首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydroxycinnamic acids have been reported to possess numerous pharmacological activities such as antioxidant, anti-inflammatory, and anti-tumor properties. However, the biological activity of 1-p-coumaroyl β-D-glucoside (CG), a glucose ester derivative of p-coumaric acid, has not been clearly examined. The objective of this study is to elucidate the anti-inflammatory action of CG in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. In the present study, CG significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the protein expression of iNOS and COX-2. CG also inhibited LPS-induced secretion of pro-inflammatory cytokines, IL-1β and TNF-α. In addition, CG significantly suppressed LPS-induced degradation of IκB. To elucidate the underlying mechanism by which CG exerts its anti-inflammatory action, involvement of various signaling pathways were examined. CG exhibited significantly increased Akt phosphorylation in a concentration-dependent manner, although MAPKs such as Erk, JNK, and p38 appeared not to be involved. Furthermore, inhibition of Akt/PI3K signaling pathway with wortmannin significantly, albeit not completely, abolished CG-induced Akt phosphorylation and anti-inflammatory actions. Taken together, the present study demonstrates that Akt signaling pathway might play a major role in CG-mediated anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells.  相似文献   

2.
3.
4.
N-(p-Coumaryol) tryptamine (CT), a phenolic amide, has been reported to exhibit anti-oxidant and anti-inflammatory activities. However, the underlying mechanism by which CT exerts its pharmacological properties has not been clearly demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of CT in lipopolysaccharide (LPS)-challenged RAW264.7 macrophage cells. CT significantly inhibited LPS-induced extracellular secretion of pro-inflammatory mediators such as nitric oxide (NO) and PGE2, and protein expressions of iNOS and COX-2. In addition, CT significantly suppressed LPS-induced secretion of pro-inflammatory cytokines such as TNF-α and IL-1β. To elucidate the underlying anti-inflammatory mechanism of CT, involvement of MAPK and Akt signaling pathways was examined. CT significantly attenuated LPS-induced activation of JNK/c-Jun, but not ERK and p38, in a concentration-dependent manner. Interestingly, CT appeared to suppress LPS-induced Akt phosphorylation. However, JNK inhibition, but not Akt inhibition, resulted in the suppression of LPS-induced responses, suggesting that JNK/c-Jun signaling pathway significantly contributes to LPS-induced inflammatory responses and that LPS-induced Akt phosphorylation might be a compensatory response to a stress condition. Taken together, the present study clearly demonstrates CT exerts anti-inflammatory activity through the suppression of JNK/c-Jun signaling pathway in LPS-challenged RAW264.7 macrophage cells.  相似文献   

5.
Mangostenone F (MF) is a natural xanthone isolated from Garcinia mangostana. However, little is known about the biological activities of MF. This study was designed to investigate the anti-inflammatory effect and underlying molecular mechanisms of MF in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MF dose-dependently inhibited the production of NO, iNOS, and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in LPS-stimulated RAW264.7 macrophages. Moreover, MF decreased the NF-κB luciferase activity and NF-κB DNA binding capacity in LPS-stimulated RAW264.7 macrophages. Furthermore, MF suppressed the NF-κB activation by inhibiting the degradation of IκBα and nuclear translocation of p65 subunit of NF-κB. In addition, MF attenuated the AP-1 luciferase activity and phosphorylation of ERK, JNK, and p38 MAP kinases. Taken together, these results suggest that the anti-inflammatory effect of MF is associated with the suppression of NO production and iNOS expression through the down-regulation of NF-κB activation and MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.  相似文献   

6.
The present study showed that silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), inhibited lipopolysaccharide (LPS)-induced morphological changes in the mouse RAW264.7 macrophage cell line. We also showed that silymarin inhibited the nuclear translocation and transactivation activities of nuclear factor-kappa B (NF-κB), which is important for macrophage activation-associated changes in cell morphology and gene expression of inflammatory cytokines. BAY-11-7085, an NF-κB inhibitor, abrogated LPS-induced morphological changes and NO production, similar to silymarin. Treatment of RAW264.7 cells with silymarin also inhibited LPS-stimulated activation of mitogen-activated protein kinases (MAPKs). Collectively, these experiments demonstrated that silymarin inhibited LPS-induced morphological changes in the RAW264.7 mouse macrophage cell line. Our findings indicated that the most likely mechanism underlying this biological effect involved inhibition of the MAPK pathway and NF-κB activity. Inhibition of these activities by silymarin is a potentially useful strategy for the treatment of inflammation because of the critical roles played by MAPK and NF-κB in mediating inflammatory responses in macrophages.  相似文献   

7.
This study examined the total polyphenol content of eight wild edible plants from Ethiopia and their effect on NO production in Raw264.7 cells. Owing to its relatively high polyphenol concentration and inhibition of NO production, the methanol extract of Adansonia digitata L. leaf (MEAD) was subjected to detailed evaluation of its antioxidant and anti-inflammatory effects. Antioxidant effects were assessed by measuring free-radical-scavenging activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and oxygen-radical-absorbance capacity (ORAC) assays, while anti-inflammatory effects were assessed by measuring inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In the ORAC assay, MEAD was 10.2 times more potent than vitamin C at eliminating peroxyl radicals. In DPPH assay, MEAD also showed a strong ROS scavenging effect. MEAD significantly inhibited iNOS activity (IC50=28.6 μg/ml) of LPS-stimulated Raw264.7 cells. We also investigated the relationship between iNOS expression and nuclear factor kappa B (NF-κB) activation. MEAD inhibited IκBα degradation and NF-κB translocation from the cytosol to the nucleus in LPS-induced RAW264.7 cells without significant cytotoxic effects, as confirmed by MTT assay. These results suggest that MEAD inhibits anti-inflammatory iNOS expression, which might be related to the elimination of peroxyl radicals and thus the inhibition of IκBα-mediated NF-κB signal transduction.  相似文献   

8.
9.
The stem-bark of Kalopanax pictus (KP, family Araliaceae), of which main constituent is kalopanaxsaponin B, has been used for asthma, rhinitis, and arthritis in Chinese traditional medicine. To clarify anticolitic effect of KP, we examined anti-inflammatory effect of KP extract and kalopanaxsaponin B in lipopolysaccharide (LPS)-stimulated peritoneal macrophage and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitic mice. Of KP extracts, KP BuOH-soluble fraction most potently inhibited LPS-induced IL-1β, IL-6 and TNF-α expression, as well as NF-κB activation. However, KP BuOH fraction increased IL-10, an anti-inflammatory cytokine. KP BuOH fraction also inhibited colon shortening and myeloperoxidase activity in TNBS-induced colitic mice. KP BuOH fraction also potently inhibited the expression of the pro-inflammatory cytokines, IL-1β, IL-6 and TNF-α as well as the activation of NF-κB. Kalopanaxsaponin B, a main constituent of KP, inhibited TNBS-induced colonic inflammation, including colon shortening, and TNBS-increased myeloperoxidase activity pro-inflammatory cytokine expression and NF-κB activation in mice. Based on these findings, KP, particularly its main constituent, kalopanaxsaponin B, may ameliorate colitis by inhibiting NF-κB pathway.  相似文献   

10.
11.

Background and purpose:

In the present paper we studied the effect of shikonin on ear oedema induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), and determined the mechanisms through which shikonin might exert its topical anti-inflammatory action.

Experimental approach:

Acute ear oedema was induced in mice by topical application of TPA. The in vitro assays used macrophages RAW 264.7 cells stimulated with lipopolysaccharide. Cyclooxygenase-2, inducible nitric oxide synthase, protein kinase Cα, extracellular signal-regulated protein kinase (ERK), phosphorylated ERK (pERK), c-Jun N-terminal kinase (JNK), pJNK, p38, p-p38, p65, p-p65, inhibitor protein of nuclear factor-κB (NF-κB) (IκBα) and pIκBα were measured by Western blotting, activation and binding of NF-κB to DNA was detected by reporter gene and electrophoretic mobility shift assay, respectively, and NF-κB p65 localization was detected by immunocytochemistry.

Key results:

Shikonin reduced the oedema (inhibitory dose 50 = 1.0 mg per ear), the expression of cyclooxygenase-2 (70%) and of inducible nitric oxide synthase (100%) in vivo. It significantly decreased TPA-induced translocation of protein kinase Cα, the phosphorylation and activation of ERK, the nuclear translocation of NF-κB and the TPA-induced NF-κB-DNA-binding activity in mouse skin. Moreover, in RAW 264.7 cells, shikonin significantly inhibited the binding of NF-κB to DNA in a dose-dependent manner and the nuclear translocation of p65.

Conclusions and implications:

Shikonin exerted its topical anti-inflammatory action by interfering with the degradation of IκBα, thus inhibiting the activation of NF-κB.  相似文献   

12.

Background and Purpose

Products of Maillard reactions between aminoacids and reducing sugars are known to have anti-inflammatory properties. Here we have assessed the anti-arthritis effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal and its possible mechanisms of action.

Experimental Approach

We used cultures of LPS-activated macrophages (RAW264.7 cells) and human synoviocytes from patients with rheumatoid arthritis for in vitro assays and the collagen-induced arthritis model in mice. NO generation, iNOS and COX2 expression, and NF-κB/IKK and STAT3 activities were measured in vitro and in joint tissues of arthritic mice, along with clinical scores and histopathological assessments. Binding of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal to STAT3 was evaluated by a pull-down assay and its binding site was predicted using molecular docking studies with Autodock VINA.

Key Results

(E)-2,4-bis(p-hydroxyphenyl)-2-butenal (2.5–10 μg·mL−1) inhibited LPS-inducedNO generation, iNOS and COX2 expression, and NF-κB/IKK and STAT3 activities in macrophage and human synoviocytes. This compound also suppressedcollagen-induced arthritic responses in mice by inhibiting expression of iNOS and COX2, and NF-κB/IKK and STAT3 activities; it also reduced bone destruction and fibrosis in joint tissues. A pull-down assay showed that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal interfered with binding of ATP to STAT3. Docking studies suggested that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal bound to the DNA-binding interface of STAT3 possibly inhibiting ATP binding to STAT3 in an allosteric manner.

Conclusions and Implications

(E)-2,4-bis(p-hydroxyphenyl)-2-butenal exerted anti-inflammatory and anti-arthritic effects through inhibition of the NF-κB/STAT3 pathway by direct binding to STAT3. This compound could be a useful agent for the treatment of arthritic disease.  相似文献   

13.
Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-κB-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-β (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-κ B nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-κB activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-κB activation.  相似文献   

14.
Neocryptotanshinone (NCTS) is a natural product isolated from traditional Chinese herb Salvia miltiorrhiza Bunge. In this study, we investigated its anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) cells. MTT results showed that NCTS partly reversed LPS-induced cytotoxicity. Real-time PCR results showed that NCTS suppressed LPS-induced mRNA expression of inflammatory cytokines, including tumor necrosis factor α (TNFα), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Moreover, NCTS could decrease LPS-induced nitric oxide (NO) production. Western blotting results showed that NCTS could down-regulate LPS-induced expression of inducible nitric oxide synthase (iNOS), p-IκBα, p-IKKβ and p-NF-κB p65 without affecting cyclooxygenase-2 (COX-2). In addition, NCTS inhibited LPS-induced p-NF-κB p65 nuclear translocation. In conclusion, these data demonstrated that NCTS showed anti-inflammatory effect by suppression of NF-κB and iNOS signaling pathways.KEY WORDS: Neocryptotanshinone, Inflammation, NF-κB, Inducible nitric oxide synthase  相似文献   

15.
Baicalin, a main constituent of the rhizome of Scutellaria baicalensis, is metabolized to baicalein and oroxylin A in the intestine before its absorption. To understand the role of intestinal microflora in the pharmacological activities of baicalin, we investigated its anti-inflammatory effect in mice treated with and without antibiotics. Orally administered baicalin showed the anti-inflammatory effect in mice than intraperitoneally treated one, apart from intraperitoneally administered its metabolites, baicalein and oroxylin A, which potently inhibited LPS-induced inflammation. Of these metabolites, oroxylin A showed more potent anti-inflammatory effect. However, treatment with the mixture of cefadroxil, oxytetracycline and erythromycin (COE) significantly attenuated the anti-inflammatory effect of orally administered baicalin in mice. Treatment with COE also reduced intestinal bacterial fecal β-glucuronidase activity. The metabolic activity of human stools is significantly different between individuals, but neither between ages nor between male and female. Baicalin was metabolized to baicalein and oroxylin A, with metabolic activities of 1.427 ± 0.818 and 1.025 ± 0.603 pmol/min/mg wet weight, respectively. Baicalin and its metabolites also inhibited the expression of pro-inflammatory cytokines, TNF-α and IL-1β, and the activation of NF-κB in LPS-stimulated peritoneal macrophages. Of them, oroxylin A showed the most potent inhibition. Based on these findings, baicalin may be metabolized to baicalein and oroxylin A by intestinal microflora, which enhance its anti-inflammatory effect by inhibiting NF-κB activation.  相似文献   

16.
ContextUlcerative colitis (UC) is a recrudescent and chronic inflammatory disease. Artesunate (ART) has shown its anti-inflammatory and antioxidative properties in severe diseases, including UC.ObjectiveThe present study investigates the molecular mechanisms for effects of ART on UC, and the role of miR-155 in this process.Materials and methodsThe in vitro UC model was established by using lipopolysaccharide (LPS)-induced RAW264.7 cells. For BALB/c mice model, different concentrations/doses of ART were treated once a day for 7 days. The apoptosis and viability were measured by CCK-8 and flow cytometry assay, respectively. The expressions and concentrations of inflammatory factors were detected by qRT-PCR and ELISA, respectively. Colon tissues of mice were used for detecting the activity of MPO, and the histological changes were observed by H&E staining.ResultsThe IC50 of ART for RAW264.7 cells was 107.3 μg/mL. In LPS-induced cells, ART treatment inhibited the cell apoptosis and promoted cell viability compared with the model group. Besides, ART treatment also reduced the expressions of pro-inflammatory factors and miR-155. However, overexpression of miR-155 showed opposite effects and attenuated the effects of ART. Meanwhile, inhibiting miR-155 expression also improved the inflammatory response induced by LPS. In UC mice model, ART treatment also alleviated the mice’s survival and alleviated the inflammatory response. In addition, the expression of p-NF-κB was suppressed by ART.ConclusionART reduced the inflammatory response by inhibiting the expression of miR-155 in UC to inhibit the NF-κB pathway. This research showed ART might have potential in UC treatment.  相似文献   

17.

Background

The marine environment is a unique source of bioactive natural products, of which Sargassum muticum (Yendo) Fensholt is an important brown algae distributed in Jeju Island, Korea. S. muticum is a traditional Korean food stuff and has pharmacological functions including anti-inflammatory effects. However, the active ingredients from S. muticum have not been characterized.

Methods

Bioguided fractionation of the ethanolic extract of S. muticum, collected from Jeju island, led to the isolation of a norisoprenoid. Its structure was determined by analysis of the spectroscopic data. In vitro anti-inflammatory activity and mechanisms of action of this compound were examined using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells through ELISA assays and Western blot analysis.

Results

Apo-9′-fucoxanthinone, belonging to the norisoprenoid family were identified. Apo-9′-fucoxanthinone effectively suppressed LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. This compound also exerted their anti-inflammatory actions by down-regulating of NF-κB activation via suppression of IκB-α in macrophages.

Conclusions

This is the first report describing effective anti-inflammatory activity for apo-9’-fucoxanthinone′-fucoxanthnone isolated from S. muticum. Apo-9′-fucoxanthinone may be a good candidate for delaying the progression of human inflammatory diseases and warrants further studies.  相似文献   

18.
Although Hydrangea macrophylla is native to Northeast Asia and widely cultivated in many parts of the world, no studies on its anti-inflammatory effects have been reported. In this study, we evaluated the anti-inflammatory effect of a water extract of processed H. macrophylla leaf (WH) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. WH inhibited the expression of LPS-stimulated pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α), as well as their regulatory genes inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α without any accompanying cytotoxicity. Moreover, WH significantly suppressed the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB), as well as the nuclear translocation of the NF-κB subunits, p65 and p50 by suppressing of IκBα phosphorylation and degradation. WH also increased Akt dephosphorylation, leading to the suppression of the DNA-binding activity of NF-κB in LPS-stimulated RAW264.7 macrophage cells. Our results indicate that WH downregulates the expression of pro-inflammatory mediators such as NO, PGE2, and TNF-α by suppressing the Akt-mediated NF-κB activity in LPS-stimulated RAW264.7 macrophage cells.  相似文献   

19.
20.
Extended inflammation and cytokine production pathogenically contribute to a number of inflammatory disorders. Formosanin C (FC) is the major diosgenin saponin found in herb Paris formosana Hayata (Liliaceae), which has been shown to exert anti-cancer and immunomodulatory functions. In this study, we aimed to investigate anti-inflammatory activity of FC and the underlying molecular mechanism. RAW264.7 macrophages were stimulated with lipopolysaccharide (LPS) or pre-treated with FC prior to being stimulated with LPS. Thereafter, the macrophages were subjected to analysis of the expression levels of pro-inflammatory mediators, including nitric oxide (NO), prostaglandin E2 (PGE), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, as well as two relevant enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). The analysis revealed that FC administration blunted LPS-induced production of NO and PGE in a dose-dependent manner, while the expression of iNOS and COX-2 at both mRNA and protein levels was inhibited in LPS-stimulated macrophages pre-treated with FC. Moreover, LPS stimulation upregulated mRNA expression and medium release of TNF-α, IL-1β, and IL-6, whereas this effect was blocked upon FC pre-administration. Mechanistic studies showed that inhibitory effects of FC on LPS-induced inflammation were associated with a downregulation of IκB kinase, IκB, and p65/NF-κB pathway. Taken together, these data suggest that FC possesses an inflammation-suppressing activity, thus being a potential agent for the treatment of inflammation-associated disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号