首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the superfamily of seven transmembrane receptors, known as G protein-coupled receptors (GPCRs), are important targets for many therapeutic areas in drug discovery. A homogeneous guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) scintillation proximity assay (SPA) binding assay targeting a Galphai-coupled GPCR recombinantly expressed in membranes of Chinese hamster ovary (CHO) cells was developed and miniaturized into 1,536-well plate format. The primary ultra-high-throughput screen of the entire compound collection was accomplished on the Kalypsys (San Diego, CA) robotic platform at a concentration of 8 muM using the 1,536-well [(35)S]GTPgammaS SPA binding functional assay. The signal-to-noise ratio of the primary screen was approximately 2.1-fold, and the plate coefficient of variation for the compound field was approximately 11%. The hit rate from the primary screen for receptor agonists at >35% activity was approximately 0.3%. Primary hits were cherry-picked, confirmed in triplicate, counterscreened against untransfected CHO cell membranes, and further analyzed in a cyclic AMP functional assay, resulting in 34 leads for optimization.  相似文献   

2.
目的建立针对趋化因子受体CCR5的药物筛选SPA-WGA法[35S]GTPγS结合实验方法。方法通过降低SPA-WGA小球用量和对其他各种因素进行优化,如细胞膜用量、GDP浓度、体系孵育时间和样品连续测量时间,建立了SPA-WGA法[35S]GTPγS结合实验方法。结果最后优化得到实验条件为:100μl反应体系,0.1 mg SPA-WGA小球,10μgCHO-CCR5细胞膜,10μmol.L-1GDP和0.3 nmo.lL-1[35S]GTPγS,室温孵育1.5 h并且在1 200 m in之内完成所有样品测量。该法与传统抽滤法比较,测量得到RANTES的EC50分别为:1.40 nmol.L-1和2.90 nmol.L-1,测量得到SCH-C的IC50分别为:2.95 nmo.lL-1和2.73 nmo.lL-1,测量结果相似,均呈现出较好的剂量效应关系。利用该法筛选54个化合物,筛到3个IC50在1~10 nmol.L-1的化合物。这3个化合物是否具有H IV-1进入抑制剂的潜在开发价值,还有待体外抗H IV-1实验的进一步验证和筛选。结论此方法操作简便,灵敏性和重现性好,且可高通量和自动化,该法适用于能与Gi家族蛋白偶联的GPCR的高通量药物筛选。  相似文献   

3.
4.
Aim: To develop a complex high-throughput screening (HTS) assay based on scintillation proximity assay (SPA) technology for identification of novel peroxisome proliferator-activated receptor gamma (PPARγ) modulators. Methods: Fulllength PPARγand retinoid X receptor alpha (RXRα), biotinylated PPAR response element (PPRE), [^3H]BRL49653 and streptavidin-coated FlashPlate or microbead were used to develop an HTS assay based on SPA technology. This ‘ABCDE‘ method was validated against conventional hydroxyapatite (HA) assay and applied to large-scale screening of 16 000 synthetic compounds and natural product extracts. Results: (1) IC50 values of positive control compounds (BRL49653 and troglitazone) obtained from the ‘ABCDE‘ method and HA assay were comparable and consistent with those reported elsewhere; (2) Approximately 178 compounds, showing more than 70% competitive inhibition on BRL49653 binding to PPARγ, were identified initially by the ‘ABCDE‘ method (microbead); (3) Secondary screening using FlashPlate and cross-reactivity studies with RARα, β,γand RXRα,β,γconfirmed that 12 compounds possessed specific PPARγbinding properties including 2 with IC50 values less than 0.5μmol/L and novel chemical structures. Conclusions: The ‘ABCDE‘ method using either FlashPlate or microbead, is a highly efficient, automatable, and robust tool to screen potential PPARγmodulators in HTS setting. Its application may be expanded to other nuclear receptors that form heterodimers upon activation.  相似文献   

5.
The receptor-stimulated accumulation of [35S]GTPgammaS provides a measure of functional coupling of G proteins with receptors. Sensitivity for autoradiographic visualization of [35S]GTPgammaS binding was improved two- to threefold in rat brain sections by optimizing assay conditions. Non-specific (NSB), basal and agonist-stimulated [35S]GTPgammaS binding were measured, using methadone, 5-carboxamidotryptamine and epinephrine for mu-opiate receptors, 5-HT(1A) receptors and alpha(2)-adrenoceptors. Basal and NSB were low in glycylglycine buffer compared to Tris or HEPES buffers, and agonist-stimulated [35S]GTPgammaS binding was more easily observed. Further optimization using glycylglycine buffer found increased signal-to-noise ratio with inclusion of dithiothrietol, increased [35S]GTPgammaS incubation time (2-4 h) and guanosine 5'-diphosphate (GDP) preincubation (20-30 min), and use of [35S]GTPgammaS at 0.1 nM. Improved sensitivity was due to decreased NSB and basal [35S]GTPgammaS binding and agonist-stimulated binding were similarly affected for each receptor system. The assay conditions described should extend the use of agonist-stimulated [35S]GTPgammaS autoradiography to receptors, which produce low levels of [35S]GTPgammaS binding and to the measurement of changes in receptor-G protein coupling.  相似文献   

6.
To date, 5-hydroxytryptamine1A (5-HT1A) receptor-mediated functional assays (adenylyl cyclase inhibition, high-affinity GTPase activity and [35S]guanosine-5'-O-(gamma-thio)-triphosphate ([35S]GTPgammaS) binding) have been performed mainly in hippocampal membranes. In the current study, 5-HT-stimulated G protein activation assays were carried out in rat cerebral cortical membranes. High-affinity GTPase activity was stimulated by 5-HT, but not by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). By contrast, 5-HT- and 8-OH-DPAT-stimulated [35S]GTPgammaS binding displayed sufficient dynamic range enough to warrant further pharmacological analysis. Under standard conditions, which were determined precisely in terms of the concentrations of GDP, MgCl2 and NaCl, the profile of 5-HT-stimulated [35S]GTPgammaS binding investigated using a series of 5-HT receptor agonists and antagonists clearly indicated the involvement of the 5-HT1A receptor subtype. There appeared to be no evidence supporting the presence of regional heterogeneity in coupling efficiency between 5-HT1A and G proteins in the hippocampus or cortex. This method is a useful tool for investigating functional coupling between postsynaptic 5-HT1A receptors and G proteins in cerebral cortical membranes.  相似文献   

7.
Coupling of receptors to G-proteins can be assessed by the ability of specific agonists to stimulate [35S]GTPgammaS binding in both brain membranes and sections in the presence of excess GDP. In some brain regions, however, high basal activity makes it difficult to detect agonist-stimulated [35S]GTPgammaS binding. The present study suggests a modification of the assay to reduce basal [35S]GTPgammaS binding and thus increase the signal:noise ratio. Adenosine A1 receptors belong to the class of G-protein-coupled receptors that activate Gi/Go proteins in brain. In the present study, the A1 agonist R(-)N6-(2-phenylisopropyl)adenosine (R-PIA) stimulated [35S]GTPgammaS binding in brain regions known to contain A1 receptors, including cerebellum, hippocampus and dentate gyrus, medial geniculate body, superior colliculus, certain thalamic nuclei, cerebral cortex, piriform cortex, caudate-putamen, and nucleus accumbens. Treatment of sections and membranes with adenosine deaminase (ADase), which is typically used in adenosine assays to eliminate endogenous adenosine, reduced basal [35S]GTPgammaS binding. In addition, for cannabinoid and mu-opioid agonists, the percent stimulation of [35S]GTPgammaS binding was approximately doubled when ADase was included in the assay. These results suggest that endogenous adenosine contributes significantly to basal [35S]GTPgammaS binding in certain brain regions, and that this activity may be reduced by the addition of ADase, thus improving the signal:noise ratio of agonist-stimulated [35S]GTPgammaS binding.  相似文献   

8.
Abstract: Compared to biochemical high-throughput screening (HTS) assays, cell-based functional assays are generally thought to be more time consuming and complex because of additional efforts for running continuous cell cultures as well as the numerous assay steps when transferring media and compounds. A common strategy to compensate the anticipated reduction in overall throughput is to implement highly automated cell culture and screening systems. However, such systems require substantial investments in sophisticated hardware and highly specialized personnel. In trying to set up alternatives to increasing throughput in functional cell-based screening, we combined several approaches. By using (1) cryopreserved cell aliquots instead of continuous cell culture, (2) cells in suspension instead of adherent cells, and (3) "ready-to-screen" assay plates with nanoliter aliquots of test compounds, an assay procedure was developed that very much resembles a standard biochemical, enzymatic assay comprising only a few dispense steps. Chinese hamster ovary cells stably overexpressing a Galphaq-coupled receptor were used as a model system to measure receptor activation by detection of intracellular D-myo-inositol 1-phosphate with the help of homogeneous time-resolved fluorescence (HTRF, CISbio International, Bagnols-sur-Cèze, France). Initially established in 384-well adherent cell format, the assay was successfully transferred to 1,536-well format. The assay quality was sufficient to run HTS campaigns in both formats with good Z'-factors and excellent reproducibility of antagonists. Subsequently, the assay procedure was optimized for usage of suspension cells. The influences of cell culture media, plate type, cell number, and incubation time were assessed. Finally, the suspension cell assay was applied to pharmacological characterization of a small molecule antagonist by Schild plot analysis. Our data demonstrate not only the application of the IP-One HTRF assay (CISbio International) for HTS in a high-density format, but furthermore the successful use of cryopreserved and suspension cells in a one-day functional cell-based assay.  相似文献   

9.
In this review I consider assays for G protein-coupled receptor (GPCR) activity based on the binding of labelled analogues of GTPγS ([35S]GTPγS or Eu-GTPγS) to G proteins in tissues (GTPγS binding assays). Such assays provide convenient measures of GPCR activity close to the receptor in the signalling cascade. In order to set up a GTPγS binding assay, the requirements of the assay must be considered. These are tissue source, GTPγS analogue, G protein, GDP, Mg2+/Na+ ions, saponin, incubation time. The assay, once optimized, can be used to generate concentration/response curves for GPCRs signalling via Gi/o proteins (or to other G proteins with a modified assay) and actions of agonists, inverse agonists and antagonists may, in principle, be assessed. For agonists and inverse agonists, data for the maximal agonist effect, the concentration of ligand giving a half-maximal response and the Hill coefficient may be derived. For antagonists, data for the equilibrium dissociation constant can be obtained. The mechanistic basis of the assay is considered. Although the assay can be used to profile ligands, under the conditions it is used, it may not be measuring the same event that determines GPCR action in cells.  相似文献   

10.
Inositol-specific PLCs comprise a family of enzymes that utilize phosphoinositide substrates, e.g., PIP(2), to generate intracellular second messengers for the regulation of cellular responses. In the past, monitoring this reaction has been difficult due to the need for radiolabeled substrates, separation of the reaction products by organic-phase extraction, and finally radiometric measurements of the segregated products. In this report, we have studied the enzymatic characteristics of two novel PLCs that were derived from functional genomic analyses using a phospholipid-modified solid scintillating support. This method allows for the hydrophobic capture of the [(3)H]phosphoinositide substrate on a well defined scintillation surface and the homogenous measurement of the enzymatic hydrolysis of the substrate by proximity effects. Our results show that the assay format is robust and well suited for this class of lipid-metabolizing enzymes.  相似文献   

11.
Functional consequences of receptor stimulation by quinpirole, a dopamine D(2)-like receptor agonist, were assessed using agonist-stimulated [35S]GTPgammaS binding in rat striatal membranes. Dopamine receptor antagonists inhibited quinpirole-stimulated [35SCH 23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4, 5-tetrahydro-1H-3-benzazepine), consistent with a dopamine D(2)-like profile. In contrast, the monoamine oxidase inhibitors Ro 41-1049 (N-(2-aminoethyl)-5-(3-fluorophenyl)-4-thiazolecarboxemide), and (+)- and (-)-deprenyl, which inhibit [3H]quinpirole binding, had no effect on agonist-independent or quinpirole-stimulated [35S]GTPgammaS binding. Clorgyline inhibited [35S]GTPgammaS binding by a non-dopamine D(2) receptor-mediated mechanism. These findings demonstrate a notable discrepancy between the pharmacological profile of [3H]quinpirole binding and quinpirole-stimulated [35S]GTPgammaS binding.  相似文献   

12.
Trazodone is an effective antidepressant drug with a broad therapeutic spectrum, including anxiolytic efficacy. Although trazodone is usually referred to as a serotonin (5-HT) reuptake inhibitor, this pharmacological effect appears to be too weak to fully account for its clinical effectiveness. The present study aimed to elucidate the agonist properties of trazodone and its active metabolite, m-chlorophenylpiperazine (m-CPP), at 5-HT(1A) receptors by means of the guanosine-5'-O-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding assay. In membranes prepared from Chinese hamster ovary cells expressing human 5-HT(1A) receptors (CHO/h5-HT(1A)), trazodone behaved as an almost full agonist and m-CPP was also a highly efficacious partial agonist at 5-HT(1A) receptors. The intrinsic activities of both compounds were higher than those of tandospirone and buspirone, which are clinically effective anxiolytics with well-known 5-HT(1A) partial agonist properties. These effects were replicated in the 5-HT(1A) receptor-mediated [(35)S]GTPgamma(S) binding assay in native rat brain membranes (at least in hippocampal membranes), although the intrinsic activities of the compounds were low and differently ranked compared to those in CHO/h5-HT(1A) cell membranes. When considering the implications of 5-HT(1A) receptors in anxiety and/or depression, as well as the clinical effectiveness of azapirone anxiolytics with partial 5-HT(1A) receptor agonist properties such as buspirone, it is possible that the agonist effects on 5-HT(1A) receptors of trazodone and its active metabolite m-CPP presented in this study contribute, at least in part, to the clinical efficacy of the atypical antidepressant trazodone.  相似文献   

13.
The [35S]GTPgammaS binding assay represents a functional approach to assess the coupling between receptors and G-proteins. The optimal conditions for [35S]GTPgammaS binding to human brain homogenates were established in postmortem samples of prefrontal cortex. The influence of protein content, incubation time, GDP, Mg(2+), and NaCl concentrations on the [35S]GTPgammaS binding were assessed in the absence and presence of the alpha(2)-adrenoceptor agonist UK14304 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine). In conditions of 50 microM GDP and 100 mM NaCl, UK14304 increased the apparent affinity of the specific [35S]GTPgammaS binding without changing the apparent density. Concentration-response curves to agonists of alpha(2)-adrenoceptors, mu-opioid, 5-HT(1A), cholinergic muscarinic, and GABA(B) receptors displayed, in the presence of NaCl, maximal stimulations between 24% and 61% with EC(50) values in the micromolar range. Selective antagonists shifted to the right the agonist-induced stimulation curves. The G(i)/G(o)-protein alkylating agent N-ethylmaleimide decreased basal [35S]GTPgammaS binding in a concentration-dependent manner and inhibited the stimulation induced by the different agonists. In cortical sections, [35S]GTPgammaS binding to gray matter was stimulated by the agonist UK14304. The present study demonstrates that functional studies of the receptor coupling to G(i)/G(o)-proteins can be performed in postmortem human brain samples.  相似文献   

14.
Ionizing radiation (IR) and certain chemotherapeutic drugs are designed to generate cytotoxic DNA double-strand breaks (DSBs) in cancer cells. Inhibition of the major DSB repair pathway, nonhomologous end joining (NHEJ), will enhance the cytotoxicity of these agents. Screening for inhibitors of the DNA ligase IV (Lig4), which mediates the final ligation step in NHEJ, offers a novel target-based drug discovery opportunity. For this purpose, we have developed an enzymatic assay to identify chemicals that block the transfer of [α-(33)P]-AMP from the complex Lig4-[α-(33)P]-AMP onto the 5' end of a double-stranded DNA substrate and adapted it to a scintillation proximity assay (SPA). A screen was performed against a collection of 5,280 compounds. Assay statistics show an average Z' value of 0.73, indicative of a robust assay in this SPA format. Using a threshold of >20% inhibition, 10 compounds were initially scored as positive hits. A follow-up screen confirmed four compounds with IC(50) values ranging from 1 to 30?μM. Rabeprazole and U73122 were found to specifically block the adenylate transfer step and DNA rejoining; in whole live cell assays, these compounds were found to inhibit the repair of DSBs generated by IR. The ability to screen and identify Lig4 inhibitors suggests that they may have utility as chemo- and radio-sensitizers in combination therapy and provides a rationale for using this screening strategy to identify additional inhibitors.  相似文献   

15.
We examined the effects of [D-Pen(2),D-Pen(5)]enkephalin (DPDPE), [D-Ala(2),Glu(4)]deltorphin (DELT), and (+)-4-[(alphaR)-alpha((2S, 5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N, N-diethylbenzamide (SNC80) on [35S]GTPgammaS binding in brain membranes prepared from micro-opioid receptor knockout (-/-) mice. The potency and maximal response (E(max)) of these agonists were unchanged compared to control mice. In contrast, while the potency of [D-Pen(2),pCl-Phe(4),D-Pen(5)]enkephalin (pCl-DPDPE) was not significantly different, the E(max) was reduced as compared to controls. In the tail-flick test, intracerebroventricular (i.c.v.) or intrathecal (i.th.) DELT produced antinociceptive effects in -/- mice with potency that did not differ significantly from controls. In contrast, the antinociceptive potency of i.c.v. and i.th. DPDPE was displaced to the right by 4- and 9-fold in -/- compared to control mice, respectively. Reduced DPDPE antinociceptive potency in -/- mice, taken together with reduced DPDPE- and pCl-DPDPE- stimulated G protein activity in membranes prepared from -/- mice, demonstrate that these agonists require mu-opioid receptors for full activity. However, because DELT mediated G protein activation and antinociception were both comparable between -/- and wild type mice, we conclude that the mu-opioid receptor is not a critical component of delta-opioid receptor function.  相似文献   

16.
We constructed a reproducible, simple, and small-scale determination method of the psychoactive drugs that acted directly on the monoamine receptor by measuring the activation of [(35)S]guanosine-5'-O-(3-thio)-triphosphate binding to guanine nucleotide-binding proteins (G proteins). This method can simultaneously measure the effects of three monoamines, namely dopamine (DA), serotonin (5-HT), and norepinephrine (NE), in rat brain membranes using a 96-well microplate. Activation of D(1) and D(2) receptors in striatal membranes by DA as well as 5-HT and NEalpha(2) receptors in cortical membranes could be measured. Of 12 tested phenethylamines, 2,5-dimethoxy-4-chlorophenethylamine (2C-C), 2,5-dimethoxy-4-ethylphenethylamine (2C-E), and 2,5-dimethoxy-4-iodophenethylamine (2C-I) stimulated G protein binding. The other phenethylamines did not affect G protein binding. All 7 tryptamines tested stimulated G protein binding with the following rank order of potency; 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT)>5-methoxy-N,N-diallyltryptamine (5-MeO-DALT)>5-methoxy-alpha-methyltryptamine (5-MeO-AMT)>or=5-methoxy-N,N-methylisopropyltryptamine (5-MeO-MIPT)>5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT)>N,N-dipropyltryptamine (DPT)>or=alpha-methyltryptamine (AMT). This assay system was able to designate psychoactive drugs as prohibited substances in accordance with criteria set forth by the Tokyo Metropolitan government.  相似文献   

17.
This article describes the development of micro-opioid receptor (MOR) binding and GTPgammaS functional SPAs as improved screening tools for the identification of MOR antagonists. Opioid receptors are members of the seven-transmembrane G protein-coupled receptor (GPCR) family and are involved in the control of various aspects of human physiology, including pain, stress, reward, addiction, respiration, gastric motility, and pituitary hormone secretion. Activation of the MOR initiates intracellular signaling pathways leading to a reduction in intracellular cyclic AMP levels, inhibition of calcium channels, and activation of potassium channels resulting in a reduction of the excitability of neurons. Characterization of opioid receptor ligand binding has traditionally been accomplished through the use of low throughput filtration-based binding assays, whereas functional activity has been based upon cyclic AMP measurements or filtration-based GTPgammaS functional assays. This report describes the development of a MOR displacement binding SPA using the radiolabeled antagonist [(3)H]diprenorphine ((3)H-DPN). The assay was optimized using statistical experimental design and demonstrates the stability and robustness necessary for HTS. The assay was biased toward the identification of MOR antagonists through the addition of Na(+). Our assay conditions also minimized the phenomenon of ligand depletion, a problem commonly observed in low-volume assays using high receptor-expressing cell lines. The optimized procedure revealed (3)H-DPN affinity constants at the MOR that were consistent with results obtained using filtration methods (K(D) (SPA) = 1.89 +/- 0.24 nM, K(D) (filtration) = 1.88 +/- 0.35 nM). The binding SPA identified known opioid receptor modulators contained within the Library of Pharmacological Active Compounds (LOPAC) cassette, and the GTPgammaS scintillation proximity assay (SPA) was used to confirm the functional activity of the LOPAC antagonists acting at the MOR. Conversion of the ligand binding and GTPgammaS functional assays to a homogeneous SPA generated a simple assay with dramatically increased throughput. Data from the development and implementation of the displacement binding and GTPgammaS functional SPAs are presented.  相似文献   

18.
Dopamine receptor-G protein coupling and dopamine D(2) receptor density were assessed in rats treated for 3 weeks with either haloperidol (2 mg/kg; i.p.) or vehicle. After 3 days of withdrawal, agonist-induced guanosine 5'-O-(gamma-[35S]thio)triphosphate ([35S]GTPgammaS) and [3H]spiperone binding were determined in striatal homogenates. Maximal [3H]spiperone binding was increased (24.8%, P<0.01) following haloperidol treatment. The efficacy of dopamine and the dopamine D(2) receptor agonist R(-)-10, 11-dihydroxy-N-n-propylnorapomorphine (NPA) to induce [35S]GTPgammaS binding were found to be increased by 24.1% (P<0.01) and 44.6% (P<0. 001), respectively. When measured in the presence of a saturating concentration of a dopamine D(2) receptor antagonist, the response to dopamine was not significantly affected by haloperidol treatment. In addition, the measurement of haloperidol-induced catalepsy confirmed that the efficient dopamine receptor blockade was followed by a progressive development of dopaminergic supersensitivity. Taken together, these results indicate that a functional pool of dopamine D(2) receptors is increased after prolonged haloperidol administration.  相似文献   

19.
1. 5-Hydroxytryptamine 1A (5-HT1A) receptors have attracted increasing attention as a promising target for antipsychotic therapy. Although many atypical antipsychotic drugs, including the prototype clozapine, have been reported to be partial agonists at 5-HT1A receptors, these results are often fragmental and derived mainly from experiments that used cultured cells. 2. In the present study, [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTPgammaS) binding assay in rat hippocampal membranes was applied to a series of antipsychotic drugs, especially atypical antipsychotics. 3. Most, but not all, of atypical antipsychotic drugs and the classical antipsychotic drug nemonapride behaved as partial agonists at 5-HT1A receptors with varied potencies and relative efficacies. The most potent compound was perospirone with a mean EC50 of 27 nmol/L, followed by aripiprazole (45 nmol/L) > ziprasidone (480 nmol/L) > nemonapride (790 nmol/L) > clozapine (3900 nmol/L) > quetiapine (26,000 nmol/L). The maximal percentage increases over the basal binding (%Emax) for these antipsychotic drugs were 30-50%, with the exception of perospirone (approximately 15%), whereas 5-HT stimulated the binding to a mean %Emax of 105%. 4. Increasing concentrations of the selective and neutral 5-HT1A antagonist WAY100635 shifted the concentration-response curve of nemonapride-stimulated [35S]GTPgammaS binding to the right and in parallel. 5. The relative efficacy or intrinsic activity of a compound was affected differently by the differing concentrations of guanosine diphosphate (GDP) in the assay buffer, which should be taken into consideration when determining the relative efficacies of these antipsychotics as 5-HT1A receptor agonists. 6. These results provide important information concerning the relevance of 5-HT1A receptor partial agonist properties in the treatment for schizophrenic patients with most, if not all, of atypical antipsychotic drugs.  相似文献   

20.
Importance of the field: In recent times many G protein-coupled receptors (GPCRs) have been shown to dimerise/oligomerise and, in some cases, such structural organization has been found to be essential for receptor function or to play a modulatory role in living cells. The fact that these complexes may display differential pharmacology through, for example, the formation of a new binding pocket or signalling properties, as well as different functions or regulation in physiological tissues, offers novel opportunities for drug discovery. As a consequence, it seems necessary to develop new approaches suitable for GPCR heterodimer identification and selective ligand screening. Areas covered in this review: This review gives an overview of new strategies that have been developed in an effort to incorporate the possibilities added by GPCR hetero-oligomerisation on the screening of compounds as drug candidates. What the reader will gain: The reader will gain a wider knowledge about how the current understanding of GPCR oligomeric structure and function has mandated that hetero-oligomeric receptors must be considered as novel targets in the identification of future lead compounds. Take home message: For the improvement of novel drug discovery, more structural and functional information on the process of receptor oligomerisation is needed, and the realisation that the function of GPCRs can be greatly influenced by other interacting receptors or proteins also demands consideration in the lead-compound developing process in order to achieve better therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号