首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Takami M  Suda K  Sahara T  Itoh K  Nagai K  Sasaki T  Udagawa N  Takahashi N 《BONE》2003,32(4):341-349
Although osteoclasts incorporate bisphosphonates during bone resorption, the mechanism of this incorporation by osteoclasts is not known. We previously reported that bisphosphonates disrupt the actin rings (clear zones) formed in normal osteoclasts, but did not disrupt actin rings in osteoclasts derived from osteosclerotic oc/oc mice, which have a defect in the gene encoding vacuolar H(+)-ATPase (V-ATPase). The present study showed that V-ATPase is directly involved in the incorporation of risedronate, a nitrogen containing bisphosphonate, into osteoclasts. Treatment of osteoclasts with risedronate disrupted actin rings and inhibited pit formation by osteoclasts on dentine slices. Bafilomycin A(1), a V-ATPase inhibitor, inhibited the pit-forming activity of osteoclasts but did not disrupt actin rings. Risedronate failed to disrupt actin rings in the presence of bafilomycin A(1). E-64, a lysosomal cysteine proteinase inhibitor, showed no inhibitory effect on the demineralization of dentine by osteoclasts but inhibited the digestion of dentine matrix proteins without disrupting actin rings. Risedronate disrupted actin rings even in the presence of E-64. Treatment of osteoclasts placed on plastic plates with risedronate also disrupted actin rings. Bafilomycin A(1) but not E64 prevented the disruption of actin rings in osteoclasts treated with risedronate on plastic plates. Inhibition of V-ATPase with bafilomycin A(1) also prevented disruption of actin rings by etidronate, a non-nitrogen-containing bisphosphonate. These results suggest that V-ATPase induced acidification beneath the ruffled borders of osteoclasts and subsequent bone demineralization triggers the incorporation of both nitrogen-containing and non-nitrogen-containing bisphosphonates into osteoclasts.  相似文献   

2.
Interstitial collagenase activity stimulates bone resorption by mouse marrow osteoclasts [1]. Here, we show that collagenase activity promotes bone resorption by activating adherent osteoclasts to resorb bone. Inhibition of interstitial collagenase activity, either with peptidomimetic hydroxymates or with a specific anti-interstitial collagenase inhibiting antibody, reduced bone resorption by 73-92%. Equal numbers of osteoclasts adhered to bone in the presence of collagenase inhibitors and osteoclast survival was unaffected. In contrast, formation of actin rings and polarization of the vacuolar-H+-ATPase (V-ATPase) to ruffled membranes, two indicators of osteoclast activation, were decreased by inhibiting collagenase activity and stimulated in the presence of cleaved or heat-denatured type I collagen in proportion to increases and decreases of bone resorptive activity. Addition of excess recombinant osteoprotegerin-ligand to cultures did not restore bone resorption in the presence of interstitial collagenase inhibitors. These data support the hypothesis that cleaved collagen stimulates osteoclastic bone resorption by triggering cytoskeletal reorganization and transport of V-ATPase from cytoplasmic stores to ruffled membranes.  相似文献   

3.
Bone-resorbing osteoclasts form sealing zones and ruffled borders toward the bone surface. The sealing zone consists of a ring-like alignment of F-actin dots and surrounds the ruffled border, from which protons are secreted into the bone surface. Vacuolar-type proton ATPase (V-ATPase) in osteoclasts is a ruffled border-associated enzyme responsible for the proton secretion. We studied the interaction between microtubules and the actin cytoskeleton in osteoclasts. Confocal microscopic observation revealed that osteoclasts on glass coverslips, dentine slices and Osteologictrade mark discs formed the ring-like structure of F-actin dots, and microtubules overlapped the top of the F-actin dots. Osteoclasts cultured on dentine formed resorption pits within 48 h. The treatment of osteoclasts with cytochalasin D, an F-actin-depolymerizing reagent, induced perturbation of the microtubules in osteoclasts on glass and inhibited their pit-forming activity on dentine in a dose-dependent and reversible manner. Conversely, nocodazole, a microtubule-depolymerizing reagent, disrupted sealing zones and inhibited pit-forming activity of osteoclasts in a dose-dependent and reversible manner. V-ATPase showed a tendency to be localized inside sealing zones in osteoclasts. Treatment of osteoclasts with calcitonin induced both disruption of sealing zones and dispersion of V-ATPase to the whole area of the cytoplasm within 60 min. The microtubule networks in osteoclasts remained unchanged for 60 min even in the presence of calcitonin. These results suggest that coordination of the actin cytoskeleton and microtubules is important in the function of osteoclasts, but calcitonin selectively affects the actin cytoskeleton and induces the dispersion of V-ATPase without causing significant changes in the microtubules.  相似文献   

4.
空泡型质子泵在骨巨细胞瘤多核巨细胞中表达   总被引:1,自引:0,他引:1       下载免费PDF全文
通过电镜观察附着于骨片的骨巨细胞瘤多核巨细胞,表明在骨吸收时具有褶皱缘结构。采用可标记破骨细胞褶皱缘的空泡型质子泵31KD亚基的抗体,对体外培养的骨巨细胞瘤细胞进行免疫组织化学染色,结果显示多核巨细胞为阳性,间质细胞为阴性,阳性区主要分布于多核巨细胞浆内的空泡区及伪足区。通过mRNA原位杂交方法检测到,多核巨细胞和间质细胞中均有空泡型质子泵的3lKD亚基mRNA表达。结果提示多核巨细胞与破骨细胞可能有相似的骨吸收泌酸机制。  相似文献   

5.
Lysosomal trafficking and protease exocytosis in osteoclasts are essential for ruffled border formation and bone resorption. Yet the mechanism underlying lysosomal trafficking and the related process of exocytosis remains largely unknown. We found ATP6ap1 (Ac45), an accessory subunit of vacuolar-type H(+)-ATPases (V-ATPases), to be highly induced by receptor activator for nuclear factor kappa B ligand (RANKL) in osteoclast differentiation. Ac45 knockdown osteoclasts formed normal actin rings, but had severely impaired extracellular acidification and bone resorption. Ac45 knockdown significantly reduced osteoclast formation. The decrease in the number of osteoclasts does not result from abnormal apoptosis; rather, it results from decreased osteoclast precursor cell proliferation and fusion, which may be partially due to the downregulation of extracellular signal-regulated kinase (ERK) phosphorylation and FBJ osteosarcoma oncogene (c-fos), nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), and "transmembrane 7 superfamily member 4" (Tm7sf4) expression. Notably, Ac45 knockdown osteoclasts exhibited impaired lysosomal trafficking and exocytosis, as indicated by the absence of lysosomal trafficking to the ruffled border and a lack of cathepsin K exocytosis into the resorption lacuna. Our data revealed that the impaired exocytosis is specifically due to Ac45 deficiency, and not the general consequence of a defective V-ATPase. Together, our results demonstrate the essential role of Ac45 in osteoclast-mediated extracellular acidification and protease exocytosis, as well as the ability of Ac45 to guide lysosomal intracellular trafficking to the ruffled border, potentially through its interaction with the small guanosine-5'-triphosphatase (GTPase) Rab7. Our work indicates that Ac45 may be a novel therapeutic target for osteolytic disease.  相似文献   

6.
Tyrosine kinase c-Src plays an essential role in ruffled border formation and bone resorption in osteoclasts; however, it is unclear how c-Src controls ruffled border formation during bone resorption. To address this question, we investigated the role of cortactin, a c-Src substrate, in osteoclasts. We found that cortactin showed colocalization with c-Src and actin rings in osteoclasts. Overexpression of cortactin stimulated actin ring formation in RAW 264.7 cells. In contrast, overexpression of Csk inhibited tyrosine phosphorylation of cortactin and binding of cortactin to c-Src. More importantly, overexertion of a mutant cortactin strongly suppressed actin ring formation and bone resorbing activity in osteoclasts. Collectively, our data indicate that cortactin controls osteoclastic bone resorption by regulating actin organization.  相似文献   

7.
Lees RL  Sabharwal VK  Heersche JN 《BONE》2001,28(2):187-194
Diseases exhibiting excessive bone loss are often characterized by an increase in the size and number of osteoclasts in affected areas, suggesting that osteoclast size is associated with increased resorptive activity or efficiency. Because osteoclastic bone resorption depends on proton extrusion via a bafilomycin A1-sensitive vacuolar type H+ ATPase (V-ATPase), we investigated the relationship between osteoclast size and state of activity on the one hand, and proton-extruding mechanisms (bafilomycin A1-sensitive V-ATPase and amiloride-sensitive Na+/H+ exchange) on the other. In determining resorptive activities of individual osteoclasts, osteoclast-containing cell suspensions obtained from newborn rabbit long bones were cultured on apatite-collagen complex (ACC)-coated coverslips. Large osteoclasts resorbed 2.5 times more per cell than small osteoclasts, but the amount resorbed per nucleus was the same for the two categories. However, a much larger percentage of large osteoclasts was resorbing compared with small osteoclasts. To study pH regulatory mechanisms in individual large and small osteoclasts, the cells were loaded with the pH-sensitive indicator BCECF and analyzed by single-cell fluorescence. Small and large resorbing osteoclasts had significantly higher basal pH(i) than their nonresorbing counterparts. Also, small nonresorbing osteoclasts were insensitive to bafilomycin A1 addition or Na+ removal from the medium, large nonresorbing osteoclasts responded slightly, and all resorbing osteoclasts (small and large) responded strongly. Differences were also seen in the recovery from an acid load: both small and large nonresorbing osteoclasts were more sensitive to amiloride inhibition, while large resorbing cells were more sensitive to bafilomycin A1 inhibition. Small resorbing cells were inhibited equally by bafilomycin A1 and amiloride. These results clearly show that a greater proportion of large osteoclasts are active in resorption and that pH(i) regulation is associated with enhanced proton pump activity in actively resorbing osteoclasts. Thus, large and small osteoclasts differ in the proportion of cells that are resorbing, while pH regulatory mechanisms differ mainly between resorbing and nonresorbing cells.  相似文献   

8.
Osteoclastic bone resorption can be completely abolished by inhibiting the vacuolar H+-ATPase (V-ATPase), a proton pump composed of at least 12 different subunits. However, V-ATPases are ubiquitous and it is unclear whether the osteoclast V-ATPase has a unique composition that would allow its selective inhibition. Aiming to answer this question, we compared human osteoclasts and monocytic THP.1 cells with respect to the localization of the a3 isoform of the 116-kDa subunit, which is indispensable for bone resorption, and sensitivity to SB242784, a V-ATPase inhibitor that prevents experimentally induced osteoporosis. By immunofluorescence, a3 was essentially nondetectable in THP.1 cells, while in osteoclasts a3 was highly upregulated and localized to lysosomes in nonresorbing osteoclasts. We isolated the lysosomal compartment from both sources as latex bead-containing phagolysosomes and compared them. Osteoclast phagolysosomes and THP.1 phagolysosomes both contained a3 and a1; however, the a3/a1 ratio was 3.8- to 11.2-fold higher in osteoclast phagolysosomes. Importantly, the V-ATPase-dependent acidification of phagolysosomes from both sources was essentially equally sensitive to SB242784. Thus, we observed no indication of a qualitative uniqueness of the osteoclast V-ATPase; rather, the high a3-level in osteoclasts may represent an upregulation of the common lysosomal V-ATPase. Our results, together with the reported phenotype of a3 deficiency and the reported efficacy of SB242784 in vivo, suggest that V-ATPase structure-independent mechanisms render bone resorption more sensitive than lysosomal function to V-ATPase inhibition. One such mechanism may be compensation of a3 by a1, which may be sufficient for retaining lysosomal function but not bone resorption.  相似文献   

9.
M. Ito  N. Amizuka  T. Nakajima  H. Ozawa   《BONE》2001,28(6):609-616
We examined the effects of a third generation bisphosphonate [YM-175; disodium dihydrogen (cycloheptylamino)-methylene-1,1-bisphosphonate] on osteoclasts in osteosclerotic (oc/oc) mice to elucidate the cellular mechanism for incorporation of the bisphosphonate. Osteoclasts of oc/oc mice were in direct contact with bone matrix but devoid of ruffled borders. Tartrate-resistant acid phosphatase (TRAPase) showed spotty localization intercellularly, whereas vacuolar H+-ATPase (V-ATPase) immunoreactivity was observed homogeneously in the cytoplasm. Upon injection of bisphosphonate, most osteoclasts lost cell polarity and were detached from bone surfaces. The detached osteoclasts underwent apoptosis as characterized by condensation of chromatin, absence of Golgi apparatus, and formation of many vesicles in the cytoplasm. Both TRAPase and V-ATPase were evenly distributed in the cytoplasm. The pyknotic nuclei of osteoclasts revealed DNA fragments as evidenced by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. The results indicate that osteoclasts lacking ruffled borders in oc/oc mice incorporated the bisphosphonate from a site different from ruffled borders and that bisphosphonate may directly affect osteoclasts without mediating its deposition to the bone matrix.  相似文献   

10.
Lipid rafts are membrane platforms for signaling molecules that regulate various cellular functions. During osteoclastogenesis, lipid rafts also have been shown to play a crucial role for cell fusion upon RANK/RANKL interaction and further activation of osteoclasts, resulting in bone resorption. To investigate proteins that localize in lipid rafts, we conducted two-dimensional (2D) gel electrophoresis followed by MALDI-TOF mass spectrometry. We identified 12 functional proteins among 34 proteins that were detectable by silver staining of the 2D gel. Among them, a subunit of vacuolar H+-ATPase that is involved in resorption activity of osteoclasts was identified showing an approximate molecular weight of 56.94 kDa and pI of 5.4. The solubilization of osteoclast membrane proteins followed by sucrose density gradient fractionation confirmed that V-ATPase colocalized with flotillin-1, a marker of lipid rafts, in low-density detergent-insoluble fractions. Disruption of rafts with cholesterol-sequestering agents or introduction of a dominant-negative mutant of TRAF6 impaired V-ATPase activity. These data indicate that integrity of lipid rafts regulates the activity of V-ATPase in osteoclasts, suggesting that cholesterol-lowering agents might be useful for inhibiting osteoclast-dependent bone resorption.  相似文献   

11.
The osteopetrotic grey-lethal (gl) mouse mutant displays many similarities to the human malignant autosomal-recessive form of osteopetrosis. In this study, we show that the gl osteopetrotic bone phenotype is characterized by the presence of numerous differentiated multinucleated osteoclasts. A significant increase in the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts was detected in vivo, suggesting induction of differentiation in the osteoclast lineage as a compensatory mechanism. These gl osteoclast cells demonstrated a defective cytoskeletal reorganization and an underdeveloped ruffled border, a membrane structure essential for active bone resorption. Accordingly, resorption activity of these cells is markedly impaired by four- to tenfold as evaluated with the pit formation assay. This low bone resorption in gl osteoclasts is highly reminiscent of the loss in key enzymes, V-ATPase or cathepsin-K, and in signaling factors, Src or TRAF-6, which were shown not to be significantly altered in gl osteoclasts. Thus, independently of a deficiency in V-ATPase, Src, cathepsin-K, and TRAF-6, the gl mutation results in increased number of osteoclasts, characterized by a disrupted cytoskeleton and an underdeveloped ruffled border.  相似文献   

12.
13.
14.
Osteoclasts form ruffled borders and sealing zones toward bone surfaces to resorb bone. Sealing zones are defined as ringed structures of F-actin dots (actin rings). Polarized osteoclasts secrete protons to bone surfaces via vacuolar proton ATPase through ruffled borders. Catabolic enzymes such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K are also secreted to bone surfaces. Here we show a simple method of identifying functional vestiges of polarized osteoclasts. Osteoclasts obtained from cocultures of mouse osteoblasts and bone marrow cells were cultured for 48 h on dentin slices. Cultures were then fixed and stained for TRAP to identify osteoclasts on the slices. Cells were removed from the slices with cotton swabs, and the slices subjected to TRAP and Mayer's hematoxylin staining. Small TRAP-positive spots (TRAP-marks) were detected in the resorption pits stained with Mayer's hematoxylin. Pitted areas were not always located in the places of osteoclasts, but osteoclasts existed on all TRAP-marks. A time course experiment showed that the number of TRAP-marks was maintained, while the number of resorption pits increased with the culture period. The position of actin rings formed in osteoclasts corresponded to that of TRAP-marks on dentin slices. Immunostaining of dentin slices showed that both cathepsin K and vacuolar proton ATPase were colocalized with the TRAP-marks. Treatment of osteoclast cultures with alendronate, a bisphosphonate, suppressed the formation of TRAP-marks and resorption pits without affecting the cell viability. Calcitonin induced the disappearance of both actin rings and TRAP-marks in osteoclast cultures. These results suggest that TRAP-marks are vestiges of proteins secreted by polarized osteoclasts.  相似文献   

15.
Osteoclasts resorb bone through transient rearrangement of their cytoskeletons to create a polarized phenotype in which an apical ruffled membrane is surrounded by a ring of F-actin that creates a tight seal against bone substrate. This process, coupled with the capacity for rapid motility, necessitates the presence of a dynamic, multi-functional actin cytoskeleton. Tropomyosins are a large class of actin-binding proteins that can regulate microfilament stability and organization by recruiting other regulatory proteins to actin, or alternately, by inhibiting their binding. Tropomyosins are expressed from four distinct genes (alpha, beta, gamma, and delta) that are alternately spliced to produce over forty isoforms. In recent years, it has become clear that nonmuscle isoforms of tropomyosin may be differentially distributed among intracellular pools of F-actin possessing different functions. Here we have used Western analysis and immunocytochemistry coupled with confocal microscopy to identify the isoforms of tropomyosin expressed by osteoclasts, as well as their distributions within cells. Osteoclasts express at least seven isoforms with markedly different distributions. The products of the alpha gene (Tm-2, -3, and -5a/5b) are up-regulated during osteoclastogenesis, indicating potential cell-specific functions. Some isoforms (Tm-5a/5b, Tm-4) are specifically enriched within and around osteoclast attachment structures, the sealing zone and podosomes, whereas others are more abundant in internal regions of the cell. This compartmentalization of tropomyosins to specific actin structures within osteoclasts is likely to play a critical role in determining the dynamic properties of the actin cytoskeleton and thus osteoclast activity.  相似文献   

16.
Osteoclasts attach to the bone surface and resorb bone by secreting protons into an isolated subosteoclastic compartment. Previous studies have shown the presence of a vacuolar type H+-ATPase, and a functional Cl-HCO 3 anion exchanger in the osteoclast. In the present studies, using a monoclonal antibody to the 31-kDa subunit of H+-ATPase and a rabbit antiserum to the erythrocyte band-3 protein (Cl-HCO 3 anion exchanger) we have immunocytochemically localized the respective pumps in bone sections obtained from chickens fed a normal or a calcium-deficient diet for 4 weeks. Our results indicate that although H+-ATPase is either evenly distributed throughout the osteoclast or is more polarized at its ruffled membrane juxtaposed to the bone surface, the band-3 protein immunoreactivity is always localized to the plasma membrane which is not attached to the bone surface (basolateral membrane). Four weeks of a calcium-deficient diet resulted in a significant increase in the percentage of osteoclasts that were polarized for the H+-ATPase pump at their ruffled membrane, and a trend toward increased total number of osteoclasts, although the latter did not reach statistical significance (P =0.09). These changes were not accompanied by a significant increase in the intensity of staining for H+-ATPase. Band-3 protein immunoreactivity was always prominent, limited to the basolateral membrane, and did not alter with calcium-deficient diet or with changes in the degree of H+-ATPase polarization. Parts of this work have been presented in the American Society of Nephrology in November 1992  相似文献   

17.
Class IA phosphatidylinositol 3‐kinases (PI3Ks) are activated by growth factor receptors and regulate a wide range of cellular processes. In osteoclasts, they are activated downstream of αvβ3 integrin and colony‐stimulating factor‐1 receptor (c‐Fms), which are involved in the regulation of bone‐resorbing activity. The physiological relevance of the in vitro studies using PI3K inhibitors has been of limited value, because they inhibit all classes of PI3K. Here, we show that the osteoclast‐specific deletion of the p85 genes encoding the regulatory subunit of the class IA PI3K results in an osteopetrotic phenotype caused by a defect in the bone‐resorbing activity of osteoclasts. Class IA PI3K is required for the ruffled border formation and vesicular transport, but not for the formation of the sealing zone. p85α/β doubly deficient osteoclasts had a defect in macrophage colony‐stimulating factor (M‐CSF)–induced protein kinase B (Akt) activation and the introduction of constitutively active Akt recovered the bone‐resorbing activity. Thus, the class IA PI3K‐Akt pathway regulates the cellular machinery crucial for osteoclastic bone resorption, and may provide a molecular basis for therapeutic strategies against bone diseases. © 2013 American Society for Bone and Mineral Research.  相似文献   

18.
Summary The osteoclastic cytoskeleton has been demonstrated to be composed of microfilaments. Osteoclastic multinucleated cells were suspended on dentine slices and cultured for 24 hours in the presence or absence of cytochalasin D (CD), a specific and potent inhibitor of actin filament elongation to determine the role of this cytoskeleton. Cultured cells and co-cultured dentine slices were examined ultrastructurally. Unlike those in control cultures without CD, osteoclasts in CD-treated cultures became spherical in shape and lacked microvilli on their basolateral cell surfaces. Most importantly, CD treatment induced a complete disappearance of the ruffled border-clear zone complexes in osteoclasts, which resulted in loss of osteoclast-cytoplasmic polarity. Morphometric analysis of backscattered electron micrographs of co-cultured dentine slices revealed that CD treatment strongly inhibited the formation of resorption lacunae in a dose-dependent manner. These results suggest that the cytoarchitecture, as well as the bone-resorbing function, of the osteoclast is highly regulated by the F-actin-containing microfilamentous cytoskeleton in the ruffled border-clear zone complex.  相似文献   

19.
A mouse founder with high bone mineral density and an osteopetrotic phenotype was identified in an N‐ethyl‐N‐nitrosourea (ENU) screen. It was found to carry a dominant missense mutation in the Tcirg1 gene that encodes the a3 subunit of the vacuolar type H+‐ATPase (V–ATPase), resulting in replacement of a highly conserved amino acid (R740S). The +/R740S mice have normal appearance, size, and weight but exhibit high bone density. Osteoblast parameters are unaffected in bones of +/R740S mice, whereas osteoclast number and marker expression are increased, concomitant with a decrease in the number of apoptotic osteoclasts. Consistent with reduced osteoclast apoptosis, expression of Rankl and Bcl2 is elevated, whereas Casp3 is reduced. Transmission electron microscopy revealed that unlike other known mutations in the a3 subunit of V–ATPase, polarization and ruffled border formation appear normal in +/R740S osteoclasts. However, V–ATPases from +/R740S osteoclast membranes have severely reduced proton transport, whereas ATP hydrolysis is not significantly affected. We show for the first time that a point mutation within the a3 subunit, R740S, which is dominant negative for proton pumping and bone resorption, also uncouples proton pumping from ATP hydrolysis but has no effect on ruffled border formation or polarization of osteoclasts. These results suggest that the V0 complex has proton‐pumping‐independent functions in mammalian cells. © 2011 American Society for Bone and Mineral Research.  相似文献   

20.
Osteoporosis, which results from excessive bone resorption by osteoclasts, is the major cause of morbidity for elder people. Identification of clinically relevant regulators is needed to develop novel therapeutic strategies. Rho GTPases have essential functions in osteoclasts by regulating actin dynamics. This is of particular importance because actin cytoskeleton is essential to generate the sealing zone, an osteoclast‐specific structure ultimately mediating bone resorption. Here we report that the atypical Rac1 exchange factor Dock5 is necessary for osteoclast function both in vitro and in vivo. We discovered that establishment of the sealing zone and consequently osteoclast resorbing activity in vitro require Dock5. Mechanistically, our results suggest that osteoclasts lacking Dock5 have impaired adhesion that can be explained by perturbed Rac1 and p130Cas activities. Consistent with these functional assays, we identified a novel small‐molecule inhibitor of Dock5 capable of hindering osteoclast resorbing activity. To investigate the in vivo relevance of these findings, we studied Dock5–/– mice and found that they have increased trabecular bone mass with normal osteoclast numbers, confirming that Dock5 is essential for bone resorption but not for osteoclast differentiation. Taken together, our findings characterize Dock5 as a regulator of osteoclast function and as a potential novel target to develop antiosteoporotic treatments. © 2011 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号