AND CONCLUSION: There were hydroxyapatites formed on the PPF/β-TCP material, but none on the commercial PMMA material. The pH values of the PPF/β-TCP were stable in PBS for 63 days, indicating its degradation is moderate; the mass loss was up to 13.5% after 84 days. Scanning electron microscope displayed the degraded PPF/β-TCP surface, and its compressive strength was decreased gradually, which good for the integrity and sustainability of mechanical properties during degradation. These results suggest that PPF/β-TCP bone cement holds mineralization and degradability in vitro.  相似文献   

16.
We developed poly(propylene fumarate)/poly(lactic-co-glycolic acid) (PPF/PLGA) blend microspheres and investigated the effects of various processing parameters on the characteristics of these microspheres. The advantage of these blend microspheres is that the carbon-carbon double bonds along the PPF backbone could be used for their immobilization in a PPF scaffold. Microspheres containing the model drug Texas red dextran were fabricated using a double emulsion-solvent extraction technique. The effects of the following six processing parameters on the microsphere characteristics were investigated: PPF/PLGA ratio, polymer viscosity, vortex speed during emulsification, amount of internal aqueous phase, use of poly(vinyl alcohol) (PVA) in the internal aqueous phase, and PVA concentration in the external aqueous phase. Our results showed that the microsphere surface morphology was affected most by the viscosity of the polymer solution. Microspheres fabricated with a kinematic viscosity of 39 centistokes had a smooth, nonporous surface. In most microsphere formulations, the model drug was dispersed uniformly in the polymer matrix. For all fabricated formulations, the average microsphere diameter ranged between 19.0 and 76.9 microm. The external PVA concentration and vortex speed had most effect on the size distribution. Entrapment efficiencies varied from 60 to 98% and were most affected by the amount of internal aqueous phase, vortex speed, and polymer viscosity. Overall, we demonstrated the ability to fabricate PPF/PLGA blend microspheres with similar surface morphology, entrapment efficiency, and size distribution as conventional PLGA microspheres.  相似文献   

17.
This study sought to develop an injectable formulation for long-term ocular delivery of fluocinolone acetonide (FA) by dissolving the anti-inflammatory drug and the biodegradable polymer poly(propylene fumarate) (PPF) in the biocompatible, water-miscible, organic solvent N-methyl-2-pyrrolidone (NMP). Upon injection of the solution into an aqueous environment, a FA-loaded PPF matrix is precipitated in situ through the diffusion/extraction of NMP into surrounding aqueous fluids. Fabrication of the matrices and in vitro release studies were performed in phosphate buffered saline at 37 degrees C. Drug loadings up to 5% were achieved. High performance liquid chromatography was employed to determine the released amount of FA. The effects of drug loading, PPF content of the injectable formulation, and additional photo-crosslinking of the matrix surface were investigated. Overall, FA release was sustained in vitro over up to 400 days. After an initial burst release of 22 to 68% of initial FA loading, controlled drug release driven by diffusion and bulk erosion was observed. Drug release rates in a therapeutic range were demonstrated. Release kinetics were found to be dependent on drug loading, formulation PPF content, and extent of surface crosslinking. The results suggest that injectable, in situ formed PPF matrices are promising candidates for the formulation of long-term, controlled delivery devices for intraocular drug delivery.  相似文献   

18.
Kim HW  Knowles JC  Kim HE 《Biomaterials》2004,25(7-8):1279-1287
Hydroxyapatite (HA) porous scaffold was coated with HA and polycaprolactone (PCL) composites, and antibiotic drug tetracycline hydrochloride was entrapped within the coating layer. The HA scaffold obtained by a polymeric reticulate method, possessed high porosity ( approximately 87%) and controlled pore size (150-200 microm). Such a well-developed porous structure facilitated usage in a drug delivery system due to its high surface area and blood circulation efficiency. The PCL polymer, as a coating component, was used to improve the brittleness and low strength of the HA scaffold, as well to effectively entrap the drug. To improve the osteoconductivity and bioactivity of the coating layer, HA powder was hybridized with PCL solution to make the HA-PCL composite coating. With alteration in the coating concentration and HA/PCL ratio, the morphology, mechanical properties, and biodegradation behavior were investigated. Increasing the concentration rendered the stems thicker and some pores to be clogged; as well increasing the HA/PCL ratio made the coating surface be rough due to the large amount of HA particles. However, for all concentrations and compositions, uniform coatings were formed, i.e., with the HA particles being dispersed homogeneously in the PCL sheet. With the composite coating, the mechanical properties, such as compressive strength and elastic modulus were improved by several orders of magnitude. These improvements were more significant with thicker coatings, while little difference was observed with the HA/PCL ratio. The in vitro biodegradation of the composite coatings in the phosphate buffered saline solution increased linearly with incubation time and the rate differed with the coating concentration and the HA/PCL ratio; the higher concentration and HA amount caused the increased biodegradation. At short period (<2 h), about 20-30% drug was released especially due to free drug at the coating surface. However, the release rate was sustained for prolonged periods and was highly dependent on the degree of coating dissolution, suggesting the possibility of a controlled drug release in the porous scaffold with HA+PCL coating.  相似文献   

19.
This study was designed to assess in vivo bone and soft tissue behavior of novel oligo(poly(ethylene glycol) fumarate) (OPF) hydrogels using a rabbit model. In vitro degradation of the OPF hydrogels was also investigated in order to compare with in vivo characteristics. Four groups of OPF hydrogel implants were synthesized by alternation of crosslinking density, poly(ethylene glycol) (PEG) block length of OPF, and cell-binding peptide content. The in vitro degradation rate of OPF hydrogels increased with decreasing crosslinking density of hydrogels, which was characterized by measuring weight loss and swelling ratio of hydrogels and medium pH change. Examination of histological sections of the subcutaneous and cranial implants showed that an uniform thin circumferential fibrous capsule was formed around the OPF hydrogel implants. Quantitative evaluation of the tissue response revealed that no statistical difference existed in capsule quality or thickness between implant groups, implantation sites or implantation times. At 4 weeks, there was a very limited number of inflammatory and multinuclear cells at the implant-fibrous capsule interface for all implants. However, at 12 weeks, OPF hydrogels with PEG block length of number average molecular weight 6090+/-90 showed extensive surface erosion and superficial fragmentation that was surrounded by a number of inflammatory cells, while OPF hydrogels with PEG block length of number average molecular weight 930+/-10 elicited minimal degradation. Constant fibrous capsule layers and number of inflammatory cells were observed regardless of the incorporation of cell-binding peptide and crosslinking density of OPF hydrogels with PEG block length of number average molecular weight 930+/-90. These results confirm that the degradation of implants can be controlled by tailoring the macromolecular structure of OPF hydrogels. Additionally, histological evaluation of implants proved that the OPF hydrogel is a promising material for biodegradable scaffolds in tissue engineering.  相似文献   

20.
The use of bone grafts for orthopedic applications have increased steadily over the past decade. With improvements in surgical technique, combined with an increasing aged population requiring orthopedic treatment, the need for bone grafts substitutes have also increased. To be useful clinically, the bone graft substitute must be biocompatible, bioabsorbable, and have convenient handling properties. In addition, it must possess a microarchitecture that allows cellular ingrowth and remodeling while simultaneously providing mechanical strength. Poly(propylene fumarate) (PPF) has been investigated as an injectable, biodegradable scaffold for orthopedic applications. Various methods to create a porous, interconnected polymer scaffold are available. The foaming technique is a convenient method to accomplish this task. Reactions between bicarbonate salts and weak acids generate CO(2) gas, causing a bubbling reaction during the polymerization process. This technique allows the porosity of the scaffold to be modulated. Image analysis and mechanical testing of porous PPF fabricated using the foaming technique shows that a highly porous, interconnected scaffold can be produced. At approximately 50% porosity, the scaffold has excellent handling properties, contains pore sizes ranging from 50 to 500 mum with an elastic modulus ranging from 20 to 40 MPa. The foaming technique provides an additional method by which clinically useful polymers can be fabricated for use in various bone tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号