首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of several parameters on the size of alginate beads produced by use of an electrostatic potential bead generator was examined. Parameters studied included needle diameter, electrostatic potential, alginate solution flow rate, gelling ion concentration and alginate concentration and viscosity, as well as alginate composition. Bead size was found to decrease with increasing electrostatic potential, but only down to a certain level. Minimum bead size was reached at between 2-4 kV/cm for the needles tested. The smallest alginate beads produced (using a needle with inner diameter 0.18 mm) had a mean diameter of ~300 #181;m. Bead size was also found to be dependent upon the flow rate of the fed alginate solution. Increasing the gelling ion concentration resulted in a moderate decrease in bead size. The concentration and viscosity of the alginate solution also had an effect on bead size as demonstrated by an increased bead diameter when the concentration or viscosity was increased. This effect was primarily an effect of the viscosity properties of the solution, which led to changes in the rate of droplet formation in the bead generator. Lowering the flow rate of the alginate solution could partly compensate for the increase in bead size with increased viscosity. For a constant droplet size, alginates with a low G block content (F GG #44 0.20) resulted in ~30% smaller beads than alginates with a high G block content (F GG #44 0.60). This is explained as a result of differences in the shrinking properties of the beads.  相似文献   

2.
Spherical alginate gel beads containing pindolol were prepared using three types of sodium alginate with different molecular size. The rate of gelation of sodium alginate in calcium chloride solution was in the range of 1.0 to 1.3 h-1 among the used three alginates, but the amount of water squeezed from the alginate gel beads during gelation increased from 5 to 40% with increasing molecular size of the alginate. The beads prepared were similar in diameter (1.2 mm after drying), weight (0.9 mg/bead), calcium content (27-29 micrograms/bead) and pindolol content (40-45%). Pindolol was rapidly released from all the alginate gel beads at pH 1.2 owing to the high solubility of pindolol, in spite of non-swelling of beads. On the other hand, pindolol release from alginate gel beads at pH 6.8 was dependent on the swelling of the beads and was significantly depressed compared to drug powder. Interestingly, the release rate of pindolol and the swelling rate of beads were markedly slow for gel beads prepared by low molecular size alginate. However, when the alginate gel beads were administered orally to beagle dogs, the serum levels of pindolol showed sustained-release profiles, depending on the molecular size of the alginate. The in vivo absorption of pindolol from alginate gel beads did not reflect their in vitro release profiles, because of a physical strength of beads in the intestinal tract. Furthermore, the in vivo and in vitro release of pindolol from alginate gel beads were compared with a commercial sustained-release tablet, Carvisken showed a rapid release of 50% of content in pH 1.2 fluid and residual 50% of pindolol were easily dissolved at pH 6.8. Although the release characteristics of pindolol from Carvisken and the alginate gel beads were completely different, the serum levels of pindolol in human volunteers were comparable.  相似文献   

3.
Ibuprofen-loaded alginate beads were prepared and found to optimize in vitro release with zero-order kinetics. The release of ibuprofen could be controlled by adding excipients or by adjusting the NaAlg/ibuprofen ratio.  相似文献   

4.
目的酮洛芬果胶钙凝胶小球和酮洛芬海藻酸钙凝胶小球的制备及性能比较。方法利用果胶、海藻酸钠及二者不同比例,以酮洛芬为模型药物采用滴制法制备凝胶小球,考察2种多糖物质对药物包封率和释放行为的影响。利用大鼠肠囊外翻实验对凝胶小球的生物黏附性能进行比较,通过对释放机理的探讨和凝胶小球溶胀性的测定进一步证明2种凝胶小球释药行为的不同。结果酮洛芬果胶钙凝胶小球和酮洛芬海藻酸钙凝胶小球均具有良好的生物黏附性能,果胶钙凝胶小球主要通过溶胀作用缓慢释药,而海藻酸钙凝胶小球的释药与凝胶小球慢慢吸水后骨架溶蚀有关。结论酮洛芬果胶钙凝胶小球和酮洛芬海藻酸钙凝胶小球通过与生物黏膜的紧密结合缓慢释药,而二者的释放行为有所不同。  相似文献   

5.
阿西美辛海藻酸钙凝胶微丸释药影响因素考察   总被引:1,自引:0,他引:1  
目的:考察阿西美辛海藻酸钙凝胶微丸的释药机制。方法:采用滴制法制备阿西美辛海藻酸钙微丸,考察海藻酸钠浓度,钙离子浓度,投药量,滴头直径大小对药物释放的影响。结果:海藻酸钠浓度增加,钙离子浓度增加,滴头直径增加,释药速率减慢。结论:在体外释放度实验中,阿西美辛海藻酸钙凝胶微丸具有良好的缓释作用,海藻酸钙凝胶微丸是一种非常有潜力的药物载体。  相似文献   

6.
This work investigates preparation of biodegradable beads with alginate polymer by ionotropic gelation method to take the advantages of the swelling and mucoadhesive properties of alginate beads for improving the oral delivery of the antidiabetic agent gliclazide. It demonstrates that the ionic gelation of alginate molecules offers a flexible and easily controllable process for manipulating the characteristics of the beads which are important in controlling the release rate and consequently the absorption of gliclazide from the gastrointestinal tract. Variations in polymer concentration, stirring speed, internal phase volume and the type of surfactant in the external phase were examined systemically for their effects on the particle size, incorporation efficiency and flow properties of the beads. The swelling behavior was strongly dependent on the polymer concentration in the formulations and the pH of the medium. The in vitro release experiments revealed that the swelling is the main parameter controlling the release rate of gliclazide from the beads. In vivo studies on diabetic rabbits showed that the hypoglycemic effect induced by the gliclazide loaded alginate beads was significantly greater and more prolonged than that induced by the marketed conventional gliclazide tablet (Gliclazide). The results clearly demonstrated the ability of the system to maintain tight blood glucose level and improved the patient compliance by enhancing, controlling and prolonging the systemic absorption of gliclazide.  相似文献   

7.
Alginate gel bead containing chitosan salt was prepared and the function was investigated. When the bead was placed in bile acid solution it rapidly took bile acid into itself. The uptake amount of taurocholate was about 25 μmol per 0.2 g dried gel beads. This phenomenon was observed on the case of the beads incorporating colestyramine instead of chitosan. Therefore, it seems that the ion-exchange reaction accompanying the insoluble complex-formation between chitosan salt and bile acid occurs in calcium alginate gel matrix.  相似文献   

8.
Use of floating alginate gel beads for stomach-specific drug delivery.   总被引:10,自引:0,他引:10  
Two types of alginate gel beads capable of floating in the gastric cavity were prepared. The first, alginate gel bead containing vegetable oil (ALGO), is a hydrogel bead and its buoyancy is attributable to vegetable oil held in the alginate gel matrix. The model drug, metronidazole (MZ), contained in ALGO was released gradually into artificial gastric juice, the release rate being inversely related to the percentage of oil. The second, alginate gel bead containing chitosan (ALCS), is a dried gel bead with dispersed chitosan in the matrix. The drug-release profile was not affected by the kind of chitosan contained in ALCS. When ALCS containing MZ was administered orally to guinea pigs, it floated on the gastric juice and released the drug into the stomach. Furthermore, the concentration of MZ at the gastric mucosa after administration of ALCS was higher than that in the solution, though the MZ serum concentration was the same regardless of which type of gel was administered. These release properties of alginate gels are applicable not only for sustained release of drugs but also for targeting the gastric mucosa.  相似文献   

9.
海藻酸钙凝胶微丸作为口服缓释给药载体的研究   总被引:8,自引:0,他引:8  
将海藻酸钠溶液滴入胶凝剂氯化钙溶液中制备了海藻酸钙凝胶微丸。以胶凝过程中凝胶微丸重量变化 (失水量 )研究了胶凝速率及不同浓度海藻酸钠溶液 ( 1 %~ 4 % )与氯化钙溶液 ( 0 0 5~0 2 0mol/L)对胶凝速率的影响 ,结果是 6h前胶凝速率快 ,随后减慢 ,约 70h胶凝完全 ,氯化钙溶液的浓度≥ 0 1mol/L对胶凝速率无明显影响。干燥的凝胶微丸在不同水性介质中溶胀试验结果表明 :在温度约 37℃时 ,微丸在蒸馏水和 0 1mol/L盐酸 ( pH1 0 )中几乎不溶胀 ,而在磷酸盐缓冲溶液( pH6 8)中1h溶胀 ,溶胀后的微丸直径是干燥前湿微丸直径的 1 80 %。海藻酸钙凝胶微丸这种溶胀的 pH敏感性 ,使它能成为口服药物缓释制剂的载体。以硝苯地平为模型药物制备的海藻酸钙凝胶微丸 ,其体外释放试验结果 ,2h累积释放量为 2 0 %~ 30 % ,6h为 6 0 %~ 80 % ,1 2h时大于85 %。药物从微丸中的释放是以扩散和骨架溶蚀相结合的方式。由此可见 ,硝苯地平的海藻酸钙凝胶微丸具有缓释作用  相似文献   

10.
Diclofenac calcium alginate (DCA) beads containing microcrystalline cellulose (MCC) were prepared using ionotropic gelation method. The effect of MCC amounts on physicochemical characteristics of the DCA beads was examined. The particle size and entrapment efficiency of diclofenac sodium (DS) of the DCA beads increased with increasing amount of MCC. MCC could be involved in the calcium alginate formation to create a complex matrix in the DCA beads, which was revealed using FTIR spectroscopy. The MCC-DCA beads provided greater water uptake in distilled water, but retarded swelling rate in pH 6.8 phosphate buffer. A longer lag time and a similar drug release rate of the MCC-DCA beads in pH 6.8 phosphate buffer were found. The MCC-DCA beads also gave higher drug release rates in distilled water when compared with the DCA beads. However, the increase of MCC content over 0.5% in the DCA beads did not affect the drug release in distilled water. In conclusion, MCC could improve drug entrapment efficiency and modify drug release from the DCA beads.  相似文献   

11.
Calcium-induced alginate gel beads containing chitosan salt (Alg-CS) was prepared using nicotinic acid (NA), a drug for hyperlipidemia, and investigated its two functions in gastrointestinal tract, (a) NA release from Alg-CS, (b) uptake of bile acids into Alg-CS. The amount of NA incorporated in Alg-CS increased according to increment of CS content. NA was rapidly released from Alg-CS in diluted HCl solution (pH 1.2) or physiological saline without disintegration of the beads. When Alg-CS was placed in bile acid solution it took bile acid into itself. About 80% of taurocholic acid dissolved in the medium was taken into Alg-CS. According to increment of bile acid concentration, the uptake amount increased and an approximately linear relationship existed among them.  相似文献   

12.
Alginate gel beads were prepared which contained weak acid salts of chitosan (Alg-CS) and water-soluble vitamins (e.g. ascorbic acid (AS)) and the behavior of the beads, uptake of bile acids was investigated in vitro. The Alg-CS beads rapidly took up bile acid and this phenomenon was observed for both hydrogel beads and dried beads. About 120 micromol of taurocholic acid was taken up into Alg-CS (1 g) prepared with orotic acid. Dried Alg-CS is the granule which can be made easily, and keeps the ability of CS salt, and all elements can be taken as a food. Therefore, Alg-CS could serve as a useful dietary agent for the prevention of hyperlipidemia.  相似文献   

13.
The aim of present study was to develop stomach specific floating beads of metformin hydrochloride for effective management of type 2 diabetes mellitus. The beads were evaluated for surface morphology, particle size, tapped density, true density, percent porosity, drug entrapment efficiency, percent yield, differential scanning calorimetry, in vitro floating ability and in vitro drug release. Stability studies were performed at 25 and 40 °C up to 45 days. Effectiveness of the formulations was evaluated in vivo by hypoglycemic response in both normal and diabetic albino rats. The beads were grossly spherical in shape, and average particle diameter of beads was found to be in the size range of 861.34 to 991.75 μm. Percent entrapment was found to be in the range of 77.61 to 82.48%. Beads demonstrated favorable in vitro floating ability. All the formulations followed a non-Fickian release mechanism. It was found that there was no significant effect on floating ability of aged beads since it floated up to an 8 h study period. In vivo studies on diabetic rats showed that the hypoglycemic effect induced by the metformin hydrochloride loaded alginate beads was significantly greater (P < 0.05) and more prolonged than that induced by the nonfloating beads. The results clearly demonstrated the ability of the formulation to maintain blood glucose level and improved the patient compliance by enhancing, controlling and prolonging the systemic absorption of metformin hydrochloride.  相似文献   

14.
To obtain expected rapid-release and sustained-release of ketoprofen gel beads, this paper adopted biopolymer alginate to prepare alginate beads and chitosan-alginate gel beads. Formulation factors were investigated and optimized by the single factor test. The release of ketoprofen from calcium alginate gel beads in pH 1.0 hydrochloric acid solution was less than 10% during 2 h, then in pH6.8 was about 95% during 45 min, which met the requirements of rapid-release preparations. However, the drug release of chitosan-alginate gel beads in pH1.0 was less than 5% during 2 h, then in pH6.8 was about 50% during 6 h and reached more than 95% during 12 h, which had a good sustained-release behavior. In addition, the release kinetics of keteprofen from the calcium alginate gel beads fitted well with the Korsmeyer–Peppas model and followed a case-II transport mechanism. However, the release of keteprofen from the chitosan-alginate gel beads exhibited a non-Fickian mechanism and based on the mixed mechanisms of diffusion and polymer relaxation from chitosan-alginate beads. In a word, alginate gel beads of ketoprofen were instant analgesic, while chitosan-alginate gel beads could control the release of ketoprofen during gastro-intestinal tract and prolong the drug's action time.  相似文献   

15.
Attempts to determine conditions or processes within alginate gel beads often suffer from inaccuracies due to an improper roundness of the analysed beads. Therefore, a novel solvent-based method for the preparation of alginate beads with improved shape was developed: An aqueous solution of 2% (w/v) alginate in water was injected into a solvent layering consisting of hexane, n-butanol, n-butanol with 1% (w/v) CaCl2 and finally 2% (w/v) CaCl2 in water. Beads of up to 3.5?mm in diameter obtained with this method had a roundness which was ~5% better than comparable beads prepared by dropping an alginate solution into a CaCl2-hardening bath. This was determined by a software supported quantitative analysis of bead size and shape. Additionally, the novel solvent-based method allows for highly reproducible preparation of alginate beads with exactly predictable sizes. The biggest beads obtained with this method were 9?mm in diameter. Thus, with the solvent-based preparation of alginate beads it is now possible to easily obtain beads of exactly the type needed for a specific analytical purpose.  相似文献   

16.
Attempts to determine conditions or processes within alginate gel beads often suffer from inaccuracies due to an improper roundness of the analysed beads. Therefore, a novel solvent-based method for the preparation of alginate beads with improved shape was developed: An aqueous solution of 2% (w/v) alginate in water was injected into a solvent layering consisting of hexane, n-butanol, n-butanol with 1% (w/v) CaCl2 and finally 2% (w/v) CaCl2 in water. Beads of up to 3.5 mm in diameter obtained with this method had a roundness which was approximately 5% better than comparable beads prepared by dropping an alginate solution into a CaCl2-hardening bath. This was determined by a software supported quantitative analysis of bead size and shape. Additionally, the novel solvent-based method allows for highly reproducible preparation of alginate beads with exactly predictable sizes. The biggest beads obtained with this method were 9 mm in diameter. Thus, with the solvent-based preparation of alginate beads it is now possible to easily obtain beads of exactly the type needed for a specific analytical purpose.  相似文献   

17.
Alginate and chitosan treated alginate beads were prepared and compared as an oral controlled release system for macromolecular drugs. Dextran (M.W. 70,000) was used as a model substance. The beads were prepared by the ionotropic gelation method and the effect of various factors (alginate, chitosan, drug and calcium chloride concentrations, the volume of external and internal phases and drying methods) on bead properties were investigated. The addition of chitosan increased the drug loading capacity of the beads, and larger beads were obtained in the presence of chitosan. On the other hand, addition of chitosan in the gel structure reduced the drug release from beads. The erosion of the beads was suppressed by chitosan treatment. The drying method was important to the properties of the chitosan-alginate beads. It is proposed that chitosan treated alginate beads may be used as a potential controlled release system of such macromolecules.  相似文献   

18.
The aim of this paper was to investigate the possible applicability of chitosan treated alginate beads as a controlled release system of small molecular drugs with high solubility. Timolol maleate (mw 432.49) was used as a model drug. The beads were prepared by the ionotropic gelation method and the effect of various factors (alginate, chitosan, drug and calcium chloride concentrations, the volume of external and internal phases and drying methods) on bead properties were also investigated. Spherical beads with 0.78-1.16mm diameter range and 10.8-66.5% encapsulation efficiencies were produced. Higher encapsulation efficiencies and retarded drug release were obtained with chitosan treated alginatebeads. Amongthedifferentfactors investigatedsuchas alginate, drug, chitosan and CaCl2 concentrations, the volumes of the external and internal phases affected bead properties. The drying technique has an importance on the bead properties also. The release data was kinetically evaluated. It appeared that chitosan treated alginate beads may be used for a potential controlled release system of small molecular drugs with high solubility, instead of alginate beads.  相似文献   

19.
The aim of this paper was to investigate the possible applicability of chitosan treated alginate beads as a controlled release system of small molecular drugs with high solubility. Timolol maleate (mw 432.49) was used as a model drug. The beads were prepared by the ionotropic gelation method and the effect of various factors (alginate, chitosan, drug and calcium chloride concentrations, the volume of external and internal phases and drying methods) on bead properties were also investigated. Spherical beads with 0.78-1.16 mm diameter range and 10.8-66.5% encapsulation efficiencies were produced. Higher encapsulation efficiencies and retarded drug release were obtained with chitosan treated alginate beads. Among the different factors investigated such as alginate, drug, chitosan and CaCl2 concentrations, the volumes of the external and internal phases affected bead properties. The drying technique has an importance on the bead properties also. The release data was kinetically evaluated. It appeared that chitosan treated alginate beads may be used for a potential controlled release system of small molecular drugs with high solubility, instead of alginate beads.  相似文献   

20.
In this paper, compendial sodium alginate beads have been manufactured by laminar jet break-up technology. The effect of polymer concentration, viscosity and polymeric solution flow rate on the characteristics of beads was studied. Size distribution of alginate beads in the hydrated state was strongly dependent on the flow rate and viscosity of polymer solutions, since a transition from laminar jet break-up conditions to vibration-assisted dripping was observed. The re-hydration kinetics of dried beads in simulated gastric fluid (SGF) showed that the maximum swelling of beads was reached after 1-2 h, with an increase in volume of two to three times and a time lag dependent on the polymer concentration. The re-hydration swelling profiles in simulated intestinal fluid (SIF) showed no time lag and higher swelling volume; moreover, in this medium after the maximum swelling was reached, the bead structure was quickly disaggregated because of the presence in the medium of phosphate able to capture calcium ions present in the alginate gel structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号