首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
The double-stranded RNA-dependent protein kinase (PKR) is one of the four mammalian kinases that phosphorylates the translation initiation factor 2alpha in response to virus infection. This kinase is induced by interferon and activated by double-stranded RNA (dsRNA). Phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) blocks translation initiation of both cellular and viral mRNA, inhibiting virus replication. To counteract this effect, most viruses express inhibitors that prevent PKR activation in infected cells. Here we report that PKR is highly activated following infection with alphaviruses Sindbis (SV) and Semliki Forest virus (SFV), leading to the almost complete phosphorylation of eIF2alpha. Notably, subgenomic SV 26S mRNA is translated efficiently in the presence of phosphorylated eIF2alpha. This modification of eIF2 does not restrict viral replication; SV 26S mRNA initiates translation with canonical methionine in the presence of high levels of phosphorylated eIF2alpha. Genetic and biochemical data showed a highly stable RNA hairpin loop located downstream of the AUG initiator codon that is necessary to provide translational resistance to eIF2alpha phosphorylation. This structure can stall the ribosomes on the correct site to initiate translation of SV 26S mRNA, thus bypassing the requirement for a functional eIF2. Our findings show the existence of an alternative way to locate the ribosomes on the initiation codon of mRNA that is exploited by a family of viruses to counteract the antiviral effect of PKR.  相似文献   

2.
Bovine viral diarrhea virus is an important animal pathogen. The cytopathic and noncytopathic biotypes of the virus are associated with distinct pathologic entities. A striking difference between the two biotypes is viral RNA accumulation in infected cells. Viral dsRNA is thought to activate protein kinase PKR; an important mediator of innate immunity. In this study, we investigated PKR activation and its consequences in BVDV-infected cells. Infection with cp BVDV was found to induce PKR activation, eIF2alpha phosphorylation, translation inhibition and NF-kappaB activation. In contrast, PKR activity and eIF2alpha phosphorylation were not induced during infection with the ncp BVDV. In addition, cells infected with ncp BVDV showed no PKR phosphorylation in response to infection with the unrelated poliovirus whereas uninfected ncp BVDV cells when infected with poliovirus showed high levels of phosphorylated PKR. Cells infected with ncp BVDV failed to respond to synthetic dsRNA (poly I:C) treatment with NF-kappaB activation. However, the NF-kappaB response to bacterial lipopolysaccarides (LPS) was normal in these cells, suggesting a specific suppression of antiviral response signaling in ncp BVDV infected cells. These results indicate that ncp BVDV has evolved specific mechanisms to prevent activation of PKR and its antiviral effectors, most likely to facilitate the establishment and maintenance of persistent infection.  相似文献   

3.
Activated PKR protein regulates downstream anti-viral effects, including inhibition of translation. Thus, many viruses encode proteins to inhibit PKR. Here, we provide evidence that the vaccinia virus K1 protein, a host-range protein, possesses this function. First, the expression of the wild-type K1 protein was necessary to inhibit virus-induced eIF2α phosphorylation, an indirect measure of PKR activation, in RK13 and HeLa cells. Second, virus-induced eIF2α phosphorylation no longer occurred in PKR-deficient HeLa cells, suggesting PKR was responsible for vaccinia virus-induced eIF2α modification. Third, in normal HeLa cells, K1 protein expression also prevented virus-mediated PKR phosphorylation (activation). Residues in the C-terminal portion of the ANK2 region of K1 were identified as necessary for this inhibitory phenotype. Interestingly, mutant viruses that failed to inhibit PKR activation, such as S2C#2, also did not replicate in HeLa cells, suggesting that K1's inhibition of PKR was required for a productive infection. In support of this theory, when PKR was absent from HeLa cells, there was a modest restoration of viral protein synthesis during S2C#2 infection. However, the increased protein synthesis was insufficient for a productive infection.  相似文献   

4.
Influenza virus mRNAs contain a 5′-cap structure followed by short cell-derived heterogeneous oligonucleotides and they are polyadenylated. However, selective translation of viral mRNAs occurs upon infection. Thus, we have studied whether differential requirements for the eIF4F components on viral and cellular translation could mediate this selectivity. We have previously reported that influenza virus infection proceeds efficiently upon functional impairment of the cap-binding factor eIF4E. Now, the requirements for the eIF4A helicase and the eIF4G scaffolding factor have been examined. The two proteins are essential for viral translation both in in vivo and in vitro analysis. Consequently, viral mRNAs do not contain cis-acting signals that could mediate eIF4A and eIF4G independence and trans-acting viral proteins do not replace their function. Thus, eIF4A and eIF4G proteins are not responsible for the selective translation of viral mRNAs and the translational shut-off of cellular protein synthesis observed in influenza virus infected cells.  相似文献   

5.
6.
Fuchs A  Pinto AK  Schwaeble WJ  Diamond MS 《Virology》2011,412(1):101-109
The function of the lectin pathway of complement activation in vivo against West Nile virus (WNV) or many other pathogenic viruses has not been defined. Mice deficient in lectin pathway recognition molecules (mannose binding lectin-A (MBL-A) and mannose binding lectin-C (MBL-C)) or the effector enzyme mannan-binding lectin-associated serine protease-2 (MASP-2), were more vulnerable to WNV infection than wild type mice. Compared with studies of mice deficient in factors of the classical or alternative pathway, MBL-A−/− × MBL-C−/− or MASP-2−/− mice showed a less severe course of WNV infection. Indeed, a deficiency in lectin pathway activation did not significantly affect the kinetics of viral spread to the central nervous system (CNS) nor did it profoundly alter generation of adaptive B and T cell immune responses. We conclude that MBL-mediated recognition and lectin pathway activation have important yet subordinate functions in protecting against WNV infection and disease.  相似文献   

7.
8.
We performed experiments to determine the effect of PKR activation on respiratory syncytial virus (RSV) replication. We first determined that RSV infection activates PKR which induces the phosphorylation of eIF2α, resulting in the formation of host stress granules. We used RNA interference to decrease endogenous PKR levels. RSV replication was not altered in cells deficient for PKR expression. However, RSV-mediated stress granule formation was significantly reduced in PKR-knockdown cells. As an alternative method to block PKR activation, we used treatment with the kinase inhibitor 2-aminopurine (2-AP). We observed that 2-AP treatment significantly reduced viral replication. We also treated PKR-knockdown cells with 2-AP and inoculated with RSV. Under these conditions, 2-AP treatment diminished viral replication in the absence of PKR expression. These results suggest that PKR activation has a minimal effect on RSV replication and that the antiviral effect of 2-AP during RSV infection likely occurs via a PKR-independent mechanism.  相似文献   

9.
10.
dsRNA-dependent protein kinase R (PKR) is a ubiquitously expressed enzyme well known for its roles in immune response. Upon binding to viral dsRNA, PKR undergoes autophosphorylation, and the phosphorylated PKR (pPKR) regulates translation and multiple signaling pathways in infected cells. Here, we found that PKR is activated in uninfected cells, specifically during mitosis, by binding to dsRNAs formed by inverted Alu repeats (IRAlus). While PKR and IRAlu-containing RNAs are segregated in the cytosol and nucleus of interphase cells, respectively, they interact during mitosis when nuclear structure is disrupted. Once phosphorylated, PKR suppresses global translation by phosphorylating the α subunit of eukaryotic initiation factor 2 (eIF2α). In addition, pPKR acts as an upstream kinase for c-Jun N-terminal kinase and regulates the levels of multiple mitotic factors such as CYCLINS A and B and POLO-LIKE KINASE 1 and phosphorylation of HISTONE H3. Disruption of PKR activation via RNAi or expression of a transdominant-negative mutant leads to misregulation of the mitotic factors, delay in mitotic progression, and defects in cytokinesis. Our study unveils a novel function of PKR and endogenous dsRNAs as signaling molecules during the mitosis of uninfected cells.  相似文献   

11.
Min JY  Li S  Sen GC  Krug RM 《Virology》2007,363(1):236-243
It is not known how influenza A viruses, important human pathogens, counter PKR activation, a crucial host antiviral response. Here we elucidate this mechanism. We show that the direct binding of PKR to the NS1 protein in vitro that results in inhibition of PKR activation requires the NS1 123-127 amino acid sequence. To establish whether such direct binding of PKR to the NS1 protein is responsible for inhibiting PKR activation in infected cells, we generated recombinant influenza A/Udorn/72 viruses expressing NS1 proteins in which amino acids 123/124 or 126/127 are changed to alanines. In cells infected with these mutant viruses, PKR is activated, eIF-2alpha is phosphorylated and viral protein synthesis is inhibited, indicating that direct binding of PKR to the 123-127 sequence of the NS1 protein is necessary and sufficient to block PKR activation in influenza A virus-infected cells. Unexpectedly, the 123/124 mutant virus is not attenuated because reduced viral protein synthesis is offset by enhanced viral RNA synthesis at very early times of infection. These early viral RNAs include those synthesized predominantly at later times during wild-type virus infection, demonstrating that wild-type temporal regulation of viral RNA synthesis is absent in 123/124 virus-infected cells. Enhanced early viral RNA synthesis after 123/124 virus infection also occurs in mouse PKR-/- cells, demonstrating that PKR activation and deregulation of the time course of viral RNA synthesis are not coupled. These results indicate that the 123/124 site of the NS1A protein most likely functionally interacts with the viral polymerase to mediate temporal regulation of viral RNA synthesis. This interaction would occur in the nucleus, whereas PKR would bind to NS1A proteins in the cytoplasm prior to their import into the nucleus.  相似文献   

12.
Many, but not all, strains of West Nile virus (WNV) contain a single N-linked glycosylation site on their envelope (E) proteins. Previous studies have shown that E-glycosylated strains are more neuroinvasive in mice than non-glycosylated strains. E protein glycosylation also appears to play a role in attachment and entry of WNV into host cells in vitro; however, studies examining how E protein glycosylation affects the interactions of WNV with its mosquito vectors in vivo have not yet been performed. We mutated the E protein glycosylation site from NYS to IYS in a previously described full-length clone of the NY99 genotype of WNV (WT), resulting in a virus that lacked the glycan at aa154. WNV-N154I replicated less efficiently than WNV-WT in Culex mosquito tissues, although the extent of the decrease was greater in Cx. pipiens than in Cx. tarsalis. Following peroral infection, mosquitoes infected with WNV-N154I were less likely to transmit virus than those infected with WNV-WT. Interestingly, all but one of the mosquitoes infected with WNV-N154I transmitted a revertant virus, suggesting that there is strong selective pressure toward E protein glycosylation. Together these data suggest that loss of the glycan at aa154 on the WNV E protein can severely restrict viral spread in the mosquito vector.  相似文献   

13.
The interferon-inducible 2′,5′-oligoadenylate synthetase 1b (Oas1b) protein inhibits West Nile virus (WNV) infection by preventing viral RNA (vRNA) accumulation in infected cells. Serial passage of WNV in Oas1b-expressing mouse cells selected a virus variant with improved growth capacity. Two major amino acid substitutions were identified in this Oas1b-resistant WNV variant: NS3-S365G in the ATPase/helicase domain of NS3 and 2K-V9M in the C-terminal segment of NS4A. To assess their effect on antiviral activity of Oas1b, the NS3 and 2K mutations were engineered into an infectious WNV cDNA clone. The NS3 mutation alters requirement of ATP for ATPase activity and attenuates Oas1b-mediated suppression of vRNA accumulation. However, growth of NS3-mutant virus remains impaired in Oas1b-expressing cells. Only the 2K-V9M mutation efficiently rescued viral growth by promoting vRNA replication. Thus, WNV resistance to Oas1b antiviral action could be attributed to the 2K-V9M substitution with a potential role of NS3-S365G through rescue of vRNA accumulation.  相似文献   

14.
The cDNAs of rainbow trout and zebrafish eIF2alpha have been isolated and found to encode proteins of similar molecular weight and isoelectric point to the alpha-subunit of the human translational initiation factor, eIF2. The rainbow trout (36.0kDa) and zebrafish (36.2kDa) eIF2alphas share 93 and 91% identity to the human protein, respectively, and are recognized by antibodies raised to the human form. In mammals, the phosphorylation of the alpha-subunit of eIF2 plays a key role in the regulation of protein synthesis in response to a range of cellular stresses. Regions corresponding to the human phosphorylation and kinase-docking sites are identical in the proteins of both fish species, as are residues that interact with the eIF2 recycling factor, eIF2B. Moreover, both recombinant rainbow trout and zebrafish eIF2alphas can be phosphorylated in vitro by the mammalian heme-sensitive eIF2alpha-kinase, HRI/HCR, as well as the interferon-inducible, dsRNA sensitive kinase, PKR. Phosphorylation of rainbow trout and zebrafish eIF2alpha can also occur in vivo. RTG-2 and ZFL cells subjected to endoplasmic reticulum (ER) stress by treatment with the Ca(2+)-ionophore A23187 showed increased levels of eIF2alpha phosphorylation, suggesting similarity between the ER stress response in fish and other higher eukaryotes. Furthermore, RTG-2 cells responded to treatment with poly(I).poly(C) or to infection by infectious pancreatic necrosis virus, IPNV, by increasing eIF2alpha phosphorylation. These data imply that RTG-2 cells express the interferon-induced eIF2alpha-kinase, PKR and suggests that the interferon/eIF2alpha/PKR response to virus infection may be a conserved vertebrate characteristic. Overall these data are consistent with the premise that fish are able to regulate protein synthesis in response to cellular stresses through phosphorylation of eIF2alpha.  相似文献   

15.
Previously we showed that the cellular protein P58IPK contributes to viral protein synthesis by decreasing the activity of the anti-viral protein, PKR. Here, we constructed a mathematical model to examine the P58IPK pathway and investigated temporal behavior of this biological system. We find that influenza virus infection results in the rapid activation of P58IPK which delays and reduces maximal PKR and eIF2α phosphorylation, leading to increased viral protein levels. We confirmed that the model could accurately predict viral and host protein levels at extended time points by testing it against experimental data. Sensitivity analysis of relative reaction rates describing P58IPK activity and the downstream proteins through which it functions helped identify processes that may be the most beneficial targets to thwart virus replication. Together, our study demonstrates how computational modeling can guide experimental design to further understand a specific metabolic signaling pathway during viral infection in a mammalian system.  相似文献   

16.
West Nile virus (WNV) is a mosquito-borne pathogen. During replication, WNV acquires different carbohydrates and lipid membranes, depending on its mosquito or vertebrate hosts. Consequently, WNV derived from mosquito and vertebrate cell lines differ in their infectivity for dendritic cells (DCs) and induction of type I interferon (IFN-α/β) in vitro. We evaluated the pathogenesis of WNV derived from mosquito (WNVC6/36) and vertebrate (WNVBHK) cell lines in mice. The tissue tropism, infectivity, clinical disease, and mortality did not differ for mice inoculated with WNVC6/36 or WNVBHK, and there were only minor differences in viral load and serum levels of IFN-α/β. The replication kinetics of WNVC6/36 and WNVBHK were equivalent in primary DCs and skin cells although primary DCs were more susceptible to WNVC6/36 infection than to WNVBHK infection, suggesting that less virus is produced per infected cell for WNVC6/36. In conclusion, viral source has minimal effect on WNV pathogenesis in vivo.  相似文献   

17.
The double-stranded (ds) RNA-dependent protein kinase PKR is considered to play an important role in interferon's (IFN's) response to viral infection. Here, we demonstrate that mice lacking PKR are predisposed to lethal intranasal infection by the usually innocuous vesicular stomatitis virus, and also display increased susceptibility to influenza virus infection. Our data indicate that in normal cells, PKR primarily prevents virus replication by inhibiting the translation of viral mRNAs through phosphorylation of eIF2alpha, while concomitantly assisting in the production of autocrine IFN and the establishment of an antiviral state. These results show that PKR is an essential component of innate immunity that acts early in host defense prior to the onset of IFN counteraction and the acquired immune response.  相似文献   

18.
Infection with West Nile virus (WNV) via a mosquito bite results in local viral replication in the skin, followed by viremia. Thus, tissue macrophages are ideally located to prevent the dissemination of WNV throughout the host. The current study shows that WNV infection of human monocyte-derived macrophages (MDM) results in increased WNV mRNA, protein, and infectious virions at 24 h p.i. with a decline in titer after 48 h. Concomitant with viral control was the robust induction of indoleamine 2,3-dioxygenase (IDO) and resultant metabolism of L-tryptophan (L-Trp) to kynurenine. In WNV-exposed cultures, IDO protein was induced primarily in noninfected versus viral-infected MDM. Whereas WNV infection increased the production of IFN-α, IFN-β, and TNF, only antibody neutralization of TNF attenuated IDO expression and activity. WNV infection also activated NF-κB, and inhibition of this pathway with BMS-345541 abrogated IDO induction. Similar results were also obtained with MDM infected with the related flavivirus, Japanese encephalitis virus. Whereas IDO-mediated L-Trp metabolism can exhibit antiviral properties, inhibition of IDO activity in MDM with L-1-MT or the addition of excess L-Trp did not affect viral control. However, culturing MDM in L-Trp-deficient medium or overexpression of IDO in cells prior to infection significantly attenuated WNV replication, which was reversed by adding excess L-Trp. Together, these data support that although IDO is not required by MDM for the clearance of established viral infection, the spread of flavivirus infection is limited by IDO expressed in uninfected, neighboring cells.  相似文献   

19.
The interferon-induced protein kinase PKR is activated upon binding double-stranded RNA and phosphorylates the translation initiation factor eIF2alpha on Ser-51 to inhibit protein synthesis in virally infected cells. Swinepox virus C8L and vaccinia virus K3L gene products structurally resemble the amino-terminal third of eIF2alpha. We demonstrate that the C8L protein, like the K3L protein, can reverse the toxic effects caused by high level expression of human PKR in yeast cells. In addition, expression of either the K3L or C8L gene product was found to reverse the inhibition of reporter gene translation caused by PKR expression in mammalian cells. The inhibitory function of the K3L and C8L gene products in these assays was found to be critically dependent on residues near the carboxyl-termini of the proteins including a sequence motif shared among eIF2alpha and the C8L and K3L gene products. Thus, despite significant sequence differences both the C8L and K3L proteins function as pseudosubstrate inhibitors of PKR.  相似文献   

20.
Lytic replication of many viruses activates an innate host response designed to prevent the completion of the viral lifecycle, thus impeding the spread of the infection. One branch of the host's complex reaction functions to incapacitate the cellular translational machinery on which the synthesis of viral polypeptides completely depends. This is achieved through the activation of specific protein kinases that phosphorylate eIF2 on its α subunit and inactivate this critical translation initiation factor. However, as continued synthesis of viral proteins is required to assemble the viral progeny necessary to transmit the infection to neighboring cells, viruses have developed a variety of strategies to counter this cellular response. Genetic and biochemical studies with herpes simplex virus type 1 (HSV-1) have revealed that the virus produces at least two discrete products at different times during its replicative program that act to prevent the accumulation of phosphorylated eIF2α. The γ134.5 gene product is expressed first, encoding a regulatory subunit that binds the cellular protein phosphatase 1α and regenerates pools of active eIF2 by removing the inhibitory phosphate from the α subunit. The second function, encoded by the product of the Us11 gene, specifies a double-stranded RNA-binding protein that prevents activation of PKR, a cellular eIF2α kinase. Together, both proteins cooperate to overcome the antiviral response of the host and properly regulate translation in HSV-1–infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号