首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effects of muscle mechanoreflex stimulation by passive calf muscle stretch, at rest and during concurrent muscle metaboreflex activation, on carotid baroreflex (CBR) sensitivity. Twelve subjects either performed 1.5 min one-legged isometric plantarflexion at 50% maximal voluntary contraction with their right or left calf [two ischaemic exercise (IE) trials, IER and IEL] or rested for 1.5 min [two ischaemic control (IC) trials, ICR and ICL]. Following exercise, blood pressure elevation was partly maintained by local circulatory occlusion (CO). 3.5 min of CO was followed by 3 min of CO with passive stretch (STR-CO) of the right calf in all trials. Carotid baroreflex function was assessed using rapid pulses of neck pressure from +40 to −80 mmHg. In all IC trials, stretch did not alter maximal gain of carotid–cardiac (CBR–HR) and carotid–vasomotor (CBR–MAP) baroreflex function curves. The CBR–HR curve was reset without change in maximal gain during STR-CO in the IEL trial. However, during the IER trial maximal gain of the CBR–HR curve was smaller than in all other trials (−0.34 ± 0.04 beats min−1 mmHg−1 in IER versus −0.76 ± 0.20, −0.94 ± 0.14 and −0.66 ± 0.18 beats min−1 mmHg−1 in ICR, IEL and ICL, respectively), and significantly smaller than in IEL ( P < 0.05). The CBR–MAP curves were reset from CO values by STR-CO in the IEL and IER trials with no changes in maximal gain. These results suggest that metabolite sensitization of stretch-sensitive muscle mechanoreceptive afferents modulates baroreflex control of heart rate but not blood pressure.  相似文献   

2.
Slow relaxation from an isometric contraction is characteristic of acutely fatigued muscle and is associated with a decrease in the maximum velocity of unloaded shortening ( V max) and both these phenomena might be due to a decreased rate of cross bridge detachment. We have compared the change in relaxation rate with that of various parameters of the force–velocity relationship over the course of an ischaemic series of fatiguing contractions and subsequent recovery using the human adductor pollicis muscle working in vivo at approximately 37°C in nine healthy young subjects. Maximal isometric force ( F 0) decreased from 91.0 ± 1.9 to 58.3 ± 3.5 N (mean ± s.e.m. ). Maximum power decreased from 53.6 ± 4.0 to 17.7 ± 1.2 (arbitrary units) while relaxation rate declined from −10.3 ± 0.38 to −2.56 ± 0.29 s−1. V max showed a smaller relative change from 673 ± 20 to 560 ± 46 deg s−1 and with a time course that differed markedly from that of slowing of relaxation, showing very little change until late in the series of contractions. Curvature of the force–velocity relationship increased ( a/F 0 decreasing from 0.22 ± 0.02 to 0.11 ± 0.02) with fatigue and with a time course that was similar to that of the loss of power and the slowing of relaxation. It is concluded that for human muscle working at a normal physiological temperature the change in curvature of the force–velocity relationship with fatigue is a major cause of loss of power and may share a common underlying mechanism with the slowing of relaxation from an isometric contraction.  相似文献   

3.
We sought to quantify the contribution of cardiac output ( Q ) and total vascular conductance (TVC) to carotid baroreflex (CBR)-mediated changes in mean arterial pressure (MAP) during mild to heavy exercise. CBR function was determined in eight subjects (25 ± 1 years) at rest and during three cycle exercise trials at heart rates (HRs) of 90, 120 and 150 beats min−1 performed in random order. Acute changes in carotid sinus transmural pressure were evoked using 5 s pulses of neck pressure (NP) and neck suction (NS) from +40 to −80 Torr (+5.33 to −10.67 kPa). Beat-to-beat changes in HR and MAP were recorded throughout. In addition, stroke volume (SV) was estimated using the Modelflow method, which incorporates a non-linear, three-element model of the aortic input impedance to compute an aortic flow waveform from the arterial pressure wave. The application of NP and NS did not cause any significant changes in SV either at rest or during exercise. Thus, CBR-mediated alterations in Q were solely due to reflex changes in HR. In fact, a decrease in the carotid-HR response range from 26 ± 7 beats min−1 at rest to 7 ± 1 beats min−1 during heavy exercise (   P = 0.001  ) reduced the contribution of Q to the CBR-mediated change in MAP. More importantly, at the time of the peak MAP response, the contribution of TVC to the CBR-mediated change in MAP was increased from 74 ± 14 % at rest to 118 ± 6 % (   P = 0.017  ) during heavy exercise. Collectively, these findings indicate that alterations in vasomotion are the primary means by which the CBR regulates blood pressure during mild to heavy exercise.  相似文献   

4.
The cardiovascular response to exercise with several groups of skeletal muscle implies that work with the legs may reduce arm blood flow. This study followed arm blood flow ( arm) and oxygenation on the transition from arm cranking (A) to combined arm and leg exercise (A+L). Seven healthy male subjects performed A at ∼80 % of maximum work rate ( W max) and A at ∼80 % W max combined with L at ∼60 % W max. A transition trial to volitional exhaustion was performed where L was added after 2 min of A. The arm was determined by constant infusion thermodilution in the axillary vein and changes in biceps muscle oxygenation were measured with near-infrared spectroscopy. During A+L arm was lowered by 0.38 ± 0.06 l min−1 (10.4 ± 3.3 %,   P < 0.05  ) from 2.96 ± 1.54 l min−1 during A. Total (HbT) and oxygenated haemoglobin (HbO2) concentrations were also lower. During the transition from A to A+L arm decreased by 0.22 ± 0.03 l min−1 (7.9 ± 1.8 %,   P < 0.05  ) within 9.6 ± 0.2 s, while HbT and HbO2 decreased similarly within 30 ± 2 s. At the same time mean arterial pressure and arm vascular conductance also decreased. The data demonstrate reduction in blood flow to active skeletal muscle during maximal whole body exercise to a degree that arm oxygen uptake and muscle tissue oxygenation are compromised.  相似文献   

5.
The stability of a physiological control system, such as the arterial baroreflex, depends critically upon both the magnitude (i.e. gain or sensitivity) and timing (i.e. latency) of the effector response. Although studies have examined resting arterial baroreflex sensitivity in older subjects, little attention has been given to the influence of ageing on the latency of peak baroreflex responses. First, we compared the temporal pattern of heart rate (HR) and mean arterial blood pressure (BP) responses to selective carotid baroreceptor (CBR) unloading and loading in 14 young (22 ± 1 years) and older (61 ± 1 years) subjects, using 5 s pulses of neck pressure (NP, +35 Torr) and neck suction (NS, −80 Torr). Second, CBR latency was assessed following pharmacological blockade of cardiac parasympathetic nerve activity in eight young subjects, to better understand how known age-related reductions in parasympathetic nerve activity influence CBR response latency. In response to NP, the time to the peak increase in HR and mean BP were similar in young and older groups. In contrast, in response to NS the time to peak decrease in HR (2.1 ± 0.2 vs. 3.8 ± 0.2 s) and mean BP (6.7 ± 0.4 vs. 8.3 ± 0.2 s) were delayed in older individuals (young vs. older, P < 0.05). The time to peak HR and mean BP were delayed in young subjects following cardiac parasympathetic blockade (glycopyrrolate). Collectively, these data suggest that ageing is associated with delayed peak cardiovascular responses to acute carotid baroreceptor loading that may be, in part, due to age-related reductions in cardiac parasympathetic tone.  相似文献   

6.
The renal medulla is sensitive to hypoxia, and a depression of medullary circulation, e.g. in response to angiotensin II (Ang II), could endanger the function of this zone. Earlier data on Ang II effects on medullary vasculature were contradictory. The effects of Ang II on total renal blood flow (RBF), and cortical and medullary blood flow (CBF and MBF: by laser-Doppler flux) were studied in anaesthetised rats. Ang II infusion (30 ng kg−1 min−1 i.v. ) decreased RBF 27 ± 2 % (mean ± s.e.m. ), whereas MBF increased 12 ± 2 % (both P < 0.001). Non-selective blockade of Ang II receptors with saralasin (3 μg kg−1 min−1 i.v. ) increased RBF 12 ± 2 % and decreased MBF 8 ± 2 % ( P < 0.001). Blockade of AT1 receptors with losartan (10 mg kg−1) increased CBF 10 ± 2 % ( P < 0.002) and did not change MBF. Losartan given during Ang II infusion significantly increased RBF (53 ± 7 %) and decreased MBF (27 ± 7 %). Blockade of AT2 receptors with PD 123319 (50 μg kg−1 min−1 i.v. ) did not change CBF or MBF. Intramedullary infusion of PD 123319 (10 μg min−1) superimposed on intravenous Ang II infusion did not change RBF, but slightly decreased MBF (4 ± 2 %, P < 0.05). We conclude that in anaesthetised surgically prepared rats, exogenous or endogenous Ang II may not depress medullary circulation. In contrast to the usual vasoconstriction in the cortex, vasodilatation was observed, possibly related to secondary activation of vasodilator paracrine agents rather than to a direct action via AT2 receptors.  相似文献   

7.
We hypothesized that inspiratory muscle training (IMT) would attenuate the sympathetically mediated heart rate (HR) and mean arterial pressure (MAP) increases normally observed during fatiguing inspiratory muscle work. An experimental group (Exp, n = 8) performed IMT 6 days per week for 5 weeks at 50% of maximal inspiratory pressure (MIP), while a control group (Sham, n = 8) performed IMT at 10% MIP. Pre- and post-training, subjects underwent a eucapnic resistive breathing task (RBT) (breathing frequency = 15 breaths min−1, duty cycle = 0.70) while HR and MAP were continuously monitored. Following IMT, MIP increased significantly ( P < 0.05) in the Exp group (−125 ± 10 to −146 ± 12 cmH2O; mean ± s.e.m. ) but not in the Sham group (−141 ± 11 to −148 ± 11 cmH2O). Prior to IMT, the RBT resulted in significant increases in HR (Sham: 59 ± 2 to 83 ± 4 beats min−1; Exp: 62 ± 3 to 83 ± 4 beats min−1) and MAP (Sham: 88 ± 2 to 106 ± 3 mmHg; Exp: 84 ± 1 to 99 ± 3 mmHg) in both groups relative to rest. Following IMT, the Sham group observed similar HR and MAP responses to the RBT while the Exp group failed to increase HR and MAP to the same extent as before (HR: 59 ± 3 to 74 ± 2 beats min−1; MAP: 84 ± 1 to 89 ± 2 mmHg). This attenuated cardiovascular response suggests a blunted sympatho-excitation to resistive inspiratory work. We attribute our findings to a reduced activity of chemosensitive afferents within the inspiratory muscles and may provide a mechanism for some of the whole-body exercise endurance improvements associated with IMT.  相似文献   

8.
We investigated the effect of baroreflex-induced sympathetic activation, produced by lower body negative pressure (LBNP) at −40 mmHg, on cerebrovascular responsiveness to hyper- and hypocapnia in healthy humans. Transcranial Doppler ultrasound was used to measure blood flow velocity (CFV) in the middle cerebral artery during variations in end-tidal carbon dioxide pressure ( P ET,CO2) of +10, +5, 0, −5, and −10 mmHg relative to eupnoea. The slopes of the linear relationships between P ET,CO2 and CFV were computed separately for hyper- and hypocapnia during the LBNP and no-LBNP conditions. LBNP decreased pulse pressure, but did not change mean arterial pressure. LBNP evoked an increase in ventilation that resulted in a 9 ± 2 mmHg decrease in P ET,CO2, which was corrected by CO2 supplementation of the inspired air. LBNP did not affect cerebrovascular CO2 response slopes during steady-state hypercapnia (3.14 ± 0.24 vs. 2.96 ± 0.26 cm s−1 mmHg−1) or hypocapnia (1.31 ± 0.18 vs. 1.32 ± 0.19 cm s−1 mmHg−1), or the CFV responses to voluntary apnoea (+51 ± 19 vs. +50 ± 18 %). Thus, cerebrovascular CO2 responsiveness was not altered by baroreflex-induced sympathetic activation. Our data challenge the concept that sympathetic activation restrains cerebrovascular responses to alterations in CO2 pressure.  相似文献   

9.
5-Hydroxytryptamine (5-HT; serotonin)-containing neurones contribute to reflex activation of parasympathetic outflow in a number of species, but the 5-HT receptors mediating these effects have yet to be fully determined. The present experiments demonstrate that central 5-HT7 receptors are involved in the vagal bradycardia evoked during the cardiopulmonary reflex, baroreflexes and the chemoreflex, as well as other autonomic changes caused by these reflexes. The experiments examined the effects of the selective 5-HT7 receptor antagonists SB-269970 and SB-656104 on these reflexes. For the cardiopulmonary reflex, when compared to time-matched vehicle control experiments, intracisternal application of SB-269970 (30–300 μg kg−1, i.c. ) dose-dependently attenuated the evoked bradycardia. At the highest dose, SB-269970 also attenuated the reflex hypotension and sympathoinhibition. The structurally different 5-HT7 receptor antagonist SB-656104 (100 μg kg−1, i.c. ) similarly attenuated the reflex bradycardia and hypotension. SB-269970 (100 μg kg−1, i.c. ) also attenuated the bradycardias evoked by electrical stimulation of aortic nerve afferents and the baroreflex evoked by the pressor response to phenylephrine (3–25 μg kg−1, i.v. ). The gain of the baroreflex was also significantly attenuated (0.15 ± 0.06 versus 0.34 ± 0.06 ms mmHg−1). Finally, SB-269970 (100 μg kg−1, i.c. ) significantly attenuated both the bradycardia and sympathoexcitation evoked by the chemoreflex. These data indicate that central 5-HT7 receptors play an important facilitatory role in the reflex activation of vagal outflow to the heart.  相似文献   

10.
Rapid Report     
Sympathetic vasoconstriction is blunted in the vascular beds of contracting skeletal muscles. We sought to determine whether this blunted vasoconstriction is specific for post-junctional α1- or α2-adrenergic receptors. We measured forearm blood flow (Doppler ultrasound) and calculated the vascular conductance (FVC) responses to brachial artery infusions of tyramine (which evokes endogenous noradrenaline release), phenylephrine (an α1 agonist) and clonidine (an α2 agonist) in 10 healthy men during rhythmic handgrip exercise (10-15 % of maximum) and during a control non-exercise vasodilator condition (intra-arterial adenosine). Steady-state FVC during exercise and adenosine was similar in all trials (range: 243-272 and 234-263 ml min−1 (100 mmHg)−1, respectively; P > 0.5). During exercise the percentage reductions in FVC in response to tyramine (−24 ± 7 vs. −55 ± 6 %), phenylephrine (−12 ± 8 vs. −37 ± 8 %) and clonidine (−17 ± 6 vs. −49 ± 4 %) were significantly less compared with adenosine (all P < 0.05). The magnitude of the blunted vasoconstrictor responses was similar for both receptor subtypes. These findings are in contrast to those from studies in animals demonstrating that α2-adrenergic receptor-mediated vasoconstrictor responses are much more sensitive to contraction-induced inhibition than α1-mediated responses. We conclude that vasoconstrictor responses mediated via both post-junctional α1- and α2-adrenergic receptors are blunted in contracting human skeletal muscles.  相似文献   

11.
We tested the hypotheses that (1) nitric oxide (NO) contributes to augmented skeletal muscle vasodilatation during hypoxic exercise and (2) the combined inhibition of NO production and adenosine receptor activation would attenuate the augmented vasodilatation during hypoxic exercise more than NO inhibition alone. In separate protocols subjects performed forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 ( n = 12), subjects received intra-arterial administration of saline (control) and the NO synthase inhibitor N G-monomethyl- l -arginine ( l -NMMA). In protocol 2 ( n = 10), subjects received intra-arterial saline (control) and combined l -NMMA–aminophylline (adenosine receptor antagonist) administration. Forearm vascular conductance (FVC; ml min−1 (100 mmHg)−1) was calculated from forearm blood flow (ml min−1) and blood pressure (mmHg). In protocol 1, the change in FVC (Δ from normoxic baseline) due to hypoxia under resting conditions and during hypoxic exercise was substantially lower with l -NMMA administration compared to saline (control; P < 0.01). In protocol 2, administration of combined l -NMMA–aminophylline reduced the ΔFVC due to hypoxic exercise compared to saline (control; P < 0.01). However, the relative reduction in ΔFVC compared to the respective control (saline) conditions was similar between l -NMMA only (protocol 1) and combined l -NMMA–aminophylline (protocol 2) at 10% (−17.5 ± 3.7 vs. −21.4 ± 5.2%; P = 0.28) and 20% (−13.4 ± 3.5 vs. −18.8 ± 4.5%; P = 0.18) hypoxic exercise. These findings suggest that NO contributes to the augmented vasodilatation observed during hypoxic exercise independent of adenosine.  相似文献   

12.
To reveal the role of clock genes in generating the circadian rhythm of baroreflexes, we continuously measured mean arterial pressure and baroreflex sensitivity in free-moving normal wild-type mice, and in Cry -deficient mice which lack a circadian rhythm, in constant darkness for 24 h. In wild-type mice the mean arterial pressure was higher at night than during the day, and was accompanied by a significantly enhanced baroreflex sensitivity of −13.6 ± 0.8 at night compared with −9.7 ± 0.7 beats min−1 mmHg−1 during the day ( P < 0.001). On the other hand, diurnal changes in arterial pressure disappeared in Cry -deficient mice with remarkably enhanced baroreflex sensitivity compared with wild-type mice ( P < 0.001): −21.9 ± 1.6 at night and −23.1 ± 2.1 beats min−1 mmHg−1 during the day. Moreover, the mean arterial pressure response to 10 μg kg−1 of phenylephrine, an α1-adrenoceptor agonist, was severely suppressed in Cry -deficient mice regardless of time, while that for the wild-type mice was 10.1 ± 1.9 mmHg in the night, significantly lower than 22.0 ± 3.5 mmHg in the day ( P < 0.01). These results suggest that CRY genes are involved in generating the circadian rhythm of baroreflex sensitivity, partially by regulating α1-adrenoceptor-mediated vasoconstriction in peripheral vessels.  相似文献   

13.
Acute inhibition of NO synthesis decreases left ventricular (LV) work and external efficiency, but it is unknown whether compensatory mechanisms can limit the alterations in LV mechanoenergetics after prolonged NO deficiency. Eight chronically instrumented male mongrel dogs received 35 mg kg−1 day−1 of N ω-nitro-L-arginine methyl ester orally for 10 days to inhibit NO synthesis. At spontaneous beating frequency, heart rate, coronary blood flow, peak LV pressure, end-diastolic LV pressure and the maximum derivative of LV pressure (d P /d t max) were not significantly different vs. baseline, whereas LV end-diastolic diameter (32.5 ± 1.0 vs. 37.6 ± 1.4 mm) and LV stroke work (515 ± 38 vs. 650 ± 44 mmHg mm), were reduced (all P < 0.05). The slope of the LV end-systolic pressure-diameter relationship was increased at 10 days vs. baseline (13.9 ± 1.0 vs. 9.6 ± 0.9 mmHg mm−1, P < 0.05), while the end-diastolic LV diameter was smaller at matched LV end-diastolic pressures. At fixed heart rate (130 beats min−1), cardiac oxygen consumption was increased (12.2 ± 1.5 vs. 9.9 ± 1.0 ml min−1), and the ratio between stroke work and oxygen consumption was decreased by 33 ±7 % (all P < 0.05) after NO inhibition. We conclude that sustained inhibition of NO synthesis in dogs causes a decrease in LV work despite an increased contractility, which is most probably due to reduced diastolic compliance and a decrease in external efficiency. Thus, prolonged NO deficiency is not compensated for on the level of LV mechanoenergetics in vivo .  相似文献   

14.
We investigated the functional roles of circulating and locally produced angiotensin II (Ang II) in fasting and postprandial adipose tissue blood flow (ATBF) regulation and examined the interaction between Ang II and nitric oxide (NO) in ATBF regulation. Local effects of the pharmacological agents (or contralateral saline) on ATBF, measured with 133Xe wash-out, were assessed using the recently developed microinfusion technique. Fasting and postprandial (75 g glucose challenge) ATBF regulation was investigated in nine lean healthy subjects (age, 29 ± 3 years; BMI, 23.4 ± 0.7 kg m−2) using local Ang II stimulation, Ang II type 1 (AT1) receptor blockade, and angiotensin-converting enzyme (ACE) inhibition. Furthermore, NO synthase (NOS) blockade alone and in combination with AT1 receptor blockade was used to examine the interaction between Ang II and NO. Ang II induced a dose-dependent decrease in ATBF (10−9 m : −16%, P = 0.04; 10−7 m : −33%, P < 0.01; 10−5 m : −53% P < 0.01). Fasting ATBF was not affected by ACE inhibition, but was increased by ∼55% ( P < 0.01) by AT1 receptor blockade. NOS blockade induced a ∼30% ( P = 0.001) decrease in fasting ATBF. Combined AT1 receptor and NOS blockade increased ATBF by ∼40% ( P = 0.003). ACE inhibition and AT1 receptor blockade did not affect the postprandial increase in ATBF. We therefore conclude that circulating Ang II is a major regulator of fasting ATBF, and a major proportion of the Ang II-induced decrease in ATBF is NO independent. Locally produced Ang II does not appear to regulate ATBF. Ang II appears to have no major effect on the postprandial enhancement of ATBF.  相似文献   

15.
Recent studies have shown that inhibition of angiotensin-converting enzyme (ACE) or angiotensin II receptors causes upregulation of the B1 receptor (B1R). Here we tested the hypothesis that activation of the B1R partly contributes to the cardiac beneficial effect of ACE inhibitor (ACEi) and angiotensin II receptor blockers (ARB). B1R knockout mice ( B1R−/− ) and C57Bl/6J (wild-type control animals, WT) were subjected to myocardial infarction (MI) by ligating the left anterior descending coronary artery. Three weeks after MI, each strain of mice was treated with vehicle, ACEi (ramipril, 2.5 mg kg−1 day−1 in drinking water) or ARB (valsartan, 40 mg kg−1 day−1 in drinking water) for 5 weeks. We found that: (1) compared with WT mice, B1R−/− mice that underwent sham surgery had slightly but significantly increased left ventricular (LV) diastolic dimension, LV mass and myocyte size, whereas systolic blood pressure, cardiac function and collagen deposition did not differ between strains; (2) MI leads to LV hypertrophy, chamber dilatation and dysfunction similarly in both WT and B1R−/− mice; and (3) ACEi and ARB improved cardiac function and remodelling in both strains; however, these benefits were significantly diminished in B1R−/− mice. Our data suggest that kinins, acting via the B1R, participate in the cardioprotective effects of ACEi and ARB.  相似文献   

16.
Oxytocinergic brainstem projections participate in the autonomic control of the circulation. We investigated the effects of hypertension and training on cardiovascular parameters after oxytocin (OT) receptor blockade within the nucleus tractus solitarii (NTS) and NTS OT and OT receptor expression. Male spontaneously hypertensive rats (SHR) and Wistar–Kyoto (WKY) rats were trained (55% of maximal exercise capacity) or kept sedentary for 3 months and chronically instrumented (NTS and arterial cannulae). Mean arterial blood pressure (MAP) and heart rate (HR) were measured at rest and during an acute bout of exercise after NTS pretreatment with vehicle or OT antagonist (20 pmol of OT antagonist (200 nl of vehicle)–1). Oxytocin and OT receptor were quantified (35S-oligonucleotide probes, in situ hybridization) in other groups of rats. The SHR exhibited high MAP and HR ( P < 0.05). Exercise training improved treadmill performance and reduced basal HR (on average −11%) in both groups, but did not change basal MAP. Blockade of NTS OT receptor increased exercise tachycardia only in trained groups, with a larger effect on trained WKY rats (+31 ± 9 versus +12 ± 3 beats min−1 in the trained SHR). Hypertension specifically reduced NTS OT receptor mRNA density (–46% versus sedentary WKY rats, P < 0.05); training did not change OT receptor density, but significantly increased OT mRNA expression (+2.5-fold in trained WKY rats and +15% in trained SHR). Concurrent hypertension- and training-induced plastic (peptide/receptor changes) and functional adjustments (HR changes) of oxytocinergic control support both the elevated basal HR in the SHR group and the slowing of the heart rate (rest and exercise) observed in trained WKY rats and SHR.  相似文献   

17.
Prolonged strenuous exercise has been associated with transient impairment in left ventricular (LV) systolic and diastolic function that has been termed 'cardiac fatigue'. It has been postulated that cardiac β-adrenoreceptor desensitization may play a central role; however, data are limited. Accordingly, we assessed the cardiovascular response to progressive dobutamine stimulation after prolonged strenuous exercise (2 km swim, 90 km bike, 21 km run). Nine experienced male athletes were studied: PRE (2–3 days before), POST (after) and REC (1–2 days later). The cardiovascular response to progressive continuous dobutamine stimulation (0, 5, 20, and 40 μg kg−1 min−1) was assessed, including heart rate (HR), systolic blood pressure (SBP), LV cavity areas (two-dimensional echocardiography) and contractility (end-systolic elastance, SBP/end-systolic cavity area (ESCA)). POST there was limited evidence of myocardial necrosis (measured by troponin I), while catecholamines were elevated. HR was higher POST (mean ± s.d. ; PRE, 58 ± 9; POST, 79 ± 9; REC, 57 ± 7 beats min−1; P < 0.05), while SBP was lower (PRE, 127 ± 15; POST, 116 ± 9; REC, 121 ± 12 mmHg; P < 0.05). A blunted HR, SBP and LV contractility (SBP/ESCA; PRE 29 ± 6 versus POST 20 ± 6 mmHg cm−2; P < 0.05) response to dobutamine was demonstrated POST, with values returning towards baseline in REC. Following prolonged strenuous exercise, the chronotropic and inotropic response to dobutamine stimulation is blunted. This study supports the hypothesis that beta-receptor downregulation and/or desensitization may play a major role in prolonged-strenuous-exercise-mediated cardiac fatigue.  相似文献   

18.
In normally active individuals, postexercise hypotension after a single bout of aerobic exercise is due to an unexplained peripheral vasodilatation. Histamine has been shown to be released during exercise and could contribute to postexercise vasodilatation via H1 receptors in the peripheral vasculature. The purpose of this study was to determine the potential contribution of an H1 receptor-mediated vasodilatation to postexercise hypotension. We studied 14 healthy normotensive men and women (ages 21.9 ± 2.1 years) before and through to 90 min after a 60 min bout of cycling at 60%     on randomized control and H1 receptor antagonist days (540 mg oral fexofenadine hydrochloride; Allegra). Arterial blood pressure (automated auscultation) and femoral blood flow (Doppler ultrasound) were measured in the supine position. Femoral vascular conductance was calculated as flow/pressure. Fexofenadine had no effect on pre-exercise femoral vascular conductance or mean arterial pressure ( P > 0.5). At 30 min postexercise on the control day, femoral vascular conductance was increased (Δ+33.7 ± 7.8%; P < 0.05 versus pre-exercise) while mean arterial pressure was reduced (Δ−6.5 ± 1.6 mmHg; P < 0.05 versus pre-exercise). In contrast, at 30 min postexercise on the fexofenadine day, femoral vascular conductance was not elevated (Δ+10.7 ± 9.8%; P = 0.7 versus pre-exercise) and mean arterial pressure was not reduced (Δ−1.7 ± 1.2 mmHg; P = 0.2 versus pre-exercise). Thus, ingestion of an H1 receptor antagonist markedly reduces vasodilatation after exercise and blunts postexercise hypotension. These data suggest H1 receptor-mediated vasodilatation contributes to postexercise hypotension.  相似文献   

19.
The purpose was to assess the validity of predicting peak oxygen uptake     from Ratings of Perceived Exertion (RPE)≤15, during a graded exercise test (GXT), in obese women. Forty-three obese women performed GXT to volitional exhaustion. During GXT, oxygen uptake     and RPE were measured. Individual linear regressions between     and RPE≤15 were extrapolated to RPE 20 in order to predict     . Actual and predicted     were not significantly different (13.9±3.0 vs 14.2±3.3 ml kg−1 min−1, respectively; p =.26). The Pearson product moment correlation between actual and predicted     was high ( r =0.82). The 95% limits of agreement analysis on these values (bias±1.96SD) was −0.3±3.7 ml kg−1 min−1. Results suggested that RPE≤15 elicited during a sub-maximal GXT provides accurate     prediction. Therefore, it is not necessary to perform GXT to voluntary exhaustion to determine     in obese women.  相似文献   

20.
In this study, we aimed to assess the ventilatory and cardiovascular responses to the combined activation of the muscle metaboreflex and the ventilatory chemoreflex, achieved by postexercise circulatory occlusion (PECO) and euoxic hypercapnia (end-tidal partial pressure of CO2 7 mmHg above normal), respectively. Eleven healthy subjects (4 women and 7 men; 29 ± 4.4 years old; mean ± s.d. ) undertook the following four trials, in random order: 2 min of isometric handgrip exercise followed by 2 min of PECO with hypercapnia; 2 min of isometric handgrip exercise followed by 2 min of PECO while breathing room air; 4 min of rest with hypercapnia; and 4 min of rest while breathing room air. Ventilation was significantly increased during exercise in both the hypercapnic (+3.17 ± 0.82 l min−1) and the room air breathing trials (+2.90 ± 0.26 l min−1; all P < 0.05). During PECO, ventilation returned to pre-exercise levels when breathing room air (+0.52 ± 0.37 l min−1; P > 0.05), but it remained elevated during hypercapnia (+3.77 ± 0.23 l min−1; P < 0.05). The results indicate that the muscle metaboreflex stimulates ventilation with concurrent chemoreflex activation. These findings have implications for disease states where effort intolerance and breathlessness are linked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号