首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
目的:应用基因芯片技术研究自发性2型糖尿病KK/Ta小鼠肾脏基因表达谱,旨在寻找糖尿病肾病的易感基因。方法:提取20周龄雄性KK/Ta(n=3)和BALB/c(n=2)小鼠肾脏总RNA,应用Affymetrix公司生产的Affymetrix Murine Genome U74Av2基因芯片检测肾脏基因表达谱。选择差异表达基因,通过竞争性RT-PCR反应验证基因芯片的结果。结果:98个已知基因和31个表达序列标签(ESTs)在20周龄KK/Ta与BALB/c小鼠的肾脏中存在着差异表达。与BALB/c小鼠相比,KK/Ta小鼠肾脏中21个已知基因和7个EST表达上调,77个已知基因和24个EST表达下调。竞争性RT-PCR反应确认了基因芯片研究的结果。结论:KK/Ta小鼠肾脏中的差异表达基因广泛参与细胞外基质的合成与降解、信号传导、转录调节与蛋白质合成、离子转运、葡萄糖与脂类代谢等。糖尿病肾病易感基因位点UA-1区域的差异表达基因S-腺苷高同型半胱氨酸水解酶基因Ahcy为糖尿病肾病的可能易感基因。  相似文献   

2.
目的 在2型糖尿病肾病(DN)白蛋白尿易感基因定位的基础上,进一步筛选白蛋白尿易感基因位点(UA-1)区域附近的候选基因.方法 提取20周龄雄性KK/Ta(n=3)和BALB/c (n=2)小鼠肾脏总RNA,应用Affymetrix Murine Genome U74Av2基因芯片检测肾脏基因表达谱.选择UA-1区域的差异表达基因多配体蛋白聚糖4(syndecan-4),竞争性RT-PCR验证基因芯片的结果.提取KK/Ta、BALB/c小鼠的基因组DNA,进行syndecan-4基因编码区和启动子区域的序列分析.结果 在2型糖尿病KK/Ta小鼠UA-1区域附近存在着约10个差异表达基因.其中syndecan-4在20周龄KK/Ta小鼠肾脏中的表达上调,为BALB/c小鼠的26.1倍.在syndecan-4基因编码区存在2个基因多态性,分别为A93C和T216C多态性,2者均为同义突变.在syndecan-4基因启动子区域存在3个基因多态性,分别为-T263C、-T396C 与-G669A多态性.TATA框位于转录起始位点上游321 bp处,-T263C处恰好为转录因子Clox 的结合位点.结论 syndecan-4基因位于2型糖尿病UA-1附近区域,在20周龄KK/Ta小鼠肾脏中的表达明显上调,是DN的候选基因.syndecan-4启动子处的基因多态性可能为其差异表达的原因.  相似文献   

3.
BACKGROUND: The KK/Ta mouse strain serves as a suitable polygenic model for human type 2 diabetes. We previously reported a genome-wide linkage analysis of KK/Ta alleles contributing to type 2 diabetes and related phenotypes such as fasting hyperglycaemia, glucose intolerance, hyperinsulinaemia, obesity and dyslipidaemia. METHODS: Since KK/Ta mice spontaneously develop renal lesions closely resembling those in human diabetic nephropathy, we investigated the susceptibility loci using the KK/Ta x (BALB/c x KK/Ta) F1 backcross progeny in the present study. RESULTS: A genome-wide analysis of susceptibility loci for albuminuria with microsatellite-based chromosomal maps showed a contributing KK/Ta locus, provisionally designated UA-1, with a significant linkage with the interval on chromosome 2 at 83.0 cM close to the microsatellite marker D2Mit311 with a maximum LOD of 3.5 (chi(2) = 13.2, P = 0.0003). UA-1 was different from the susceptibility loci contributing to type 2 diabetes, which we earlier identified. The mode of inheritance differed from that of hypertension. The progeny homozygous for UA-1 showed significantly higher urinary albumin levels. CONCLUSIONS: Although there were no significant correlations between urinary albumin levels and other diabetic phenotypes, the group of progeny homozygous for both UA-1 and alleles for fasting hyperglycaemia showed the highest urinary albumin levels. Thus, UA-1 appears to increase the risk of diabetic nephropathy, particularly in individuals susceptible to fasting hyperglycaemia, in a gene dosage-dependent manner. There are potentially important candidate genes that may be relevant to diabetic nephropathy.  相似文献   

4.
目的:本研究旨在探讨血管紧张素Ⅱ受体拮抗剂坎地沙坦治疗对自发性2型糖尿病KK/Ta小鼠肾内硝化氧化应激的影响及其作用机制。方法:KK/Ta小鼠随机分为(1)非治疗组;(2)早期治疗组:自6周龄起经口予坎地沙坦(4mg·kg-1·d-1)治疗;(3)晚期治疗组:自12周龄起予坎地沙坦治疗,正常对照组采用BALB/c小鼠。应用免疫组化和免疫荧光染色检测肾脏中硝化氧化应激的标志物硝基酪氨酸,诱导型(iNOS)和内皮型一氧化氮合酶(eNOS)蛋白的表达,竞争性RT-PCR检测iNOS和eNOSmRNA的表达。同时测定尿白蛋白排泄率,血压和糖耐量等临床指标。结果:28周龄KK/Ta小鼠尿白蛋白排泄率增加,肾脏iNOSmRNA和蛋白表达上调,硝基酪氨酸的形成增加。坎地沙坦治疗减少尿白蛋白排泄率,抑制肾脏iNOSmRNA和蛋白的表达,减少硝基酪氨酸的形成,早期治疗组和晚期治疗组的作用差异无统计学意义。4组小鼠eNOSmRNA和蛋白的表达水平无差异。结论:坎地沙坦治疗通过下调糖尿病状态下肾脏iNOS的表达,抑制过氧亚硝基阴离子的形成,抑制硝化氧化应激反应,发挥其降低尿白蛋白排泄率等肾脏保护作用。  相似文献   

5.
BACKGROUND: Angiotensin-II induces nitro-oxidative stress in patients with diabetic nephropathy. Peroxynitrite and reactive oxide species can accelerate formation of advanced glycation end-products (AGEs). We investigated the effects of candesartan, an angiotensin-II type 1 receptor blocker (ARB), on the formation of AGEs and nitro-oxidative stress in type 2 diabetic KK/Ta mouse kidneys. METHODS: KK/Ta mice were divided into three treatment groups: an early treatment group receiving 4 mg/kg/day candesartan from 6 to 28 weeks of age, a late treatment group receiving the same candesartan dose from 12 to 28 weeks of age and a group receiving the vehicle for candesartan. BALB/c mice treated with vehicle were used as controls. We evaluated at 28 weeks the renal expressions of carboxymethyllysine, the receptor for AGE (RAGE), the p47phox component of NADPH oxidase, endothelial nitric oxide synthase (eNOS), induced nitric oxide synthase (iNOS) and 8-OHdG and nitrotyrosine by immunohistochemistry and/or by competitive RT-PCR. RESULTS: Kidneys from KK/Ta mice showed increased formation of AGEs, nitro-oxidative stress and RAGE expression and these were attenuated by candesartan treatment. Protein and mRNA expressions of p47phox and iNOS were upregulated in KK/Ta kidneys, which also showed increased immunostaining intensities of 8-OHdG and nitrotyrosine. Treatment with candesartan attenuated all of these changes and prevented significant albuminuria. There were no significant differences in the expression of eNOS among the four groups. CONCLUSIONS: These findings suggest that candesartan, an ARB, reduces AGE accumulation and subsequent albuminuria by down-regulating the NADPH oxidase p47phox component and iNOS expression and by attenuating RAGE expression in type 2 diabetic KK/Ta mouse kidneys.  相似文献   

6.
The KK/Ta strain serves as a suitable polygenic mouse model for the common form of type 2 diabetes associated with obesity in humans. Recently, we reported the susceptibility loci contributing to type 2 diabetes and related phenotypes in KK/Ta mice. In this study, we focused on expression in the kidneys and liver of KK/Ta and BALB/c mice using differential display (DD) PCR. Zn-alpha(2) glycoprotein-1 (Azgp1) mRNA levels were increased in the kidneys and liver in KK/Ta mice, and sequence analysis revealed a missense mutation. We analyzed the relationship between this polymorphism and various phenotypes in 208 KK/Ta x (BALB/c x KK/Ta) F1 backcross mice. Statistical analysis revealed that Azgp1 and D17Mit218 exhibit a suggestive linkage to body weight (8 weeks) (logarithm of odds 2.3 and 2.9, respectively). Moderate gene-gene interactions were observed at these loci. Adiponectin mRNA levels in 3T3-L1 cells transfected with the expression pcDNA 3.1 vector containing Azgp1 coding sequence of KK/Ta mice were significantly higher than those of BALB/c mice. These results suggest that Azgp1 is a possible candidate gene for regulation of body weight, elucidation of polygenic inheritance, and age-dependent changes in the genetic control of obesity.  相似文献   

7.
The KK/Ta mouse strain serves as a suitable polygenic model for human type 2 diabetes. Using 93 microsatellite markers in 208 KK/Ta x (BALB/c x KK/Ta)F1 male backcross mice, we carried out a genome-wide linkage analysis of KK/Ta alleles contributing to type 2 diabetes and related phenotypes, such as obesity and dyslipidemia. We identified three major chromosomal intervals significantly contributing to impaired glucose metabolism: one quantitative trait locus for impaired glucose tolerance on chromosome 6 and two loci for fasting blood glucose levels on chromosomes 12 and 15. The latter two loci appeared to act in a complementary fashion. Two intervals showed significant linkages for serum triglyceride levels, one on chromosome 4 and the other on chromosome 8. The KK allele on chromosome 8 acts to promote serum triglyceride levels, whereas the KK allele on chromosome 4 acts to suppress this effect in a recessive fashion. In addition, it is suggested that the chromosome 4 locus also acts to downregulate body weight and that the chromosome 8 locus acts to upregulate serum insulin levels. Our data clearly showed that each disease phenotype of type 2 diabetes and related disorders in KK/Ta mice is under the control of separate genetic mechanisms. However, there appear to be common genes contributing to different disease phenotypes. There are potentially important candidate genes that may be relevant to the disease.  相似文献   

8.
9.
Inflammatory process is involved in the pathogenesis of diabetic nephropathy. In this article, we show that cholecystokinin (CCK) is expressed in the kidney and exerts renoprotective effects through its anti-inflammatory actions. DNA microarray showed that CCK was upregulated in the kidney of diabetic wild-type (WT) mice but not in diabetic intracellular adhesion molecule-1 knockout mice. We induced diabetes in CCK-1 receptor (CCK-1R) and CCK-2R double-knockout (CCK-1R(-/-),-2R(-/-)) mice, and furthermore, we performed a bone marrow transplantation study using CCK-1R(-/-) mice to determine the role of CCK-1R on macrophages in the diabetic kidney. Diabetic CCK-1R(-/-),-2R(-/-) mice revealed enhanced albuminuria and inflammation in the kidney compared with diabetic WT mice. In addition, diabetic WT mice with CCK-1R(-/-) bone marrow-derived cells developed more albuminuria than diabetic CCK-1R(-/-) mice with WT bone marrow-derived cells. Administration of sulfated cholecystokinin octapeptide (CCK-8S) ameliorated albuminuria, podocyte loss, expression of proinflammatory genes, and infiltration of macrophages in the kidneys of diabetic rats. Furthermore, CCK-8S inhibited both expression of tumor necrosis factor-α and chemotaxis in cultured THP-1 cells. These results suggest that CCK suppresses the activation of macrophage and expression of proinflammatory genes in diabetic kidney. Our findings may provide a novel strategy of therapy for the early stage of diabetic nephropathy.  相似文献   

10.
11.
BACKGOUND: Interferon (IFN)-gamma and the IFN-gamma-dependent pathway are prominent in vascularized allograft during acute rejection. However, IFN-gamma deficient (IFN-gamma-/-) mice can rapidly reject cardiac allografts. To bring the alternative pathway during allograft rejection into more precise focus, we investigated the gene expression profile in murine cardiac allografts in IFN-gamma-/- mice by means of DNA microarray. MATERIAL AND METHOD: We screened for gene expression changes in murine cardiac allografts of BALB/c H-2d into both wild-type C57BL/6 H-2b (n=3) and IFN-gamma-/- C57BL/6 H-2b(IFN-gamma-/-, n=4) using Affymetrix oligonucleotide arrays to monitor more than 11,000 genes and expressed sequence tag (ESTs). The heart was heterotopically transplanted. Transplanted hearts were harvested on day 5. As a control, isografts (C57BL/6 to C57BL/6) were also harvested on day 5. RESULTS: On day 5, 64 of the 84 genes induced in the allografts in wild-type mice were not up-regulated in IFN-gamma-/- mice. We identified a group of 54 genes that were up-regulated in allografts in IFN-gamma-/- mice. Several chemokine genes, including monocyte chemoattractant protein=1 and macrophage inflammatory protein, were induced in the allografts in both wild-type and IFN-gamma-/- mice. Interestingly, a group of genes, including C10-like chemokine and platelet factor 4, were specifically induced in the IFN-gamma-/- mice. CONCLUSION: DNA microarray analysis reveals a unique pattern of mRNA expression in allografts in IFN-gamma-/- mice as well as a group of genes induced in cardiac allografts in both wild-type and IFN-gamma-/- mice, including monocyte chemoattractant protein-1 and monocyte chemoattractant protein-1.  相似文献   

12.
Glomerular injury plays a pivotal role in the development of diabetic nephropathy. To elucidate molecular mechanisms underlying diabetic glomerulopathy, we compared glomerular gene expression profiles of db/db mice with those of db/m control mice at a normoalbuminuric stage characterized by hyperglycemia and at an early stage of diabetic nephropathy with elevated albuminuria, using cDNA microarray. In db/db mice at the normoalbuminuric stage, hypoxia-inducible factor-1alpha (HIF-1alpha), ephrin B2, glomerular epithelial protein 1, and Pod-1, which play key roles in glomerulogenesis, were already upregulated in parallel with an alteration of genes related to glucose metabolism, lipid metabolism, and oxidative stress. Podocyte structure-related genes, actinin 4alpha and dystroglycan 1 (DG1), were also significantly upregulated at an early stage. The alteration in the expression of these genes was confirmed by quantitative RT-PCR. Through pioglitazone treatment, gene expression of ephrin B2, Pod-1, actinin 4alpha, and DG1, as well as that of oxidative stress and lipid metabolism, was restored concomitant with attenuation of albuminuria. In addition, HIF-1alpha protein expression was partially attenuated by pioglitazone. These results suggest that not only metabolic alteration and oxidative stress, but also the alteration of gene expression related to glomerulogenesis and podocyte structure, may be involved in the pathogenesis of early diabetic glomerulopathy in type 2 diabetes.  相似文献   

13.
BACKGROUND: Although therapeutic effects of angiotensin II type 1 receptor blocker (ARB) on renal injury in non-insulin dependant diabetes mellitus (NIDDM) have been demonstrated, the beneficial effects and their mechanisms in diabetic nephropathy have not been well evaluated. METHODS: KK/Ta mice were divided into three groups according to the treatment: candesartan 4 mg/kg/day from 6 to 28 weeks of age (group I; early treatment); from 12 to 28 weeks of age (group II; late treatment); only vehicle (group III). BALB/c mice treated with vehicle were used as controls (group IV). Body weight (BW), systolic blood pressure (SBP), blood glucose, urinary type IV collagen and albumin excretion were measured every 4 weeks. Morphometry and immunohistology of albumin, transforming growth factor-beta1 (TGF-beta1) and Smad7 were performed in all groups. RESULTS: BW and blood glucose were higher in groups I, II and III than in group IV from 8 weeks. SBP was markedly reduced in groups I and II compared with group III (p < 0.05, p < 0.005). Urinary type IV collagen and albumin excretion were increased in group III compared to group IV (p < 0.05, p < 0.005), whereas they were reduced in groups I and II when compared to group III (p < 0.05). Morphometric analysis revealed that the whole glomerular area (WGA), glomerular tuft area (GTA), extracellular matrix area (ECMA) and intraglomerular cell nuclei number (NIGCN) were significantly reduced in groups I, II and IV compared to group III at 28 weeks. In immunohistochemistry, TGF-beta1 expression in both glomeruli and tubules of groups I and II decreased compared to that of group III at 28 weeks, while Smad7 in group III glomeruli was reduced compared to that in groups I and II. CONCLUSIONS: It appears that candesartan reduced urinary type IV collagen and albumin excretion, and attenuated glomerular hypertrophy and mesangial matrix accumulation by the TGF-betaS/Smad signaling pathway in KK/Ta mice with diabetic nephropathy.  相似文献   

14.
Qi Z  Fujita H  Jin J  Davis LS  Wang Y  Fogo AB  Breyer MD 《Diabetes》2005,54(9):2628-2637
Differential susceptibility to diabetic nephropathy has been observed in humans, but it has not been well defined in inbred strains of mice. The present studies characterized the severity of diabetic nephropathy in six inbred mouse strains including C57BL/6J, DBA/2J, FVB/NJ, MRL/MpJ, A/J, and KK/HlJ mice. Diabetes mellitus was induced using low-dose streptozotocin injection. Progression of renal injury was evaluated by serial measurements of urinary albumin excretion, glomerular filtration rate (GFR), and terminal assessment of renal morphology over 25 weeks. Despite comparable levels of hyperglycemia, urinary albumin excretion and renal histopathological changes were dramatically different among strains. DBA/2J and KK/HlJ mice developed significantly more albuminuria than C57BL/6J, MRL/MpJ, and A/J mice. Severe glomerular mesangial expansion, nodular glomerulosclerosis, and arteriolar hyalinosis were observed in diabetic DBA/2J and KK/HlJ mice. Glomerular hyperfiltration was observed in all diabetic strains studied except A/J. The significant decline in GFR was not evident over the 25-week period of study, but diabetic DBA/2J mice exhibited a tendency for GFR to decline. Taken together, these results indicate that differential susceptibility to diabetic nephropathy exists in inbred mice. DBA/2J and KK/HlJ mice are more prone to diabetic nephropathy, whereas the most widely used C57BL/6J mice are relatively resistant to development of diabetic nephropathy.  相似文献   

15.
BACKGROUND: Macrophage-mediated renal injury has been implicated in progressive forms of glomerulonephritis; however, a role for macrophages in type 2 diabetic nephropathy, the major cause of end-stage renal failure, has not been established. Therefore, we examined whether macrophages may promote the progression of type 2 diabetic nephropathy in db/db mice. METHODS: The incidence of renal injury was examined in db/db mice with varying blood sugar and lipid levels at 8 months of age. The association of renal injury with the accumulation of kidney macrophages was analyzed in normal db/+ and diabetic db/db mice at 2, 4, 6, and 8 months of age. RESULTS: In db/db mice, albuminuria and increased plasma creatinine correlated with elevated blood glucose and hemoglobin A1c (HbA1c) levels but not with obesity or hyperlipidemia. Progressive diabetic nephropathy in db/db mice was associated with increased kidney macrophages. Macrophage accumulation and macrophage activation in db/db mice correlated with hyperglycemia, HbA1c levels, albuminuria, elevated plasma creatinine, glomerular and tubular damage, renal fibrosis, and kidney expression of macrophage chemokines [monocyte chemoattractant protein-1 (MCP-1), osteopontin, migration inhibitory factor (MIF), monocyte-colony-stimulating factor (M-CSF)]. The accrual and activation of glomerular macrophages also correlated with increased glomerular IgG and C3 deposition, which was itself dependent on hyperglycemia. CONCLUSION: Kidney macrophage accumulation is associated with the progression of type 2 diabetic nephropathy in db/db mice. Macrophage accumulation and activation in diabetic db/db kidneys is associated with prolonged hyperglycemia, glomerular immune complex deposition, and increased kidney chemokine production, and raises the possibility of specific therapies for targeting macrophage-mediated injury in diabetic nephropathy.  相似文献   

16.
BACKGROUND: In type 2 diabetic nephropathy, there is no animal model which has been completely matched with humans. Advanced glycation end products (AGE) and transforming growth factor-beta (TGF-beta) are closely related to hyperglycaemia and their pathobiochemistry could explain diabetic nephropathy. The objective of the present study was to evaluate the KK-A(y)/Ta mouse as a suitable model for type 2 diabetic nephropathy including pathological changes and immunohistochemical analyses of AGE and TGF-beta, compared with the non-diabetic BALB/cA mouse. METHODS: The urinary albumin/creatinine ratio (ACR), body weight (BW), fasting and casual blood glucose, blood haemoglobin A(1c) (HbA(1c)), creatinine clearance (Ccr) and blood pressure were measured for phenotypic characterisation. The pathological changes of glomeruli were evaluated by light microscopy, immunofluorescence and electron microscopy. AGE and TGF-beta accumulation were evaluated by immunoperoxidase staining. RESULTS: The mean levels of ACR, casual blood glucose, blood HbA(1c) and Ccr in KK-A(y)/Ta mice were higher than those in age-matched non-diabetic BALB/cA mice after 12 weeks of age. There were no significant changes in the levels of systemic blood pressure among all groups. The pathological changes of glomeruli in KK-A(y)/Ta mice were consistent with those in the early stage of human diabetic nephropathy. AGE and TGF-beta protein appeared to be localised in the glomerular mesangial matrices. CONCLUSION: It appears that KK-A(y)/Ta mice, especially in terms of histopathological findings, are a suitable animal model for the early stage of type 2 diabetic nephropathy.  相似文献   

17.
Activation of protein kinase C (PKC) isoforms has been implicated in the pathogenesis of diabetic nephropathy. We showed earlier that PKC-alpha is activated in the kidneys of hyperglycemic animals. We now used PKC-alpha(-/-) mice to test the hypothesis that this PKC isoform mediates streptozotocin-induced diabetic nephropathy. We observed that renal and glomerular hypertrophy was similar in diabetic wild-type and PKC-alpha(-/-) mice. However, the development of albuminuria was almost absent in the diabetic PKC-alpha(-/-) mice. The hyperglycemia-induced downregulation of the negatively charged basement membrane heparan sulfate proteoglycan perlecan was completely prevented in the PKC-alpha(-/-) mice, compared with controls. We then asked whether transforming growth factor-beta1 (TGF-beta1) and/or vascular endothelial growth factor (VEGF) is implicated in the PKC-alpha-mediated changes in the basement membrane. The hyperglycemia-induced expression of VEGF165 and its receptor VEGF receptor II (flk-1) was ameliorated in PKC-alpha(-/-) mice, whereas expression of TGF-beta1 was not affected by the lack of PKC-alpha. Our findings indicate that two important features of diabetic nephropathy-glomerular hypertrophy and albuminuria-are differentially regulated. The glucose-induced albuminuria seems to be mediated by PKC-alpha via downregulation of proteoglycans in the basement membrane and regulation of VEGF expression. Therefore, PKC-alpha is a possible therapeutic target for the prevention of diabetic albuminuria.  相似文献   

18.
BACKGROUND: Previous studies reported that eicosapentaenoic acid (EPA) was effective against any renal diseases including diabetic nephropathy. Monocyte chemoattractant protein-1 (MCP-1) is a regulating macrophage recruitment protein, which is up-regulated in patients with diabetic nephropathy. The objectives of the present study were to evaluate the effects of EPA including renal MCP-1 expression in diabetic KKAy/Ta mice, MCP-1 production and signal transduction in mouse mesangial cells (MMCs). METHODS: KKAy/Ta mice were injected with EPA ethyl ester (1 g/kg/day) intraperitoneally. Immunohistochemical staining of MCP-1, F4/80, phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) and phospho-p38 in the renal sections were performed. EPA or specific inhibitors were incorporated in MMCs, and the levels of supernatant MCP-1 were measured. The effect of EPA on ERK1/2, c-jun NH2-terminal kinase (JNK), p38 or phosphoinositide 3-kinase (PI3K) activity in MMCs was examined using Western blot. RESULTS: EPA decreased the levels of serum triglycerides, leptin, urinary albumin and MCP-1, and improved glucose intolerance, mesangial matrix accumulation and tubulointerstitial fibrosis in KKAy/Ta mice. Immunohistochemical staining of MCP-1 and F4/80 in the glomeruli and tubulointerstitial regions was decreased in the EPA-treated group. EPA and specific inhibitors of ERK1/2, JNK and PI3K decreased levels of MCP-1 in MMCs. EPA suppressed phosphorylation of ERK1/2 and p38 in MMCs, and decreased p-ERK positive cells in glomeruli of KKAy/Ta mice. CONCLUSIONS: EPA ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice. We propose that the observed down-regulation of MCP-1 is critically involved in the beneficial effect of EPA, probably in concert with improvement of other clinical parameters.  相似文献   

19.
Microinflammation is a common major mechanism in the pathogenesis of diabetic vascular complications, including diabetic nephropathy. Macrophage scavenger receptor-A (SR-A) is a multifunctional receptor expressed on macrophages. This study aimed to determine the role of SR-A in diabetic nephropathy using SR-A-deficient (SR-A(-/-)) mice. Diabetes was induced in SR-A(-/-) and wild-type (SR-A(+/+)) mice by streptozotocin injection. Diabetic SR-A(+/+) mice presented characteristic features of diabetic nephropathy: albuminuria, glomerular hypertrophy, mesangial matrix expansion, and overexpression of transforming growth factor-beta at 6 months after induction of diabetes. These changes were markedly diminished in diabetic SR-A(-/-) mice, without differences in blood glucose and blood pressure levels. Interestingly, macrophage infiltration in the kidneys was dramatically decreased in diabetic SR-A(-/-) mice compared with diabetic SR-A(+/+) mice. DNA microarray revealed that proinflammatory genes were overexpressed in renal cortex of diabetic SR-A(+/+) mice and suppressed in diabetic SR-A(-/-) mice. Moreover, anti-SR-A antibody blocked the attachment of monocytes to type IV collagen substratum but not to endothelial cells. Our results suggest that SR-A promotes macrophage migration into diabetic kidneys by accelerating the attachment to renal extracellular matrices. SR-A may be a key molecule for the inflammatory process in pathogenesis of diabetic nephropathy and a novel therapeutic target for diabetic vascular complications.  相似文献   

20.
目的 分选、鉴定人胰腺癌干细胞,运用基因芯片技术分析其差异性基因的表达.方法 运用流式分选技术分选胰腺癌干细胞(CD24+CD44+ESA+),NOD/SCID鼠移植瘤试验进行肿瘤干细胞特性鉴定.采用Affymetrix U133 plus2.0人类全基因组表达谱芯片对胰腺癌干细胞和非干细胞进行差异基因筛选.结果 分选得到人胰腺癌CD24+CD44+ESA+亚群细胞,占所有细胞的0.8%;5×103个CD24+CD44+ESA+细胞就能成瘤(2/4),而阴性细胞1×105才能成瘤(1/4);CD24+CD44+ESA+具有一定的自我更新和分化能力.基因芯片杂交获得6553(11.99%)条差异基因,胰腺癌干细胞中5255(9.61%)条上调表达,1298(2.37%)条下调表达.其中差异基因涉及细胞凋亡、细胞周期、代谢、细胞线粒体结构和耐药等多个方面.结论 胰腺癌于细胞具有自身特征性基因表达谱,为进一步从干细胞层面研究胰腺癌发病机制及靶向治疗奠定基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号